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Abstract

Infectious pathogens are known for their rapid evolutionary rates with new mutations arising over days to weeks. The
ability to rapidly recover whole genome sequences and analyze the spread and evolution of pathogens using genetic infor-
mation and pathogen collection dates has lead to interest in real-time tracking of infectious transmission and outbreaks.
However, the level of temporal resolution afforded by these analyses may conflict with definitions of what constitutes pro-
tected health information (PHI) and privacy requirements for de-identification for publication and public sharing of research
data and metadata. In the United States, dates and locations associated with patient care that provide greater resolution
than year or the first three digits of the zip code are generally considered patient identifiers. Admission and discharge dates
are specifically named as identifiers in Department of Health and Human Services guidance. To understand the degree to
which one can impute admission dates from specimen collection dates, we examined sample collection dates and patient
admission dates associated with more than 270,000 unique microbiological results from the University of Washington
Laboratory Medicine Department between 2010 and 2017. Across all positive microbiological tests, the sample collection
date exactly matched the patient admission date in 68.8% of tests. Collection dates and admission dates were identical
from emergency department and outpatient testing 86.7% and 96.5% of the time, respectively, with >99% of tests collected
within 1 day from the patient admission date. Samples from female patients were significantly more likely to be collected
closer to admission date that those from male patients. We show that PHI-associated dates such as admission date can con-
fidently be imputed from deposited collection date. We suggest that publicly depositing microbiological collection dates at
greater resolution than the year may not meet routine Safe Harbor-based requirements for patient de-identification. We
recommend the use of Expert Determination to determine PHI for a given study and/or direct patient consent if clinical labo-
ratories or phylodynamic practitioners desire to make these data available.
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1. Introduction

Rapid sequencing and phylodynamic tracking of viral and bac-
terial isolates have recently become a staple in tracking viral
transmission and outbreaks. In the past 5 years, multiple collab-
orative efforts and wet-lab protocols have been described to

obtain clinical materials and sequence whole genomes in hours
to days (Carroll et al. 2015; Greninger et al. 2015b; Park et al.
2015; Quick et al. 2016; Kozyreva et al. 2017). These efforts range
from international pandemics and smoldering state/
providence-wide surveillance to local hospital-acquired or
ward-based outbreaks (Gardy et al. 2011; Snitkin et al. 2012; Gire
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et al. 2014; Carroll et al. 2015; Roach et al. 2015; Greninger et al.
2015c; Kozyreva et al. 2016; Naccache et al. 2016; Thomson et al.
2016; Greninger et al. 2017b, c; Grubaugh et al. 2017). The use of
genomic data in bacterial food-borne outbreaks has been asso-
ciated with a faster determination of source and fewer persons
associated with each outbreak (Jackson et al. 2016). Although
the need for genomic data from infectious pathogens on a clini-
cal level is limited, it is clear that we are at the beginning of a
new age of infectious disease surveillance and response with
great interest in ‘friction-free’ approaches to data sharing
(Gardy et al. 2015). Whereas 5 years ago, there was little to no
whole genome sequencing performed in public health laborato-
ries, now more than 4,000 food-borne bacterial isolate genomes
are uploaded each month to the Food and Drug Administration
GenomeTrakr database by public health laboratories (Allard
et al. 2016). Clinical labs and researchers can digitize stocks of
virus at a cost of tens of dollars per isolate, unlocking novel
pathogen biology at a local level (Greninger et al. 2015a, 2017a,d;
Ogimi et al. 2017). Publicly deposited pathogen genomic data
and metadata are forever available and searchable online,
cumulatively adding to the world’s database of descriptive
infectious diseaes epidemiology.

As the ease and rate of genomic data deposition has grown,
pathogen metadata has become increasingly important. When
depositing a viral or bacterial isolate sample for a clinical or
host associated sample, the National Center for Biotechnology
Information (NCBI) BioSample database requires organism
name, strain/isolate name, collection location, collection date,
isolation source, host disease, and latitude and longitude, but
also allows for deposition of host age, host sex, host health
state, host description, and antibiotic resistance metadata
among other specimen identifiers (Federhen et al. 2014).
Although privacy concerns for infectious pathogen genomic
data and metadata are less than those associated with human
genomic data, there are still considerable privacy issues at hand
(Lippert et al. 2017). Naturally, pathogen metadata directly
comes from patient metadata. The ability to impute human
relations via pathogen genomic data and phylodynamics also
raises serious privacy concerns as to what constitutes protected
health information (PHI). Because pathogen sequence includes
a positive clinical testing result by definition, pathogen meta-
data can be considered clinical metadata. The desire to build
better phylodynamic models creates a demand for increasing
amounts of pathogen metadata with higher resolution. Higher
resolution of analysis corresponds to greater precision in identi-
fying subjects. In addition, the number of laboratories sequenc-
ing isolates, depositing metadata, and participating in
phylodynamic analyses is rapidly increasing and many labora-
tories may not be as aware of potential privacy concerns.
Setting standards in this area is now especially critical.

In the United States the Deparment of Health and Human
Services regulations name 18 individual identifiers that must
be removed from datasets in order to be considered ‘de-inden-
tified’ under the Safe Harbor method to be in accordance with
the Privacy Rule of the Health Insurance Portability and
Accountabiltiy Act (HIPAA) (Table 1). Alternatively, under the
Expert Determination method, such identifiers may be
included in released metadata if a qualified expert statistician
deems them to be non-identifiable and the local Institutional
Review Board (IRB) agrees. Finally, the IRB may grant permis-
sion for release of identifying metadata if direct patient con-
sent is obtained to release such information. Public health
entities have special provisions to communicate these identi-
fiers in the context of a public health emergency (OCR 2008).

Sample collection date and location are not explicitly named
in the 18 protected heath identifiers. However, dates associated
with patient care such as admission date and discharge date at
finer resolution than the year are considered patient identifiers.
Locations at greater resolution than the first three zip code
numbers or any subdivision smaller than a state are also con-
sidered protected information. For pathogens that evolve in
days to weeks, providing only the year of collection based may
lead to less precise predictive evolutionary models which lessen
their public health impact. Alternatively, even with less detailed
data deposition, finer resolution of the collection date may be
imputed based on evolutionary models of genomic data and
metadata available for all isolates of a given pathogen.

Here we examine the relationship between sample collec-
tion dates and admission dates. Under the Safe Harbor method
of de-identification associated with the HIPAA Privacy Rule,
admission date is considered PHI. If a specimen collection date
is deposited in NCBI Genbank, to what degree has protected
health information been released? Using more than 7 years of
microbiological testing and over 270,000 unique results, we
show that PHI in the patient’s hospital admission date can be
confidently imputed from sample collection date. The correla-
tion between these dates varies by different settings of care,
with much higher levels of concordance associated with emer-
gency department (ED) and outpatient care—where >99% of
sample collections occurred within 1 day of admission. Greater
effort must be made to anonymize, determine the identifiability
of pathogen metadata, and/or obtain consent for the collection
and publication of these data.

2. Methods
2.1 Clinical testing dataset

The University of Washington (UW) Laboratory Medicine
Department is a large academic clinical laboratory medicine
service that serves the University of Washington Medical Center
(UWMC), Harborview Medical Center (HMC), the Seattle Cancer
Care Alliance, Valley Medical Center, Northwest Hospital and
Medical Center, and UW Neighborhood Clinics. The combined
enterprise covers �63,000 inpatient admissions, 200,000 emer-
gency room visits, and 1.6 million outpatient visits each year
(UW Medicine Board Annual Financial Report, FY 2016 n.d.).

Because we were chiefly interested in the use of patient iden-
tifiers in the context of phylodynamic analyses, we attempted to
restrict our analysis to clinical microbiology testing for which a
positive result was obtained, as only positives could be
sequenced. We obtained all bacterial and fungal culture test
orders for which a positive result/isolate was recovered as well as
all viral testing that was ordered and sent to UWMC Microbiology
laboratory, HMC Microbiology laboratory, and UW Virology
between 1 January 2010 and 2017 (Supplementary Table S1). Of
note, all virology test orders—positive or negative—were ana-
lyzed because coding of the virology results could not be readily
restricted to positives based on reporting of virology results.

The original identifiers obtained included name, medical
record number, date of birth, sex, location of patient when the
sample was collected, the classification of patient encounter
(inpatient, outpatient, emergency room, or outside), sample col-
lection date, patient admission date, patient discharge date,
accession number, order code, order name, test code, test
name, test result, and result time. All identifiers except sex,
location, classification, admit date, discharge date, and collec-
tion date were expunged from the working dataset, although
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the original dataset was retained for chart review of select cases
to ensure data validity.

Cleaning of data was first performed by allowing only one
entry for each laboratory information system sample accession
number, which collapsed multiple clinical tests from a single
sample into one test but did not collapse data by patient. For
instance, if a patient had one sample taken on Day 1 for two
viral tests and then another sample was collected the next day
for three bacterial tests this would translate into two data
points where the sample was taken on Day 1 and one data point
on Day 2. The data were then quality-controlled by removing all
entries that had any empty or nonsensical values for any of the
kept metadata (e.g. alphanumeric strings for admission date or
unknown patient sex). Chart review of these entries revealed
that they were the result of clinical staff competency testing.
These entries were subsequently removed from further analy-
sis. We then removed all testing for which the collection date
occurred after the discharge date or before the admission date,
as all sample collections should be made between an admission
date and discharge date for a given clinical encounter. The
above quality control steps were decided upon after chart
review of select outliers revealed that the above criteria were
also highly likely to be associated with reference lab testing;
therefore, we also removed all reference lab testing due to
inability to confidently assign admission dates to samples sent
from outside hospitals. We also quality-controlled the data by
examining outliers such as the longest patient stays for ED and
outpatient settings. The long patient stay lengths were all valid,
and the ED stays were in all cases boarding patients in the ED
due to bed unavailability based on chart review.

2.2 Statistical analyses

Because collection times were reported to the minute but
admission dates were only reported to the day, we restricted

analysis to the number of days between collection date and
admission date, with zero indicating identical admission and
collection dates. In order to show the degree to which collection
dates and admission dates were related on a continuous basis,
cumulative distribution curves were calculated based on the
number of days separating the collection date and admission
date for each sample collected. Distributions were plotted using
the ggplot2 package for R (Wickham 2009). Two-sample
Kolmogorov-Smirnov (KS) tests were used to compare cumulta-
tive distributions and two-sample proportion tests were used to
compare specific cumulative proportions at a point in time.

3. Results

Information from a total of 286,150 samples was analyzed
from microbiological testing at the UW Laboratory Medicine
Department from 2010 to 2017. Of these, 14,381 samples (5.0%)
were removed due to staff testing, computer records testing,
and conflicting admission/discharge/collection dates as
described above in the Methods. A total of 271,769 samples were
included for downstream analysis of collection date and admis-
sion date. ED samples accounted for 32,161 (11.8%) of all sam-
ples, inpatient for 95,188 (35.0%) and outpatient for 144,420
(53.1%). Samples collected from female patients accounted for
138,970 (51.1%) samples, and male patient samples made up the
remaining 132,799 (48.9%). Positive bacterial/fungal testing
made up 74,857 (27.5%) of the samples analyzed and all viral
testing comprised 196,912 samples (72.5%) (Table 2).

Across all samples for which data were kept, 68.8% of samples
had a collection date that was identical to the patient’s admis-
sion date (Fig. 1A ). Furthermore, 78.8% of samples were collected
within 1 day of the admission date. Of all samples analyzed, only
20 samples (0.01%) were collected more than 1 year from the
patient’s admission date, 279 (0.1%) more than 180 days from the

Table 1. List of 18 Protected Health Identifiers required to be removed to deidentify data under Safe Harbor method (reprinted from Office of
Civil Rights Guidance on De-identification of PHI, 26 November 2012).

Protected health identifiers

Names
All geographical subdivisions smaller than a State, including street address, city, county, precinct, zip code, and their equivalent geocodes,

except for the initial three digits of a zip code, if according to the current publicly available data from the Bureau of the Census: 1, The geo-
graphic unit formed by combining all zip codes with the same three initial digits contains more than 20,000 people; and 2, The initial three
digits of a zip code for all such geographic units containing 20,000 or fewer people is changed to 000.

All elements of dates (except year) for dates directly related to an individual, including birth date, admission date, discharge date, date of
death; and all ages over 89 and all elements of dates (including year) indicative of such age, except that such ages and elements may be
aggregated into a single category of age 90 or older.

Phone numbers
Fax numbers
Electronic mail addresses
Social Security numbers
Medical record numbers
Health plan beneficiary numbers
Account numbers
Certificate/license numbers
Vehicle identifiers and serial numbers, including license plate numbers
Device identifiers and serial numbers
Web Universal Resource Locators (URLs)
Internet Protocol (IP) address numbers
Biometric identifiers, including finger, and voice prints
Full face photographic images and any comparable images
Any other unique identifying number, characteristic, or code (note this does not mean the unique code assigned by the investigator to code

the data).
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admission date, and 26,542 (9.8%) more than 60 days from the
admission date. For 99.9% of samples the collection date was
within half a year of the admission date, far greater than the
year resolution defined under Safe Harbor method of de-
identification. Strikingly, more than 97% of samples were col-
lected within 1 month of the patient admission date.

In order to understand the degree to which additional pieces
of sample metadata can affect the ability to more confidently
impute patient admission date from sample collection date, we
performed additional subgroup analyses based on availability of
sample metadata. Viral testing collection dates were more
strongly correlated with admission dates than for positive bac-
terial or fungal culture samples (P-value < 2.2e-16). Across all
locations, collection dates were identical to patient admission
dates for 79.2% of viral tests, while they were identical for 65.0%
of positive bacterial and fungal cultures.

Virology test coding did not permit ready identification of
only positive test results. To check the impact of examining all
virus testing versus only viral positives, we extracted 16,434
unique samples for which the test results field either contained
‘positive’ or a quantity. In this subset, 14,133 (86.0%) of samples
were collected on the same day as the admission date and
14,994 (91.2%) of the samples were collected within 1 day of
admission. The distribution of this subset of viral positives was
significantly different compared with all virus testing (D ¼
0.373, P ¼ 4.86e-11). A likely explanation for this phenomena is
the increased prevalence of positive samples being collected in
the outpatient setting (83.5%) as compared with in the larger
dataset (53.1%). These discrepancies can likely be explained by
continued monitoring and sampling of patients with chronic
viral infections. For example, outpatient clinics may perform
routine viral load monitoring in the setting of chronic viral
infection. Thus, by examining all viral tests and not just posi-
tives we are likely biased toward larger discrepancies between
collection date and admission date.

We next separated bacterial/fungal and virology testing by
the type of patient encounter: inpatient, outpatient, and ED
(Fig. 1B–D). Unsurprisingly, almost all of the differences between
collection date and admission date were due to inpatient testing.
Across all inpatient testing, the patient admission date was iden-
tical to sample collection date for 22.0% of bacterial samples and
15.4% of viral testing samples. However, sample collection dates
were within 30 days of inpatient admission dates for 91.5% of
bacterial/fungal samples and 93.0% of viral samples. Presumably,
most of the microbiological testing for inpatients in which admis-
sion date and collection date matched was ordered from the ED.

Across both bacterial and viral samples, 99.7% of outpatient sam-
ples and 99.5% of ED samples were collected within 1 day of
admission date. For outpatient testing, sample collection dates
and patient admission dates were identical for 96.0% of positive
bacterial tests and 97.4% of virology tests (Fig. 1C).

Because the majority of discrepancies in collection and
admission dates occurred for inpatient testing, we further sub-
divided inpatient results based on the type of ward from which
the sample was collected: intensive care unit (ICU); medicine
and medical subspecialities; obstetrics/gynecology (OB/Gyn); or
surgery and surgical subspecialities (Fig. 2A–D). We were able to
classify 90,961 (95.6%) of all 95,188 inpatient samples. Obstetrics
and gynecology had the highest percentage of samples collected
within 1 day of the admission date at 65.1%, next highest was
surgery at 49.0%, followed by medicine at 41.0%, and ICU at
36.3%. Pairwise two-sample KS tests were performed for all
combinations of locations. The only significant difference in
distributions was between OB/Gyn and all other categories—ICU
(D ¼ 0.31, P ¼ 0.002), medicine (D ¼ 0.039, P ¼ 3.619e-05), and sur-
gery (D ¼ 0.317, P ¼ 0.002). All other pairwise comparisons of dis-
tributions resulted in P-values > 0.002.

We next examined differences between collection and admis-
sion dates by patient gender and across time (Fig. 3). Samples
from women were significantly more likely to be collected on the
exact admission date (73.7% versus 63.9%, P ¼ 2.2e-16) and closer
to the admission date (D ¼ 0.089916, P ¼ 0.0137) than those from
men. All-by-all pairwise two-sample KS testing for cumulative
distribution by year was also performed and Bonferroni corrected
for 15 total tests. The lowest Bonferroni-corrected P-value
obtained was 0.105 indicating that distributions were not signifi-
cantly different year-by-year.

4. Discussion

In this study, we show that sample collection dates associated
with microbiological testing at a large tertiary hospital are
highly correlated with patient admission date, protected health
information specifically named by the HIPAA Privacy Rule. With
the addition of one piece of metadata such as outpatient or ED
testing, the admission date could be imputed to within 1 day for
over 99% of samples with a listed collection date. Even for inpa-
tient testing, collection dates allowed imputation of the admis-
sion date to the resolution of a week for >70% of samples.
Indeed, the average length of stay is �1 week in most of the hos-
pitals that send clinical specimens to our clinical laboratory
(UW Medicine Board Annual Financial Report, FY 2016 n.d.). We also
note that because discharge date, also PHI date specifically
named in HIPAA Privacy Rule, was not included in the analysis,
the above findings represent the lower bound of what might be
imputed from sample collection dates.

Metadata such as the setting of care can potentially be
gleaned from the type of microbiological organism sequenced.
Pathogens of high public health importance—for which much
high impact phylodynamic analysis has recently been
performed—are likely to be tested for early in admission and
may show higher correlations with admission date. For
instance, both Ebola virus tests sent to our clinical laboratory in
2014 were sent the day of admission.

Whole genome sequencing is increasingly performed in the
clinical microbiology laboratory. Sequencing of clinical micro-
biological samples has been used to rule-in or rule-out infec-
tious diseases through metagenomics, to detect antimicrobial
or antiviral resistance, and to impute the transmission source
(e.g. to rule-in or rule-out hospital-acquired outbreaks)

Table 2. Demographic characteristics of samples tested.

Bacterial–fungal Viral

Emergency Room 2,197 29,964
Inpatient 16,157 79,031
Outpatient 56,503 87,917

Bacterial–fungal Female Male

Emergency Room 967 1,230
Inpatient 6,976 9,181
Outpatient 24,883 31,620

Viral Female Male

Emergency Room 15,516 14,448
Inpatient 33,391 45,640
Outpatient 57,237 30,680
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(Capobianchi, Giombini, Rozera 2013; Greninger et al. 2015a,
2017b,c; Grubaugh et al. 2017; Naccache et al. 2014, 2016; Simon-
Loriere et al. 2015). In this way, sequence data that is obtained
for detection of antimicrobial resistance to inform direct patient
care can also be used for public health measures and infection

prevention. Based on the continuing logarithmic growth of data
available in Genbank and other NCBI databases, we foresee a
future of rich infectious disaese genomic databases that allow
imputation of local and global transmission relationships of
pathogens, limited chiefly by the evolutionary rate of the
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Figure 1. High concordance of collection date and admission date for positive microbiological testing in multiple care settings. Cumulative probability curves of the collection

date being with X days of the admission date are depicted for all settings (A), inpatient (B), outpatient (C), and emergency department (D). All positive microbiological tests

(bacteria/fungus) and all virology tests (virus) that had collection dates between 2010 and 2017 from the University of Washington Laboratory Medicine Department are

shown. Overall, positive microbiological tests had a collection date that was within 1 day of a patient’s admission date 78.8% of the time. Viruses were significantly more

likely to be collected closer to the admission date across all settings (P ¼ 2.2e-16). Cumulative percentages for days 0, 1, 7, and 30 are depicted to highlight ability to impute

admission dates exactly, within 1 day, 1 week, and 1 month based on the collection date. Cumulative percentages are plotted on a logarithmic scale due to the very high like-

lihood of collection date being associated admission date for outpatient and emergency department testing (>98.5% of collection dates were within 1 day of admission date

for each location). Two-sample KS testing was performed on all cumulative distributions. Bacteria compared with viruses was significantly different across all locations (P <

2.2e-16). Comparing viruses across all locations and all bacteria across all locations also revealed that differences between the distributions were significant (P < 2.2e-16).
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organism in question. The emergence of these data creates a
pressure for clinical laboratories to share sample metadata, and
a demand for community guidance as to the manner in which
such clinical metadata can appropriately be shared. Indeed, the
question posed here originated from a local decision by our clin-
ical laboratory and IRB to follow the Safe Harbor method of de-
identification for samples sequenced in the clinical laboratory

and to deposit only year data for sample collection dates (Ogimi
et al. 2017).

Practioners can reasonably doubt that a bacterial or viral test
result, a genomic sequence, and an associated date constitute
PHI. Such data may best be described as a quasi-identifier
(Emam, Rodgers, Malin 2015). However, in the United States, the
Safe Harbor provision of the HIPAA privacy rule requires the de-
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Figure 2. High concordance of collection date and admission date in OB-Gyn testing. Cumulative probability curves of the collection date being within X days of the

admission date are shown for inpatients grouped into the following four categories—ICU (A), Medicine (B), OB/Gyn (C), Surgery (D). Bacterial/fungal culture and viral

tests are combined for this figure. ICU had the lowest percent of admission dates being within 1 day of collection date at 36.31%. OB/Gyn had the largest percent of col-

lection dates dmission dates being within 1 day of collection at 65.13%. Cumulative percentages for Days 0, 1, 7, and 30 are shown to highlight ability to impute admis-

sion dates based on collection dates with that many days of accuracy. The cumulative distribution of days separating collection date and admission date differed

significantly between OB/Gyn and each of the other services: ICU (P ¼ 0.0022), Medicine (P ¼ 3.62e-05), and Surgery (P ¼ 0.0027). ICU, Medicine, and Surgery were not

found to have significantly different cumultative distributions between each other (P > 0.2).
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identification of high-resolution dates from patient information
to anonymize such data. Limited datasets that include some
date and location information can be disclosed to non-covered
entity recipients with an explicit data use agreement
(Pace, Staton, Holcomb 2005). However, publicly available data-
bases such as NCBI Genbank do not meet this standard.
Phylodynamic models can be constructed based on full meta-
data provided to the investigators, and then outbreak dates can
be adjusted relative to the start of the outbreak (Greninger et al.
2017b,c). Although this effectively deals with patient privacy
issues, it does not create generalizable models of pathogen evo-
lution nor is it necessarily reproducible by other researchers
who do not have access to the full dataset.

Since these regulations allow for Expert Determination of
whether specific information can be considered identifiable, we
encourage clinical laboratories and phylodynamics practioners
to take advantage of this avenue for evaluating their studies if
they want to upload exact collection date associated with
patient care (Sarpatwari et al. 2014). Explicit patient consent to
share such data may also be obtained, although blanket consent
forms often include provisions that patient data will be anony-
mized before release (Greninger et al. 2017d). Alternatively, the
clinical, scientific, and public health communities could deter-
mine that the benefits outweight the costs and change regula-
tions around high-resolution sample collection date sharing
(Wartenberg and Thompson 2010).

The degree of identifiability of a given patient or case can be
fundamentally unknowable, especially when there exists a con-
tinuum of other metadata sources either on the Internet or in
the community (Sweeney 2013). Genomic sequences in NCBI’s
Genbank also frequently feature other sample collection infor-
mation, like sex, age, and sampling hospital which can be com-
bined with other information inherent in the sequence to
reduce the statistical obscurity of these data by a very large
degree. Different organisms, from Ebola virus and Pandoraea
apista to human herpesvirus 2, may have different degrees of
identifiability and different degrees of stigma associated with
them. All of these give a strong rationale for the growing role
and importance of Expert Determination for de-identification of
data (Meyers et al. 2017).

Our study is limited in that our simple model effectively
only uses one or two variables to impute admission date. We
sought only to show that PHI was readily imputable from sam-
ple collection dates. These results do not indicate whether these
patients are in fact identifiable nor how much metadata is
required to make them identifiable. Indeed, we did not attempt
to use this information to identify actual individuals in
this study. Nor have there been many studies on the re-
identifiability from admission date, as there have been on date
of birth (Golle 2006; Benitez and Malin 2010; Sweeney 2013). The
answer to these questions often changes over time as increas-
ing amounts of identifiable metadata become available (Liu,
Musen, and Chou 2015). We also did not take into account refer-
ence laboratory testing due to inability to confidently ascertain
admission dates from outside hospitals. As many clinical labo-
ratories do not run large reference operations, it was unclear
what generalizibility these data would offer to other laborato-
ries. Our vantage point is also biased by a focus on the United
States clinical testing and HIPAA Privacy Rule. Most recent phy-
lodynamic analysis has been performed outside the United
States where rules associated with patient data privacy may be
interepreted differently (Faria et al. 2016). Indeed, assuming a
predictable evolutionary rate for a given pathogen, one may be
able to use phylodynamic modeling accurately impute the col-
lection dates from samples where data was obscured to comply
with local privacy and IRB requirements (Dudas et al. 2017).

In an era of big data, clinical laboratories are rich sources of
clinical data and metadata, and we do not expect these ques-
tions to go away. Metadata deposition into large centralized
databases for research purposes is one of a host of ethical issues
associated with communicating patient data and metadata.
Although academic journals increasingly require direct patient
consent to publish case reports, pathologists are encouraged to
post interesting histopathology, gross tissue, or laboratory med-
icine (e.g. Gram stain, blood smear) images on social media to
enhance their own personal brand as well as that of a profes-
sion that is often found in the hospital basement (Crane and
Gardner 2016; Brissette et al. 2017; Isom, Walsh, and Gardner
2017). Phylodynamic metadata is but one among many ethical
issues and questions facing the clinical laboratory today.
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Figure 3. Higher concordance of collection date and admission date for females than for males. Cumulative probability curves of the collection date being within X

days of the admission date are shown for all locations and sexes grouped by the test type – all tests combined (A), bacterial/fungal culture positives (B), all viral testing

(C). Samples from women were significantly more likely to be collected on the exact admission date (73.7 versus 63.9%, P ¼ 2.2e-16) and closer to the admission date

(D ¼ 0.089916, P ¼ 0.0137) than those from men.
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