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Mapping a functional cancer genome atlas
of tumor suppressors in mouse liver using
AAV-CRISPR–mediated direct in vivo screening
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Cancer genomics consortia have charted the landscapes of numerous human cancers. Whereas somemutations were
found in classical oncogenes and tumor suppressors, others have not yet been functionally studied in vivo. To date, a
comprehensive assessment of how these genes influence oncogenesis is lacking. We performed direct high-
throughput in vivo mapping of functional variants in an autochthonous mouse model of cancer. Using adeno-
associated viruses (AAVs) carrying a single-guide RNA (sgRNA) library targeting putative tumor suppressor genes
significantly mutated in human cancers, we directly pool-mutagenized the livers of Cre-inducible CRISPR (clustered
regularly interspaced short palindromic repeats)–associated protein 9 (Cas9) mice. All mice that received the AAV-mTSG
library developed liver cancer and diedwithin 4months.We usedmolecular inversion probe sequencing of the sgRNA
target sites to chart the mutational landscape of these tumors, revealing the functional consequence of multiple var-
iants in driving liver tumorigenesis in immunocompetentmice. AAV-mediated autochthonous CRISPR screens provide
a powerful means for mapping a provisional functional cancer genome atlas of tumor suppressors in vivo.
INTRODUCTION
Large-scale molecular profiling of patient samples has tremendously
improved our understanding of human cancers (1–6). The multi-
dimensional landscapes produced by international consortia such as
TheCancerGenomeAtlas (TCGA) andCatalogue of SomaticMutations
in Cancer (COSMIC), encompassing key data sets such as somatic mu-
tations, copy number variants, epigeneticmarks,mRNAandmicroRNA
transcriptomes, as well as protein levels, have illuminated the molecular
underpinnings of cancer at an unprecedented resolution and scale (7–9).
Consequently, we now have an extensive catalog of genes that are recur-
rentlymutated across different patients, both within and across histolog-
ical subtypes (1, 2, 10, 11). Whereas some of these recurrently mutated
genes (RMGs) are well-known tumor suppressors or oncogenes, many
other RMGs still have an unclear role in cancer. Although the identifi-
cationofRMGs is an important first step toward the development of new
therapeutic avenues, functional evidence is required to definitively deter-
mine which genomic alterations are essential for the growth of an indi-
vidual cancer (4, 6, 12, 13). A number of statistical algorithms, which aim
to distinguish RMGs that are “drivers” of cancer growth from those that
are mere “passengers,” have been developed (2, 12, 14, 15). These RMGs
are represented by thousands ofmutant variants; however, the functional
roles ofmany of thesemutants remain to be explicitly tested in controlled
experimental settings.

Genetically engineered mouse models (GEMMs) have been
instrumental for studying the mechanisms of oncogenes and tumor
suppressors in vivo (16). Conditional or germline knockout alleles en-
able in vivo modeling of diverse diseases, including a wide variety of
cancer types. Because the microenvironment is increasingly recognized
to have a critical influence on cancer progression, GEMMs enable au-
tochthonous modeling of cancer, that is, in the native tissue of origin
(17), which provides a higher degree of precision for cancer modeling
and preclinical testing. However, the production of GEMMs is time-
consuming and requires a complexmultistep process, involving embry-
onic stem cell modifications, the generation of chimeras, germline
transmission, andmouse colony expansion (18). Owing to the technical
difficulties of this process and the complexity of breeding with large
numbers of genetic modifications, GEMMs have largely been limited
to the study of only a handful of genes at a time. Thus, a systematic
characterization of the hundreds of RMGs identified through tumor se-
quencing studies is impractical using regular GEMMs.

One promising approach for high-throughput assessment of cancer
RMGs is through the use of clustered regularly interspaced short palin-
dromic repeats (CRISPR)–mediated genome engineering inmammalian
species (19–22). Hydrodynamic injection of plasmids encoding single-
guide RNAs (sgRNAs) and CRISPR-associated protein 9 (Cas9) (23, 24)
has been used to directlymutate several tumor suppressor genes (TSGs)
in themouse liver (23, 25). Viruses have also been used to generate loss-
of-function or gain-of-function mutations in tumor suppressors and
oncogenes in vivo (26–30). In addition, the CRISPR system has been
used to perform genome-scale knockout screens in vitro and in trans-
plant models (31–34). However, current screens rely on the sequencing
of sgRNAs, which is an indirect measurement of the selective forces
acting on specific gene perturbations.

To directly interrogate the comparative selective advantage of mu-
tants in the tumor-initiating organs, it is necessary to first generate and
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then subsequently sequence pools of mutant cells within the native tu-
mor environment. Adeno-associated viruses (AAVs) are powerful car-
riers of transgenes and have been shown to mediate efficient genome
editing in various organs in mice (29, 35). Given that AAVs can effi-
ciently infect the liver after intravenous injection (36), we reasoned that
liver hepatocellular carcinoma (LIHC; also known as HCC), a deadly
cancer with poor 5-year survival (37), would be a suitable and relevant
model.

Here, we directly mapped functional cancer genome variants of tu-
mor suppressors in the autochthonous mouse liver using massively
parallel CRISPR/Cas9 genome editing. We performed a direct in vivo
CRISPR screen by intravenously injecting AAV pools carrying a library
of 278 sgRNAs that target a set of the most frequently mutated, known,
or putative TSGs into Rosa-LSL-Cas9-EGFP knock-in mice (LSL-Cas9
mice) to generate highly complex autochthonous liver tumors, followed
by direct readout of theCas9-generated variants at predicted sgRNAcut
sites usingmolecular inversion probe (MIP) sequencing. This combina-
tion of direct mutagenesis and pooled variant readout illuminated the
mutational landscape of the tumors. Mutagenesis of individual or com-
binations of the top genes represented by high-frequency variants led to
liver tumorigenesis in fully immunocompetent mice.
RESULTS
We first sought to compile a list of the top RMGs in the pan-cancer
TCGA data sets. Applying a similar approach, as in previous studies
(1–3), we identified the top 50 RMGs after excluding known oncogenes
(Fig. 1A). Of the top 50 putative TSGs, 49 genes had mouse orthologs
(mouse TSGs, hereafter referred to as mTSG). We also selected seven
housekeeping genes to serve as controls. Then, we designed a library of
sgRNAs targeting these 56 different genes, with 5 sgRNAs for each gene,
totaling 280 sgRNAs (hereafter referred to as the mTSG library; Fig. 1A
and table S1). For Cdkn2a and Rpl22, only four unique sgRNAs were
synthesized, with the fifth sgRNAbeing a duplicate. The duplicateswere
treated as identical in downstream analyses. After oligo synthesis, we
cloned the mTSG library into a base vector containing a U6 promoter
driving the expression of the sgRNA cassette, as well as a Cre expression
cassette (Fig. 1A). Becausemutation of a single TSG rarely leads to rapid
tumorigenesis in humans or autochthonousmousemodels, we included
an sgRNA targeting Trp53 in the base vector with the initial hypothesis
that concomitant Trp53 loss of function might facilitate tumorigenesis.
Sequencing of the plasmid pool revealed a complete coverage of the
278 unique sgRNAs represented in the mTSG library (table S2). After
generating AAVs (serotype AAV9) containing the base vector or the
mTSG library, we then intravenously injected phosphate-buffered sa-
line (PBS), vector AAVs, or mTSGAAVs into fully immunocompetent
LSL-Cas9 mice (Fig. 1A). Upon AAV infection, Cre is expressed and
excises the stop codon, activating Cas9 and enhanced green fluorescent
protein (EGFP) expression.

Live magnetic resonance imaging (MRI) of mice 3 months after
treatment revealed large nodules in mTSG-treated animals (n = 4),
whereas vector-treated animals (n = 3) only occasionally had small no-
dules andPBS-treated animals (n=3)were devoid of detectable nodules
(Fig. 1B; fig. S1, A and B; and table S3). The total tumor volume in each
mouse was significantly larger in mTSG samples compared to PBS and
vector samples (one-sided Mann-Whitney test, P = 0.0286 and P =
0.0286, respectively; fig. S1B). These data suggest that theAAV-CRISPR
mTSG library is sufficient to induce rapid tumorigenesis in the livers of
LSL-Cas9 transgenic mice.
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Mice that received the AAV-CRISPRmTSG library (n = 27) did not
survive more than 4months (median survival, 90 days; 95% confidence
interval, 84 to 90 days), whereas mice that were treated with PBS (n =
10) or vector control (n=11) all survived the duration of the experiment
(log-rank test, P = 1.8 × 10−11; Fig. 1C and table S4). By gross examina-
tion under a fluorescent dissecting scope, detectable GFP+ nodules were
observed inmTSG-treated livers but not in PBSor vector samples (Fig. 1D
and fig. S2). Notably, in mTSG-treated mice, we occasionally observed
tumors that were not primarily located in the liver. Chief among these
were several big abdominal tumors (BATs; n = 6), as well as a few
sarcomas (n = 4) and ear tumors (n = 2), although BATs were later
found to be of liver origin on the basis of histological analysis.

We analyzed endpoint histological sections from PBS-treated (n =
7), vector-treated (n = 5), and mTSG-treated mice (n = 13), sacrificed 3
to 4 months after treatment (Fig. 2A and figs. S3 and S4). No tumors
were found in PBS-treatedmice, whereas rare small tumors were found
in vector-treated mice (total tumor area = 5.96 ± 3.27 mm2; Fig. 2B).
Consistent with the MRI results, mice that received the mTSG library
had significantly larger liver tumors, with the pathology of LIHC (total
tumor area = 100.6 ± 47.19 mm2; one-sided Welch’s t test, P = 0.027
compared to PBS andP= 0.034 compared to vector; Fig. 2, A andB, and
table S5). Because these mice were found to have multiple liver tumors,
we also compared the size of each individual tumor across the three
treatment groups (Fig. 2C). The mTSG-treated mice collectively had
tumors that were significantly larger (26.69 ± 6.18 mm2) than those
found in vector-treated animals (3.31 ± 1.55mm2;P=0.0003), although
the latter were too small to be detected by gross examination under a
GFP dissecting scope. We assessed the proliferation of liver samples
from PBS-, vector-, and mTSG-treated mice by Ki67 expression and
found that rapid proliferation was restricted to tumor cells (fig. S4B). In
addition, we found that the tumors in mTSG-treated mice, but not in
vector-treated mice, were largely positive for AE1/AE3 (pan-cytokeratin),
which is amarker of LIHC (Fig. 2D and fig. S4C). These data collectively
indicate that theAAV-CRISPRmTSG library directly promotes aggressive
liver tumorigenesis in otherwise wild-type LSL-Cas9 mice.

To understand the molecular alterations driving the development of
tumors in mTSG-treated mice, we designed MIPs to enable capture se-
quencing of the ±70–base pair (bp) regions surrounding the predicted cut
site of each sgRNA in themTSG library (namely, the +17 position of each
20-bp spacer sequence; Materials and Methods). As opposed to simply
sequencing the sgRNA cassettes to find the relative enrichment of each
sgRNA within the cell population, MIP capture sequencing enables a di-
rect quantitative analysis of the mutations induced by the Cas9-sgRNA
complex. To generate this pool of MIPs (termed mTSG-MIPs; table S6),
we synthesized a total of 266 extension and ligation probes targeting 266
genomic loci with an average size of 158 ± 8 (SEM) bp, covering 278
unique sgRNA sites. Liver genomicDNAwas extracted fromPBS-treated
(n= 8mice), vector-treated (n=8mice), andmTSG-treatedmice (n= 27
mice; 37 liver lobes in total). To assess the potential for AAV-CRISPR–
mediated mutagenesis of other organs, we also collected DNA from all
observed non-liver tumors (n = 23), as well as a wide variety of tissues
(such as brain, lung, colon, spleen, and kidney)without detectable tumors
under a fluorescent dissecting scope (n = 57 samples) from all three
groups. We performed MIP capture sequencing on all genomic DNA
samples (total n = 133; table S7). Sequencing depth of the sgRNA target
regions was sufficiently powerful to detect variants at <0.01% frequency,
with a mean read depth of 13,286 ± 1033 (SEM) across all MIPs after
mapping to the mouse genome (table S8). Median read depth across
all MIPs approximated a log-normal distribution, indicating relatively
2 of 16
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even capture of the target loci (fig. S5A). Insertions and deletions (in-
dels) were then called across all samples to reveal detectable indel var-
iants at each sgRNA cut site (Materials and Methods; table S9). We
excluded single-nucleotide variants from the analysis because indels
are the dominant variants generated by nonhomologous end-joining
(NHEJ) following Cas9-mediated double-strand breaks (DSBs) in vivo
(38, 39). For downstream analysis, we only considered indels that over-
lapped the ±3-bp flanks around each of the predicted sgRNA cut sites
because Cas9 tends to create DSBs within a tight window near the pre-
dicted sgRNA cut site in mammalian cells (39). A representative exam-
Wang et al., Sci. Adv. 2018;4 : eaao5508 28 February 2018
ple of the genotypes observed by MIP capture sequencing is shown at
the Setd2 sgRNA 1 cut site for PBS-, vector-, or mTSG-treated samples
(Fig. 3A), illustrating the diversity of Cas9-induced indels in mTSG-
treated mice.

After collapsing each of the filtered indel calls to the closest sgRNA
by summing their constituent variant frequencies (table S10), we plotted
the overall spectrumof variant frequencies across all sequenced samples
(Fig. 3C). We then calculated the mean variant frequency for each
sgRNA and each sample (Fig. 3C, right and bottom panels, respective-
ly). The mTSG-treated organs without visible tumors (0.148 ± 0.037
A B

C

D

Fig. 1. AAV-CRISPRmTSG library rapidly induces robust liver tumorigenesis in LSL-Cas9mice. (A) Schematics of the overall design and experimental outline. First, the top
MGswere identified frompan-cancer TCGA data sets. After removing known oncogenes and genes withoutmouse orthologs, a set of 49most recurrentlymutated putative TSGs
were chosen (mTSG). Seven additional genes with housekeeping functions were spiked-in, leading to a final set of 56 genes. sgRNAs targeting these genes were then identified
computationally, and five were chosen for each gene. Two hundred eighty sgRNAs plus 8 NTC sgRNAs were synthesized, and the sgRNA library (mTSG; 288 sgRNAs) was cloned
into an expression vector that also contained Cre recombinase and a Trp53 sgRNA. AAVs carrying themTSG librarywere produced and injected into the tail veins of LSL-Cas9mice.
After a specified time period, themice were subjected toMRI, histology, andMIP capture sequencing for readout and deep variant analysis ofmolecular landscape of all targeted
genes andmutations. (B) MRI of abdomens of mice treated with PBS, vector, or mTSG library. Detectable tumors are circled with green dashed lines. PBS-treated mice (n = 3) did
not have any detectable tumors, whereas vector-treatedmice (n= 3) occasionally had small nodules. In contrast, mTSG-treatedmice (n = 4) often hadmultiple detectable tumors.
(C) Kaplan-Meier survival curves for PBS-treated (purple, n= 10), vector-treated (teal, n= 11), andmTSG-treated (orange, n= 27)mice. NomTSG-treatedmice survived longer than
4months after treatment, whereas all PBS- and vector-treated animals survived the duration of the experiment. Statistical significancewas assessed by the log-rank test (P = 1.8 ×
10−11). (D) Bright-field images with GFP fluorescence overlay (green) of livers from representative PBS-, vector-, and mTSG-treated mice 4 months after treatment. Large GFP+

tumors are marked with yellow arrowheads. In contrast to PBS- or vector-treated mice, mTSG-treated mice had numerous detectable GFP+ nodules.
3 of 16
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SEM) had significantly lower mean variant frequencies compared to
mTSG-treated tumors and livers (BATs, 3.098 ± 0.600; unpaired t test,
P < 0.0001), non-liver tumors (1.919 ± 0.338; P < 0.0001), and livers
(1.451 ± 0.203; P < 0.0001). Livers and other organs from vector-treated
animals (0.398 ± 0.179 and 0.054 ± 0.004, respectively) and PBS-treated
animals (0.140 ± 0.067 and 0.063 ± 0.021, respectively) all had signifi-
cantly lower variant frequencies than mTSG-treated livers (P < 0.0001
for all comparisons). The low background variant frequencies observed
in vector- and PBS-treated samples may be due to noise that was gen-
erated during sequencing, as well as stochastic or germline mutations.
Notably, the vector contains aTrp53 sgRNA that potentially contributes
to higher variant frequencies in vector-treated livers due to genome in-
stability of Trp53-deficient cells.

We identifiedMSs in themTSG-treated liver samples using the false
discovery rate (FDR) method as compared to PBS- and vector-treated
liver samples such that no control sample would have any called MSs
(Materials andMethods). Because we weremost interested in analyzing
dominant clones that had undergone strong positive selection in the tu-
mor, we further required that at least 5% of the readsmust have an indel
in that region to call an MS (table S11). Different mTSG-treated liver
Wang et al., Sci. Adv. 2018;4 : eaao5508 28 February 2018
samples presentedwith highly heterogeneousmutational signatures, in-
dicating that a diverse array of mutations had undergone positive selec-
tion in different samples (Fig. 3B and fig. S6).

We then collapsedMSs in each sample to the gene level to findMGs
within individual tumors (table S12). Analysis of allmTSG liver samples
revealed a full mutational landscape of the entire cohort, unfolded as a
binary mutation spectrum (Fig. 4) and a quantitative spectrum with
sum allele frequencies of each gene in a tumor (fig. S7). Of the 37
mTSG-treated liver samples, 33 (89%) were found to have major indels
(≥5% sumvariant frequency and FDR< 0.0625;Materials andMethods)
in one or more of the 56 genes in the mTSG library (average number of
MGs per sample, 11.7 ± 1.53). Trp53, Setd2, Cic, and Pik3r1were the top
MGs in the cohort (mutated in 24 of 37, 18 of 37, 17 of 37, and 17 of 37
samples, respectively).Trp53 is a well-known tumor suppressor that has
been found to directly induce liver tumors upon loss of function in he-
patocytes (40); Setd2 is an epigenetic modifier that has been implicated
in clear cell renal carcinoma (41) but is not yet functionally character-
ized in liver cancer; Cic is a transcriptional repressor that has been
shown to be a negative regulator of epidermal growth factor receptor
(EGFR) signaling (42); Pik3r1 is a modulator of phosphatidylinositol
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Fig. 2. Histology analysis of autochthonous tumors generated by AAV-CRISPRmTSG library. (A) Hematoxylin and eosin (H&E) staining of liver sections frommice treated
with PBS (n= 7), vector (n= 5), ormTSG library (n= 13). Tumor-normal boundaries are demarcatedwith yellow dashed lines. No tumorswere found in PBS samples, whereas small
noduleswere found, although rare, in vector samples. On the other hand,mTSG-treated liverswere repletewith tumors [statistics in (B) and (C)]. (B) Dot plot of the total tumor area
permouse (mm2) in liver sections frommice treatedwith PBS (black, n = 7), vector (gray, n= 5), ormTSG library (purple, n= 13). mTSG-treatedmice had a significantly higher total
tumor burden than PBS-treated (one-sidedWelch’s t test, P = 0.027) or vector-treated mice (P = 0.034). (C) Dot plot of the individual tumor area (mm2) in liver sections frommice
treatedwith PBS (black,n=7), vector (gray,n=9), ormTSG library (purple,n=49).mTSG-treatedmicehad significantly larger tumors than PBS-treated (one-sidedWelch’s t test, P<
0.0001) or vector-treatedmice (P=0.0003). (D) Representative immunohistochemical staining of an LIHCmarker, pan-cytokeratin (AE1/AE3), frommice treatedwith PBS, vector, or
mTSG library. The tumors frommTSG-treated samples shown revealed positive staining for AE1/AE3, consistent with LIHC pathology. CertainmTSG tumorswere partially positive
for cytokeratin, revealing tumor heterogeneity. The tumors from vector-treated samples were relatively small and almost always negative or slightly positive for cytokeratin. Scale
bar, 0.5 mm.
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C
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Fig. 3. Mutational variant-level mutational landscape of mouse AAV-mTSG–induced LIHC. (A) Unique variants observed at the genomic region targeted by Setd2 sg1 in
representative PBS-, vector-, andmTSG-treated liver samples. The percentage of total reads that correspond to each genotype is indicated on the right in the blue boxes. No indels
were found in the PBS-or vector-treated samples,whereas several unique variantswere identified in themTSG-treated sample (mTSG042). (B)Waterfall plots of twomTSG-treated
samples (042 and 066) detailing sum variant frequencies in mutated sgRNA sites (MSs). Individual mice presented with distinct mutational signatures, suggesting that a wide
variety of mutations induced by themTSG library had undergone positive selection. (C) Global heat map detailing the square root of sum variant frequency across all sequenced
samples (n = 133) frommTSG-treated (n = 98 samples), vector-treated (n = 21 samples), or PBS-treatedmice (n = 14 samples) in terms of sgRNAs. Square root transformation was
used to even out the distribution of variant frequencies for visualization. Each row represents one sgRNA, whereas each column represents one sample. Treatment conditions and
tissue type are annotated at the top of the heat map: BAT (dark purple), detectable tumor outside liver (light purple), liver (teal), brain (light pink), gastrointestinal (GI; dark pink),
lung (brown), and other organs (gray). Bar plots of the mean square root variant frequencies for each sgRNA (right, green bars) and each sample (bottom, purple bars) are also
shown. mTSG-treated organs without visible tumors (0.148 ± 0.037 SEM) had significantly lower mean variant frequencies compared to mTSG-treated tumors and livers (BATs,
3.098 ± 0.600; two-sided unpaired t test, P < 0.0001), non-liver tumors (1.919 ± 0.338; P < 0.0001), and livers (1.451 ± 0.203; P< 0.0001). Livers and other organs from vector-treated
animals (0.398 ± 0.179 and 0.054 ± 0.004, respectively) and PBS-treated animals (0.140 ± 0.067 and 0.063 ± 0.021, respectively) all had significantly lower variant frequencies than
mTSG-treated livers (P < 0.0001 for all comparisons).
Wang et al., Sci. Adv. 2018;4 : eaao5508 28 February 2018 5 of 16
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M

Fig. 4. Mouse gene-levelmutational landscape of LIHC. Each row in the figure corresponds to one gene in themTSG library, whereas each column corresponds to onemTSG-
treated liver sample. (Top) Bar plots of the total number of MGs identified in each mTSG-treated liver sample (n = 37). Samples originating from the same mouse are grouped
together and denoted with a gray bar underneath. (Middle) Tile chart depicting the mutational landscape of primary liver samples infected with the mTSG library. Genes are
grouped and colored according to their functional classifications (DNA repair/replication, epigenetic modifier, cell death/cycle, repressor, immune regulator, ubiquitination,
transcription factor, cadherin, ribosome-related, and RNA synthesis/splicing), as noted in the legend in the top-right corner. Colored boxes indicate that the gene was mutated
in a given sample, whereas a gray box indicates no significant mutation. Asterisks denote several preselected genes that were generally considered housekeeping genes. (Right)
Bar plots of the percentage of liver samples that had amutation in each of the genes in themTSG library. Trp53, Setd2, Pik3r1, Cic, B2m, Vhl,Notch1, Cdh1, Rpl22, and Polr2awere the
topMGs in each of the 10 functional classifications, respectively. (Bottom) Stacked bar plots describing the type of indels observed in each sample, color-coded according to the
legend in the bottom-right corner. Frameshift insertions or deletions comprised themajority of variant reads (median, 59.2% across all samples). (Left) Heatmap of the number of
mutated sgRNA sites (0 to 5MSs) for each gene.Multiplemutated sgRNA sites for a given gene are indicative of a strong selective force for loss-of-functionmutations in that gene.
Wang et al., Sci. Adv. 2018;4 : eaao5508 28 February 2018 6 of 16
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3-kinase (PI3K) signaling, and loss-of-function mutations of this gene
have been found to induce liver tumorigenesis in mice (43). In terms of
cellular pathways, epigenetic modifiers and cell death/cell cycle regula-
tors were frequently mutated, with multiple genes that were mutated in
more than 20% of samples (Fig. 4). Although the importance of epige-
netic modifiers in cancer is now accepted (44), direct functional testing
of groups of epigenetic regulators in an autochthonousmodel of tumor-
igenesis has not yet been shown in a systems manner.

Of the genes that were mutated in at least one sample, the vast ma-
jority (91%, or 50 of 55) had multiple MSs (median, 3 MSs of 5 total
sgRNAs per gene), suggesting that these genes are functional tumor
suppressors (Fig. 4). ANNOVAR analysis of the indels present in the
mTSG liver cohort revealed that frameshift insertions and frameshift
deletions comprised the majority of total variant reads (median,
59.2% across all samples; Fig. 4 and fig. S5B), consistent with the notion
that frameshiftmutations are expected to cause loss of function in genes.
Intronic, splice site, and non-frameshift mutations nevertheless com-
prised a sizeable proportion of total variant reads (Fig. 4).

To explore synergistic effects between different genes in the mTSG
library, we performed co-mutation analysis. For each pair of genes, by
tabulating the number of samples thatwere doublemutant, singlemu-
tant, or double wild-type, we determined the strength of mutational
co-occurrence (Materials and Methods; Fig. 5A). Of all 1540 possible
gene pairs, we found that a total of 226 pairs were significantly
enriched beyond what would be expected by chance (hypergeometric
test, Benjamini-Hochberg–adjusted, P < 0.05), with highly significant
pairs such asCdkn2a + Pten (co-occurrence rate = 7/10 = 70%; hyper-
geometric test,P= 2.63 × 10−5),Cdkn2a+Rasa1 (co-occurrence rate =
6/9 = 67%; P = 7.96 × 10−5), Arid2 + Cdkn1b (co-occurrence rate = 11/17 =
65%;P=9.13×10−5), andB2m+Kansl1 (co-occurrence rate = 11/18=61%;
P = 3.6 × 10−4; Fig. 5, B and C, and table S13). Loss-of-function muta-
tions in both genes of these combinationsmight synergistically enhance
tumor progression.

We then investigated whether genes correlated with each other in
terms of mutation frequencies within individual tumors. Because the
variant frequency is a metric for the positive selection that acts on a giv-
en mutation, genes whose variant frequencies are highly correlated
across samples could also be synergistic in driving tumorigenesis. A ca-
veat is that some passenger mutations could be hitchhiking on strong
drivers within a given tumor; however, the probability of finding a co-
occurring passenger-driver mutation pair is vanishingly small across
increasing numbers of mice. We calculated the total variant frequency
for each gene by summing all the values fromall five sgRNAs, used these
summed gene-level variant frequencies across each sample to calculate
the Spearman correlation between all 1540 possible gene pairs, and as-
sessed whether the correlations were statistically significant (Materials
and Methods; Fig. 5D and table S14). A total of 128 gene pairs were
significantly correlated (Spearman correlation, Benjamini-Hochberg–
adjusted, P < 0.05). The top four correlated pairs were Cdkn2a + Pten
(SpearmanR=0.817,P=6.97× 10−10),Nf1+Rasa1 (R=0.791,P=5.86×
10−9),Arid2+Cdkn1b (R= 0.788,P=7.16 × 10−9), andCdkn2a+Rasa1
(R = 0.761, P = 4.45 × 10−8; Fig. 5, E and F). We performed the same
analysis using Pearson correlation, finding extensive similarities in the
identified pairs (fig. S8, A and B, and table S14). Because the base vector
contained a Trp53 sgRNA, we also performed the co-mutation analyses
excluding all pairs involving Trp53 (fig. S8, C and D). The correlation
analysis thus revealed a number of highly significant associations in
specific pairs of genes. Four gene pairs were statistically significant
at Benjamini-Hochberg–adjusted P < 0.05 in both the co-occurrence
Wang et al., Sci. Adv. 2018;4 : eaao5508 28 February 2018
and correlation analyses (Fig. 5G). One of the top gene pairs wasArid2 +
Cdkn1b, representing a previously unreported synergistic interaction
between an epigenetic regulator and a cell cycle regulator.

To examine themutational landscape of the liver tumors induced by
the AAV-CRISPR mTSG library at a finer resolution, we reframed our
analysis to the level of specific indel variants. Across all 37mTSG-treated
liver samples, we identified 593 unique variants that had a variant
frequency of ≥1% in at least one sample (table S15). The majority of
these variants (80.94%) were deletions rather than insertions (table S15).
Hierarchical clustering of the variant-level data across all mTSG-treated
liver samples revealed the existence of sample-specific variants: 70.15%
(416 of 593) of the variants were sample-specific (private variants),
whereas 29.85% (177 of 593) of the variants were found across multiple
samples (shared variants; fig. S9). Shared variants could originate from
convergent processes of NHEJ following Cas9/sgRNA-mediated DSBs,
leading to the same indel pattern. Alternatively, shared variants in differ-
ent liver lobes from the same mouse could also arise from clonal expan-
sion or metastasis.

To deepen our understanding of the clonal architecture in this ge-
netically complex, highly heterogeneous yet fully gene-targeted autoch-
thonous tumor model, we focused on a single mTSG-treated mouse
that had presented with multiple visible tumors in several liver lobes,
five of which had been harvested for MIP capture sequencing (Fig. 6A).
Analysis of the sgRNA-level variant frequencies in the five lobes re-
vealed strong pairwise correlations between multiple lobes (Fig. 6B
and table S16). For instance, lobes 3 and 5 were significantly correlated
[Spearman rank correlation (R) = 0.700, P < 2.2 × 10−16]. Lobes 2 and 4
were also significantly correlated, though to a lesser extent (R= 0.207, P=
5.08 × 10−4). Furthermore, lobes 1, 2, and 4 were also significantly
correlated with lobe 5 (R = 0.248, P = 2.99 × 10−5; R = 0.146, P =
0.0146; and R = 0.243, P = 4.31 × 10−5, respectively). The interlobe
correlations are suggestive of similar variant compositions within
these liver lobes.

To delineate any potential clonal mixtures among the five lobes, we
next examined the unique variant patterns across these samples. We
identified 178 unique variants (≥1% variant frequency threshold) re-
presented within the five liver lobes (table S17). Using binary variant
calls (that is, whether a given variant is present or absent in a sample),
we clustered these 178 variants into eight groups (Fig. 6C and table S17).
Variants in clusters 1, 2, 3, 5, and 6 were specific to a single lobe (private
variant clusters), whereas variants in clusters 4, 7, and 8 were present
across multiple lobes (shared variant clusters). By averaging the variant
frequencies within each cluster for a given sample, we then analyzed the
relative contribution of each cluster to the overall composition of the
five lobes (Fig. 6, D and E). The degree of correlation between lobes
(Fig. 6B) is echoed by their degree of variant cluster sharing (lobe
1 shares cluster 4 with lobe 5, lobes 2 and 4 share variant cluster 8 with
lobe 5, and lobe 3 shares clusters 7 and 8 with lobe 5; Fig. 6, D and E).
The presence of cluster 8 in four of five lobes is especially notable, be-
cause it comprised a large percentage of the mutational burden in these
four lobes (Fig. 6, D and E). Cluster 8 was defined by mutations inMll3
(also known as Kmt2c), Setd2, and Trp53 (Fig. 6E). Variant-level analy-
ses therefore recaptured the pairwise correlations identified on the
sgRNA level, suggesting clonal mixture between individual liver lobes
within a single mouse.

We individually tested the functional roles ofmutations in several of
the top genes in a Trp53-sensitized background. We chose gene pairs
based on their ranking in the screen, potential biological function, and
literature. We generated an AAV vector for liver-specific CRISPR
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Fig. 5. Co-mutation analysis of liver samples frommTSG-treatedmice reveals potential synergistic combinations of driver mutations. (A) Upper-left triangle: Heat map
of the co-occurrence rates for eachgenepair. To calculate co-occurrence rates, the intersection is defined as the number of double-mutant samples, and theunion is definedas the
number of sampleswith amutation in either of the twogenes. The co-occurrence ratewas then calculated as the intersection divided by the union. Lower-right triangle: Heatmap
of −log10 P values by hypergeometric test to evaluate whether specific pairs of genes are statistically significantly co-mutated. (B) Scatterplot of the co-occurrence rates for each
gene pair, plotted against −log10 P values by hypergeometric test. Highly co-occurring pairs include Cdkn2a+ Pten (co-occurrence rate = 7/10 = 70%; hypergeometric test, P =
2.63 × 10−5), Cdkn2a + Rasa1 (co-occurrence rate = 6/9 = 67%; P = 7.96 × 10−5), Arid2 + Cdkn1b (co-occurrence rate = 11/17 = 65%; P = 9.13 × 10−5), and Kansl1 + B2m (co-
occurrence rate = 11/18 = 61%; P = 3.6 × 10−4). (C) Venn diagrams showing the strong co-occurrence of mutations in B2m + Kansl1 (top left), Cdkn2a + Pten (top right), Cdkn2a +
Rasa1 (bottom left), and Arid2 + Cdkn1b (bottom right). Numbers shown correspond to the number of mTSG-treated liver samples with a given mutation profile. (D) Upper-left
triangle: Heatmap of the pairwise Spearman correlation of sum%variant frequency for each gene, summed across sgRNAs. Lower-right triangle: Heatmap of−log10 P values by t
distribution to evaluate the statistical significance of the pairwise correlations. (E) Scatterplot of pairwise Spearman correlations plotted against −log10 P values. The top four
correlated pairswere Cdkn2a+ Pten (R=0.817, P=6.97 × 10−10),Nf1+ Rasa1 (R=0.791, P=5.86× 10−9),Arid2+Cdkn1b (R=0.788, P=7.16 × 10−9), andCdkn2a+ Rasa1 (R=0.761, P=
4.45×10−8). (F) Scatterplot comparing sum level% variant frequency forArid2 versusCdkn1b across all mTSG-treated liver samples. Spearman and Pearson correlation coefficients
are noted on the plot (Spearman R = 0.788; Pearson R = 0.746). (G) Heat map of the P values associated with the topmutation pairs that were found to be statistically significant
(Benjamini-Hochberg–adjusted, P < 0.05) in both co-occurrence (left) and correlation (right) analyses.
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Fig. 6. Systematic dissection of variant compositions across individual liver lobes within a single mTSG-treated mouse reveals substantial clonal mixture between
lobes. (A) Schematic of the experimental workflow for analysis of multiple liver lobes (n = 5) from a single mTSG-treated mouse. (B) Heat map of Spearman rank correlation
coefficients among five liver samples from a single mTSG-treated mouse, calculated on the basis of variant frequency for all unique variants present within the five samples.
Notably, lobes 1 to 4 are all significantly correlated with lobe 5, with lobe 3 having the strongest correlation to lobe 5. (C) Heat map of variant frequencies for each unique variant
identified across the five individual liver lobes after square root transformation. Rows correspond to different liver lobes, whereas columns denote unique variants. Eight clusters
were identified based on binary mutation calls and are indicated on the bottom of the heat map. (D) Pie charts depicting the proportional contribution of each cluster to the five
liver lobes. In order for a cluster to be considered, at least half of the variantswithin the clustermust be present in that particular sample. For each lobe, variant frequencieswithin a
cluster were averaged and converted to relative proportions, as shown in the pie charts. The pie charts accurately recapture the correlation analysis in (B) while additionally
providing quantitative insight into the shared variants between the five liver lobes. (E) Each box corresponds to one cluster, color-coded as in (C) and (D), showing the top four
variants in each cluster. On the basis ofwhether a variant cluster was present inmultiple liver lobes, each box is also classified as either a private or a shared variant cluster. Clusters
1, 2, 3, 5, and 6 are largely unique to individual lobes (private variant clusters), whereas clusters 4, 7, and 8 are present inmultiple lobes (shared variant clusters). Cluster 8was found
in four of five lobes and is characterized by mutations in Mll3, Setd2, and Trp53.
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knockout that expressed Cre recombinase under a TBG promoter,
together with a Trp53-targeting sgRNA cassette and an open (GeneX-
targeting) sgRNAcassette (fig. S10A). The vector also contained a firefly
luciferase gene (FLuc) co-cistronic with Cre under the TBG promoter
for live imaging of tumorigenesis inmice.We cloned either a nontarget-
ing control (NTC) sgRNA (thus only mutating Trp53) or a top candi-
date GeneX-targeting sgRNA (GTS; thus mutating both GeneX and
Trp53) into the second sgRNAexpression cassette. AfterAAVpackaging,
we injected NTC + Trp53 or GTS + Trp53 AAVs into LSL-Cas9 mice
(fig. S10A). We assessed the growth of potential liver tumors by
monitoring their luciferase activities using a bioluminescent in vivo im-
aging system (IVIS; fig. S10B). Compared to mice treated with NTC
AAVs (n = 8), sgRNAs targeting multiple candidates identified in the
screen, including Cic (n = 4), Pik3r1 (n = 7), Pten (n = 4), Stk11 (n = 8),
Arid2 (n = 3), and Kdm5c (n = 3), had significantly stronger luciferase
activity (two-sided unpaired t test, P < 0.05 for all groups; fig. S10, B to
D), suggesting that knocking out these genes accelerated liver tumori-
genesis at high penetrance in a Trp53-sensitized background. Double
knockouts such as Pik3r1 + Pten (n = 3) and Arid2 + Kdm5c (n = 4)
also had significantly stronger luciferase activity compared to NTC
(two-sided unpaired t test, P < 0.001) but not significant compared to
respective single knockouts (fig. S10, C and D), suggesting that these
genes are strong drivers alone but do not have synergistic effect with
each other.B2m+Kansl1 is one of the top co-occurring gene pairs iden-
tified in the screen (co-occurrence rate = 11/18 = 61%, P = 3.6 × 10−4).
Whereas LSL-Cas9 mice injected with AAVs for individual knockout of
B2m orKansl1 alone did not show significantly stronger luminescence in-
tensities compared to the NTC group, AAVs targeting the B2m + Kansl1
combination showed significantly higher luminescence intensities as com-
pared to NTC (two-sided unpaired t test, P < 0.01), B2m alone (P < 0.01),
andKansl1 alone (P< 0.05; fig. S10, C andD). These results suggested that
combinatorial knockout of B2m and Kansl1 had a synergistic effect in ac-
celerating liver tumor development, whereas the single knockouts of B2m
or Kansl1 were not sufficient to induce liver tumorigenesis in a Trp53-
sensitized background. In summary, the single and combinatorial AAV-
CRISPR knockout experiments further confirmed the phenotypes of
several top-ranked genes and co-occurring gene pairs in liver tumori-
genesis. Our study demonstrates a powerful strategy for quantitatively
mapping functional suppressors in the cancer genome and their syner-
gistic relationships directly in vivo in a fully immunocompetent setting.
DISCUSSION
Wedeveloped an approach for direct in vivoCRISPR screens to directly
map functional variants of tumor suppressors in mice in an autochtho-
nous cancer model. Using an AAV library carrying 278 different
CRISPR sgRNAs, we generated hundreds of variants in the top 49
known or putative TSGs and assayed their ability to promote tumori-
genesis in the mouse liver upon loss of function by Cas9 mutagenesis.
Capture sequencing of the resultant liver tumors revealed a heteroge-
neous mutational landscape, indicating that several of the genes in
the mTSG library function as tumor suppressors. Notably, our
experiments were conducted in immunocompetent mice; considering
the critical role of the tumormicroenvironment and associated immune
context in human disease progression, the use of autochthonous tumor
models in immunocompetent animals is especially important to en-
hance clinical relevance (17).

Compared to conventional sgRNA sequencing, MIP capture se-
quencing enabled direct, multiplexed analysis of the indels induced
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by Cas9 mutagenesis. By refocusing our analysis to the variant level,
we systematically dissected the variant compositions acrossmultiple liv-
er lobes from a single mouse, uncovering evidence of clonal mixture
between lobes. We thus demonstrate that massively parallel autochtho-
nous in vivo CRISPR screens can be achieved through the use of pooled
AAVs in conjunction with MIP capture sequencing in the mouse liver.
To date, library-scale CRISPR screens have largely been demonstrated
in in vitro or cellular transplant studies; however, it has remained a chal-
lenge to perform such screens in a direct in vivomanner. BecauseAAVs
do not typically integrate into the genome, direct sgRNA cassette readout
is rendered infeasible. Instead, we read out a high-throughput in vivo
CRISPR experiment by targeted capture sequencing, demonstrating a
new approach for in vivo CRISPR screens. Whereas traditional sgRNA
sequencing can only provide information about the relative abundances
of each sgRNA, capture sequencing enables high-resolution analysis of
individual indel variants for clonal analysis of tumor heterogeneity.

Co-mutation analysis identified several pairs of significantly co-
occurring mutations. A binary metric, such as mutation occurrence
(that is, number ofmice or patient with a genemutated), tends to reflect
the prevalence of a driver. On the other hand, a quantitativemetric such
as allele frequency of a mutant or a gene in a complex tumor tends to
reflect the strength of in vivo selection, where dominant mutants with
strong effects may outcompete other mutant cells in the same mouse.
To gain a more comprehensive picture of both processes, we had lever-
aged both binary metrics and allele frequency as surrogate statistics
(tables S10 and S11), each of which has distinct advantages and limita-
tions.We picked a top co-occurring pair (B2m +Kansl1), twomoderate
co-occurring pairs (Pik3r1 + Pten and Pik3r1 + Stk11), and a non-
significantly co-occurring pair (Arid2 + Kdm5c). We then knocked
out these genes, individually and combinatorially, to study their
independent and synergistic roles in liver tumorigenesis along with
Trp53 loss in immunocompetent mice. According to the IVIS data
(fig. S10), combinatorial knockout of the top co-occurring pair B2m +
Kansl1 led to significantly faster liver tumorigenesis than knocking
out either B2m or Kansl1 individually, whereas the combinatorial
knockout of the gene pair Arid2 + Kdm5c that was not found to signif-
icantly co-occur did not show any synergistic effect. The validation
results were consistent with our analysis of the screening data, indicat-
ing that the in vivo AAV-CRISPR screen is an effective approach to
identify potent TSGs and potential synergistic drivers of liver tumori-
genesis in immunocompetent mice.

In the pooled AAV-CRISPR tumorigenesis system, some passenger
mutations could be hitchhiking on advantageous mutated clones, thus
showing relatively high mutation frequencies. Nevertheless, because
neutral mutations hitchhike by chance, the probability for a passenger
mutation to be recurrently co-mutated with a strong driver across
multiple samples is low compared to co-mutation of two true drivers.
Here, we adopted both binarymutant calls and allele frequency analysis
in exploring potentially synergistic interactions to minimize the possi-
bility of identifying selectively neutral passenger-driver pairs.

As an approximation to the clonality of these tumors, we also
calculated the number of major clusters (fig. S11), in which each major
cluster has one ormoremutations at similar frequencies as compared to
other mutants. From this analysis, we found that 6 of 30 mTSG livers
had single-cluster tumors, with the majority (24 of 30) being composed
of multiple clusters (fig. S11). Given the nature of pooled mutagenesis,
the detected mutations comprising co-occurring gene pairs can be ei-
ther in the same clone or in different clones within the same tumor. On
the basis of allele frequency analysis, we would expect that most of the
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significantly correlated gene pairs had coevolved in the same clone. To
definitively distinguish themonoclonal ormulticlonal synergistic effects
of gene pairs in vitro and in vivo, double knockouts must be introduced
simultaneously into the same cell using a dual-sgRNA expression sys-
tem and compare them to single knockout cells.

The AAV-CRISPR screen approach can potentially be extended to
identify genetic factors with a significant impact on various cancer types
and other human diseases. Our strategy for selecting genes to target in
the mTSG library was based on pan-cancer TCGA data sets, with an
initial aim of identifying genes that are more likely to function as tumor
suppressors in a wide variety of tissues such that the same AAV-
CRISPR mTSG library could potentially be used in other organs. We
recently applied this approach to map functional tumor suppressors
in glioblastoma (45), finding that the strongest single and co-occurring
driver mutations differ between mouse liver and brain. A technical dis-
tinction is that the present study used MIPs for reading out variants,
whereas the glioblastoma study used Roche probes. MIPs provide more
flexibility and are more cost-efficient as compared to Roche probes,
making it simple for utilization of the AAV-CRISPR–MIP screening
approach. In light of the previous success of in vivo transposon-based,
short hairpinRNA(shRNA), or lentiviral screens inother cancers (46–49),
we anticipate that our approach (AAV-CRISPR mutagenesis followed
by MIP capture sequencing) can be readily expanded to other organ
systems, potentially enabling the construction of a multiorgan func-
tional variant mapping of tumor suppressors.

One limitation of this study is the exclusion of oncogenes. Because
advantageous alterations in proto-oncogenes are generally thought to
occur through several differentmechanisms, such asmutations to specific
amino acid residues, increased expressionby transcriptional amplification,
or copy number amplification (3), modeling proto-oncogenes in amas-
sively parallel manner requires more sophisticated methods. Several in
vitro gene activation screens using CRISPR have been described,
opening the possibility for overexpression screens of proto-oncogenes
(50, 51). CRISPR has also recently been engineered to mutate specific
DNA nucleotides (52, 53). Adapting these new tools for use in vivo
would allow high-throughput oncogene screens, thereby enabling func-
tional variant mapping of oncogenes. Although we focused on a set of
highly mutated pan-cancer tumor suppressors in mouse liver in this
study, given the immense programmability of CRISPR-mediated ge-
nome editing, it is feasible to apply this AAV-CRISPR screen approach
to target different sets of genes or noncoding elements, potentially at
genome scale, to functionally assess phenotypes in an unbiased fashion.
The versatility of this new platformprovides a powerfulmeans formap-
ping a provisional functional cancer genome atlas of tumor suppressors,
oncogenes, and other types of genetic events of tumor evolution, in iso-
lation or as combinations and larger pools, in virtually any cancer type.
Application of this approach in conjunctionwith therapeutic agentswill
enable precision preclinical testing for rapid identification of effective
compounds against specific mutant genotypes, paving new ways for
cancer target discovery.
MATERIALS AND METHODS
Design, synthesis, and cloning of the mTSG library
Pan-cancermutation data from 15 cancer types were retrieved from the
TCGA portal via cBioPortal (54) and Synapse (www.synapse.org).
RMGs were calculated similarly to previously described methods
(1–3, 15). Known oncogenes were excluded, and only known or pre-
dicted TSGs were included. The top 50 TSGs were chosen, and their
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mouse homologs (mTSG) were retrieved from mouse genome infor-
matics (www.informatics.jax.org). A total of 49 mTSGs were found.
A total of seven known housekeeping genes were chosen as internal
controls. sgRNAs against these 56 genes were designed using a previ-
ously described method (31, 32) with our custom scripts. Five sgRNAs
were chosen for each gene, plus eight NTCs, making a total of 288
sgRNAs in the mTSG library. NTCs do not target any predicted sites
in the genome; thus, they were not included in subsequent MIPs anal-
ysis. Notably, two sgRNA pairs happened to be identical by design,
namely, Rpl22_sg4/sg5 and Cdkn2a_sg2/sg5. These sgRNAs were trea-
ted as the same in subsequent analyses.

Design, cloning of AAV-CRISPR vectors, and mTSG sgRNA
library cloning
AAV-CRISPR vectors were designed to express Cre recombinase for
the induction of Cas9 expression using constitutive or conditional pro-
moters when delivered to LSL-Cas9 mice (29). Two sgRNA cassettes
were built in these vectors, one encoding an sgRNA targeting Trp53,
with the other being an open sgRNA cassette (double Sap I sites for
sgRNA cloning). The vector was generated by gBlocks Gene Fragment
synthesis [Integrated DNA Technologies (IDT)] followed by Gibson
assembly [New England Biolabs (NEB)]. The mTSG library was gener-
ated by oligo synthesis, pooled, and cloned into the double Sap I sites of
the AAV-CRISPR vectors. Library cloning was done at over 100× cov-
erage to ensure proper representation. Representation of plasmid li-
braries was read out by barcoded Illumina sequencing as described
previously (33) with customized primers.

AAV-mTSG viral library production
The AAV-CRISPR plasmid vector (AAV-vector) and library (AAV-
mTSG) were subjected to AAV9 production and chemical purification.
Briefly, human embryonic kidney (HEK) 293FT cells (Thermo Fisher
Scientific) were transiently transfected with AAV-vector or AAV-
mTSG, AAV9 serotype plasmid, and pDF6 using polyethyleneimine.
Each replicate consisted of five 80% confluent HEK 293FT cells in
15-cm tissue culture dishes or T-175 flasks (Corning). Multiple repli-
cates were pooled to enhance production yield. Approximately 72 hours
after transfection, cells were dislodged and transferred to a conical tube
in sterile PBS. Pure chloroform (1/10 volume) was added, and the mix-
ture was incubated at 37°C and vigorously shaken for 1 hour. NaCl was
added to a final concentration of 1M, and themixture was shaken until
dissolved and then pelleted at 20,000g at 4°C for 15 min. The aqueous
layer was discarded, whereas the chloroform layer was transferred to
another tube. PEG8000 was added to 10% (w/v) and shaken until dis-
solved. The mixture was incubated at 4°C for 1 hour and then spun at
20,000g at 4°C for 15min. The supernatantwas discarded, and the pellet
was resuspended in Dulbecco’s PBS plus MgCl2 and treated with
Benzonase (Sigma) and incubated at 37°C for 30 min. Chloroform
(1:1 volume) was then added, shaken, and spun down at 12,000g at
4°C for 15 min. The aqueous layer was isolated and passed through a
100-kDa molecular weight cutoff (Millipore). The concentrated solu-
tion was washed with PBS, and the filtration process was repeated.
Genomic copy number (GC) of AAV was titrated by real-time quanti-
tative polymerase chain reaction (qPCR) using custom TaqMan assays
(Thermo Fisher Scientific) targeted to Cre.

Animal work statements
All animal work was performed under the guidelines of Yale University
Institutional Animal Care and Use Committee and Massachusetts
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Institute of Technology Committee for Animal Care, with approved
protocols (Chen-2015-20068 and Sharp-0914-091-17), and were
consistent with the Guide for the Care and Use of Laboratory Animals
(National Research Council, 1996) (institutional animal welfare assur-
ance no. A-3125-01).

Intravenous virus injection for liver transduction
Conditional LSL-Cas9 knock-inmice were bred in amixed 129/C57BL/6
background. Mixed-gender (randomized males and females) 8- to
14-week-old mice were used in experiments. Mice were maintained
and bred in standard individualized cages with amaximum of fivemice
per cage, with regular room temperature (65° to 75°F, or 18° to 23°C),
40 to 60% humidity, and a 12-hour–12-hour light-dark cycle. To intra-
venously inject AAVs, mice were restrained in a rodent restrainer
(Braintree Scientific), their tails were dilated using a heat lamp or warm
water and sterilized by 70% ethanol, and 200 ml of concentrated AAV
(~1 × 1010 GC/ml, 2 × 1012 GC permouse) was injected into the tail vein
of each mouse. One hundred percent of the mice survived the
procedure. Animals that failed injections (<70%of total volume injected
into the tail vein after multiple attempts) were excluded from the study.
No specific methods were implemented to choose sample sizes.

Magnetic resonance imaging
MRI was performed using standard imaging protocol with MRI ma-
chines (Varian 7T/310/ASR-whole mouse MRI system or Bruker
9.4T horizontal small animal systems). Briefly, animals were anesthe-
tized using isoflurane and positioned in the imaging bed with a nose
cone providing constant isoflurane.A total of 20 to 30 frontal viewswere
acquired for each mouse using a custom setting: echo time (TE) = 20,
repetition time (TR) = 2000, slicing = 1.0 mm. Raw image stacks were
processed usingOsiriX or Slicer tools. Rendering and quantificationwere
performed using Slicer (www.slicer.org). Tumor size was calculated with
the following formula: volume (mm3) = 1/6 × 3.14 × length (mm) ×
height (mm) × depth (mm). Statistical significance was assessed by non-
parametricMann-Whitney test, as sample numbers and sample distribu-
tions varied across treatment conditions.

Survival analysis
We observed that LSL-Cas9 mice receiving AAV-mTSG intravenous
injections rapidly deteriorated in their body condition scores (BSCs)
(due to tumor development in most cases). Mice with BSC < 2 were
euthanized, and the euthanasia date was recorded as the last survival
date. Occasionally, mice bearing tumors died unexpectedly early, and
the date of death was recorded as the last survival date. Cohorts of mice
intravenously injected with PBS, AAV-vector, or AAV-mTSG virus
were monitored for their survival. Survival analysis was analyzed by
standard Kaplan-Meier method, using the survival and survminer R
packages. Differences among the three treatment groups were assessed
by the log-rank test. Notably, several AAV-vector– or PBS-injected
mice were sacrificed at time points earlier than the last day of survival
analysis (at times when certain AAV-mTSG mice were found dead or
euthanized due to poor body conditions) to provide time-matched his-
tology, although thosemicepresentedwithgoodbodycondition (BSC≥4).
Mice euthanized early in a healthy state were excluded from calculation
of survival percentages.

Mouse organ dissection, fluorescent imaging, and histology
Mice were sacrificed by carbon dioxide asphyxiation or deep anesthesia
with isoflurane followed by cervical dislocation. Mouse livers and other
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organs were manually dissected and examined under a fluorescent
stereoscope (Zeiss, Olympus, or Leica). Bright-field and/orGFP fluores-
cent images were taken for the dissected organs and overlaid using Im-
ageJ. Organs were then fixed in 4% formaldehyde or 10% formalin for
48 to 96 hours, embedded in paraffin, sectioned at 6 mm, and stained
with H&E for pathology. For tumor size quantification, H&E slides
were scanned using an Aperio digital slide scanner (Leica). Tumors
were manually outlined as region of interest (ROI) and subsequently
quantified using ImageScope (Leica). Statistical significance was as-
sessed by Welch’s t test, given the unequal sample numbers and var-
iances for each treatment condition.

Mouse tissue collection for molecular biology
Mouse livers and various other organs (Supplementary Materials) were
dissected and collected manually. For molecular biology, tissues were
flash-frozen with liquid nitrogen and ground in 24-well polyethylene
vials with metal beads in a GenoGrinder machine (OPS Diagnostics).
Homogenized tissues were used for DNA/RNA/protein extractions
using standard molecular biology protocols.

Genomic DNA extraction from cells and mouse tissues
For genomic DNA extraction, 50 to 200 mg of frozen ground tissue
were resuspended in 6 ml of lysis buffer [50 mM tris, 50 mM EDTA,
1% SDS (pH 8)] in a 15-ml conical tube, and 30 ml of proteinase K
(20mg/ml;Qiagen)was added to the tissue/cell sample and incubated at
55°C overnight. The next day, 30 ml of ribonuclease A (10 mg/ml;
Qiagen) was added to the lysed sample, which was then inverted
25 times and incubated at 37°C for 30 min. Samples were cooled on
ice before the addition of 2 ml of prechilled 7.5 M ammonium acetate
(Sigma) to precipitate proteins. The samples were vortexed at high
speed for >20 s and then centrifuged at≥4000g for 10min. A tight pellet
was visible in each tube, and the supernatantwas carefully decanted into
a new 15-ml conical tube. Then, 6 ml of 99% isopropanol was added to
the tube, inverted 50 times, and centrifuged at≥4000g for 10 min. Ge-
nomic DNA was visible as a small white pellet in each tube. The super-
natant was discarded, 6 ml of freshly prepared 70% ethanol was added,
and the tube was inverted 10 times and then centrifuged at≥4000g for
5 min. The supernatant was discarded, and the remaining ethanol was
removed using a P200 pipette. After air drying for 10 to 30 min, the
DNA changed appearance from a milky white pellet to slightly translu-
cent. Then, ~500 ml of double-distilled water was added, and the tube was
incubated at 65°C for 1 hour and at room temperature overnight to fully
resuspend the DNA. The next day, the genomic DNA samples were vor-
texed briefly. The concentration of genomic DNAwas measured using a
NanoDrop spectrophotometer (Thermo Fisher Scientific).

MIP design and synthesis
MIPswere designed according to previously published protocols (55, 56).
Briefly, the 70 bp flanking the predicted cut site of each sgRNAof all 278
unique sgRNA were chosen as targeting regions, and the bed file with
these coordinates was used as an input. Because Trp53 sg4 targets a si-
milar region as the Trp53 sgRNA within the base vector, the sameMIP
was used to sequence both of these loci.

These coordinates contained overlapping regions, which were sub-
sequently merged into 173 unique regions. Each probe contains an
extension probe sequence, a ligation probe sequence, and a 7-bp
degenerate barcode (NNNNNNN) for PCR duplicate removal. A total
of 266MIP probes were designed, covering a total amplicon of 42,478 bp.
The statistics for the MIP target size were as follows: minimum, 155 bp;
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maximum, 190 bp; mean, 159.7 bp; median, 156.0 bp (Supplementary
Materials). Each of the mTSG-MIPs was synthesized using standard
oligo synthesis (IDT), normalized, and pooled.

MIP capture sequencing
Genomic DNA sample (150 ng) from each mouse organ was used as
input. MIP capture sequencing was done according to previously pub-
lished protocols (55, 56) with some slight modifications. The multi-
plexed library was then quality controlled using qPCR and subjected
to high-throughput sequencing using the HiSeq 2500 or HiSeq 4000
platforms (Illumina) at the Yale Center for Genome Analysis. Targeted
sgRNAs (280 of 281, 99.6%) were captured for all samples from this
experiment, with the missing one being Arid1a sg5.

Illumina sequencing data preprocessing
FASTQ reads were mapped to the mm10 genome using the bwa mem
function in BWA v0.7.13 (57). Bam files were sorted and indexed using
SAMtools v1.3 (58).

Variant calling
For each sample, indel variants were called using SAMtools and VarScan
v2.3.9 (59). Specifically, we used SAMtoolsmpileup (−d 1000000000 –B
–q 10) and piped the output to VarScan pileup2indel (−−min-coverage
1 –min-reads2 1 –min-var-freq 0.001 –p-value 0.05). To link each indel
to the sgRNA that most likely caused the mutation, we took the center
position of each indel and mapped it to the closest sgRNA cut site.

Calling MSs and MGs
We further filtered all detected indels by requiring that each indel must
overlap the ±3-bp flank of the closest sgRNA cut site, because Cas9-
induced DSBs are expected to occur within a narrow window of the
predicted cut site. To exclude any possible germline mutations, we also
removed any sgRNAs with indels present in more than half of the con-
trol samples with greater than 5% variant frequency. In particular, high
variant frequencieswere observed across all samples at theRps19 sg5 cut
site, suggesting that these were germline variants; thus, we excluded
Rps19 sg5 from all analyses.

To determine MSs in each liver sample, we used a false discovery
approach based on the PBS and vector control samples. For each
sgRNA, we first took the highest % variant read frequency across all
control liver samples; for a mutation to be called in an mTSG sample,
the % variant read frequency had to exceed the control sample cutoff.
However, because the base vector contained a Trp53 sgRNA (p53 sg8)
whose cut sitewas only 1 bp away from the target site ofTrp53 sg4 (from
the mTSG library), we only considered PBS samples when calculating
the false discovery cutoff for Trp53 sg4. Finally, because we were most
interested in identifying the dominant clones in each sample, we further
set a 5% variant frequency cutoff on top of the false discovery cutoff.
These criteria gave us a binary table (that is, not mutated versus mu-
tated) detailing each sgRNA and whether its target site was mutated
in each sample. To convert mutated sgRNA sites into MGs, we simply
collapsed the binary sgRNA scores by gene such that, if any of the five
sgRNAs for a gene were found to be strongly cutting, the entire gene
would be called as mutated.

Coding frame analysis
For coding frame and exonic/intronic analysis, we only considered the
indels that were associated with an sgRNA, which had been considered
mutated in that particular sample. This final set of significant indels
Wang et al., Sci. Adv. 2018;4 : eaao5508 28 February 2018
was converted to .avinput format and subsequently annotated using
ANNOVAR v. 2016Feb01, using default settings (60).

Co-occurrence and correlation analysis
Co-occurrence analysis was performed by first generating a double-
mutant count table for each pairwise combination of genes in themTSG
library. Statistical significance of the co-occurrencewas assessed by two-
sided hypergeometric test. To calculate co-occurrence rates, we defined
the “intersection” as the number of double-mutant samples, and the
“union” as the number of samples with a mutation in either (or both)
of the two genes, and then divided the intersection by the union. For
correlation analysis, we first collapsed the table of variant frequencies
to the gene level (that is, summing the variant frequencies for all five
of the targeting sgRNAs for each gene). Using these summed variant
frequency values, we calculated the Spearman or Pearson correlation
between all gene pairs across eachmTSG sample. Statistical significance
of the correlation was determined by converting the correlation co-
efficient to a t statistic and then using the t distribution to find the as-
sociated probability. For both co-occurrence and correlation analyses,
P valueswere adjusted formultiple hypothesis testing by the Benjamini-
Hochberg method to obtain q values.

Unique variant analysis
Instead of first collapsing variant calls to the sgRNA level as above,
unique variants and their associated mutant frequencies were compiled
across all sequenced samples. To be considered present in a given sam-
ple, a particular variant must have a mutant frequency of ≥1%. Heat
maps of the unique variant landscape were created in R using the
NMF package, with average linkage and Euclidean distance. We also
performed a focused analysis on the unique variant landscape within
a single mouse, as presented in Fig. 5. For the correlation heat map in
Fig. 5B, we used Spearman rank correlation to assess the pairwise cor-
relation betweendifferent liver lobes. In Fig. 5C, clusters of variantswere
defined on the basis of binary mutation calls (that is, whether a given
variant is present or not within each sample). To determine the propor-
tional contribution of each cluster, for each sample, we only included
the clusters inwhich at least half of the variants in the cluster are present
in that sample. We then took the average mutant frequency across the
variants within each cluster and used these values to determine the re-
lative contribution of each cluster to the overall sample. To identify the
top four variants in each cluster, we ranked all the variants by the aver-
age variant frequency across all lobes in which the variant cluster was
considered present.

Clustering of variant frequencies to infer clonality of tumors
For each mTSG liver sample, we extracted the individual variants that
comprised the MS calls in that sample, with a cutoff of 5% variant fre-
quency to eliminate low-abundance variants. To identify clusters of var-
iant frequencies in an unbiased manner, we modeled the variant
frequency distribution with a Gaussian kernel density estimate, using
the Sheather-Jones method to select the smoothing bandwidth. From
the kernel density estimate, we then identified the number of local max-
ima (that is, “peaks”) within the density function. The number of peaks
thus represents the number of variant frequency clusters for an individ-
ual sample, which is an approximation for the clonality of the tumors.

Direct in vivo validation of drivers or combinations
Liver-specific AAV-CRISPR vectors were designed to co-cistronically
express FLuc and Cre recombinase for induction of Cas9 expression
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under a TBG promoter when delivered to LSL-Cas9 mice (plasmids
available at Addgene). Two sgRNA expression cassettes were built in
these vectors, one encoding an sgRNA targeting Trp53, with the other
being an open sgRNA cassette (double Sap I sites for GTS cloning). The
vector was generated by gBlocks Gene Fragment synthesis (IDT)
followed by Gibson assembly (NEB). Each specific sgRNA targeting a
driver gene was cloned separately into this vector. AAV9 virus was
produced and qPCR-titrated, as described above. Total viral particles
(1× 1011)were introduced by intravenous injection intoLSL-Cas9mice.
For combinations of two AAVs, 5 × 1010 viral particles were used from
eachAAV to generate equal titermixtures and injected. Four to sixmice
were injected per group. Starting 1month after injection, mice were im-
aged by IVIS each month. Briefly, mice were anesthetized by intra-
peritoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg)
and imaged for in vivo tumor growthusing an IVISmachine (PerkinElmer)
with firefly D-luciferin potassium salt (150 mg/kg body weight) injected
intraperitoneally. Relative luciferase activity was quantified using Living
Image software (PerkinElmer).

Blinding statement
Investigators were blinded for histology scoring and MIP sequencing
but were not blinded for dissection, MRI, or survival analysis.
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