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Long Abstract

Existing brain-based emotion-cognition theories fail to explain arousal’s ability to both enhance 

and impair cognitive processing. In the Glutamate Amplifies Noradrenergic Effects (GANE) 

model outlined in this paper, we propose that arousal-induced norepinephrine (NE) released from 

the locus coeruleus (LC) biases perception and memory in favor of salient, high priority 

representations at the expense of lower priority representations. This increase in gain under phasic 

arousal occurs via synaptic self-regulation of NE based on glutamate levels. When the LC is 

phasically active, elevated levels of glutamate at the site of prioritized representations increase 

local NE release, creating “NE hot spots.” At these local hot spots, glutamate and NE release are 

mutually enhancing and amplify activation of prioritized representations. This excitatory effect 

contrasts with widespread NE suppression of weaker representations via lateral and auto-

inhibitory processes. On a broader scale, hot spots increase oscillatory synchronization across 

neural ensembles transmitting high priority information. Furthermore, key brain structures that 

detect or pre-determine stimulus priority interact with phasic NE release to preferentially route 

such information through large-scale functional brain networks. A surge of NE before, during or 

after encoding enhances synaptic plasticity at sites of high glutamate activity, triggering local 

protein synthesis processes that enhance selective memory consolidation. Together, these 

noradrenergic mechanisms increase perceptual and memory selectivity under arousal. Beyond 

explaining discrepancies in the emotion-cognition literature, GANE reconciles and extends 

previous influential theories of LC neuromodulation by highlighting how NE can produce such 

different outcomes in processing based on priority.
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1. Introduction

When jolted by a rough skydiving landing, psychologist James Easterbrook observed that his 

sense of space and time shrank and slowly re-expanded (Easterbrook, 1982). This sparked 

his curiosity about how arousal influenced attention. Later he published a review paper that 

argued that under arousal, people rely more on central or immediately relevant information 

and less on peripheral information (Easterbrook, 1959). Since his seminal paper, researchers 

accumulated many more observations that arousal evoked by emotional events enhances 

some aspects of perception and memory but impairs others (for reviews see Mather & 

Sutherland, 2011; Reisberg & Heuer, 2004). For instance, victims of a crime tend to 

remember the weapon vividly but forget the perpetrator’s face (Steblay, 1992). People also 

pay attention to emotional information at the expense of neutral information (Dolcos & 

McCarthy, 2006; Knight et al., 2007). These examples fit with Easterbrook’s formulation 

that arousal impairs attention to peripheral information. But arousing stimuli can sometimes 

enhance memory of peripheral neutral information (Kensinger, Garoff-Eaton, & Schacter, 

2007; Knight & Mather, 2009). Thus, while it is clear that arousal shapes attention and 

memory, knowing that something is neutral or spatially peripheral is not enough to predict 

how it will fare under emotional conditions.

So, then, how does arousal influence the brain’s selection of features to highlight versus 

suppress? An initial answer to this puzzle was provided by the arousal-biased competition 
(ABC) model, which posits that arousal does not have fixed rules about which type of 

stimuli to enhance or suppress. Instead, arousal amplifies the stakes of on-going selection 

processes, leading to “winner-take-more” and “loser-take-less” effects in perception and 

memory (Mather & Sutherland, 2011). ABC builds upon biased competition models 

proposing that stimuli must compete for limited mental resources (Beck & Kastner, 2009; 

Desimone & Duncan, 1995; Duncan, 2006). As conceptualized by Desimone and Duncan 

(1995), both bottom-up and top-down neural mechanisms help resolve competition.

Bottom-up processes are largely automatic, determined by the perceptual properties of a 

stimulus, and do not depend on top-down attention or task demands. For instance, stimuli 

that contrast with their surroundings, such as a bright light in a dark room, engage attention 

automatically even if they are currently goal-irrelevant (Itti & Koch, 2000; Parkhurst, Law, 

& Niebur, 2002; Reynolds & Desimone, 2003). Top-down goals can also bias competition in 

favor of particular stimuli that otherwise would not stand out. Although not included in the 

original biased competition models, past history with particular stimuli is also a source of 

selection bias (Awh, Belopolsky, & Theeuwes, 2012; Hutchinson & Turk-Browne, 2012). 

For instance, one’s name or a novel stimulus tend to engage attention (Moray, 1959; 

Reicher, Snyder, & Richards, 1976). In addition, faces, text, and emotionally salient stimuli 

each grab attention (e.g., Cerf, Frady, & Koch, 2009; Knight et al., 2007; MacKay et al., 

2004; Niu, Todd, & Anderson, 2012).

A core aspect of most current theories of visual attention is that these different signals are 

integrated into maps of the environment that indicate the priority or salience of stimuli 

across different locations (Itti & Koch, 2000; Soltani & Koch, 2010; Treisman, 1998). 

Regions in frontoparietal cortex integrating sensory and top-down signals help represent 
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such priority maps (Ptak, 2012). Moreover, having both feedforward and feedback 

connections between sensory regions and cortical priority maps enables distributed 

representations of prioritized information to modulate their own processing (e.g., lower-level 

visual features) even further (Klink, Jentgens, & Lorteije, 2014; Ptak, 2012; Serences & 

Yantis, 2007; Soltani & Koch, 2010). Thus priority signals are self-biasing to enhance 

efficient information processing in the brain.

In the ABC model, arousal further biases mental processing to favor high over low priority 

representations, regardless of whether initial priority is determined by bottom-up salience, 

emotional salience or top-down goals. Thus, because spatially peripheral information is 

usually lower priority than central information, arousal usually impairs memory for it 

(Waring & Kensinger, 2011 7433; Steblay, 1992). Yet when peripheral information is 

perceptually salient or goal-relevant, arousal instead enhances memory for it (e.g., Kensinger 

et al., 2007).

But the ABC model did not tackle how this works in the brain. Previous brain-based models 

of emotion and cognition also do not account for the dual role of arousal. Most models posit 

that the amygdala enhances perception and memory consolidation of emotionally salient 

stimuli, but fail to address how arousal sometimes enhances and sometimes impairs 

information processing.

In this paper we propose the Glutamate Amplifies Noradrenergic Effects (GANE) model 
in which arousal amplifies the activation difference between high and low neural priority 

representations via local synaptic self-regulation of the locus coeruleus-norepinephrine (LC-

NE) system. According to GANE, hearing an alarming sound or seeing something exciting 

leads to a surge in NE release, which in turn enhances activity of neurons transmitting high 

priority mental representations and suppresses activity of neurons transmitting lower priority 

mental representations. As outlined above, priority is determined by top-down goals, 

bottom-up factors and high-level stimulus features (Beck & Kastner, 2009; Desimone & 

Duncan, 1995; Fecteau & Munoz, 2006).

According to GANE, the brain’s primary excitatory neurotransmitter, glutamate, signals 

priority. Under arousal, elevated glutamate associated with highly active neural 

representations stimulates greater NE release, which then further increases glutamate via 

positive feedback loops. Thus, in these local “hot spots” glutamate signals are amplified. At 

the same time, lower thresholds of activation for inhibitory adrenergic autoreceptors 

suppress activity wherever NE is released and fail to ignite a local hot spot. Higher NE 

concentration also enhances energetic resource delivery to the site of active cognition, 

synchronizes brain oscillations, and modulates activity in large-scale functional networks. 

Thus, under arousal, local NE hot spots contrast with widespread NE suppression to amplify 

priority effects in perception and memory, regardless of how priority was instantiated.

2. Arousal-biased competition (ABC) in perception and memory

We start by reviewing recent findings supporting Mather and Sutherland’s (2011) ABC 

model and its novel predictions. Next, we turn to the question of how these arousal effects 
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operate in the brain. A fundamental challenge in understanding how arousal influences 

cognition is that it sometimes enhances and sometimes impairs information processing. 

While most emotion research focuses on how processing of emotional stimuli is enhanced 

compared with neutral stimuli, emotional arousal can also influence processing of neutral 

stimuli – and across studies, opposing effects are often seen. How can emotionally salient 

stimuli sometimes enhance memory for what just happened but other times impair it? When 

will arousing stimuli enhance perception and when will they impair perception of 

subsequent stimuli? Many studies show that emotion increases selectivity (for reviews see 

Levine & Edelstein, 2009; Mather & Sutherland, 2011; Murray, Holland, & Kensinger, 

2013), but how do we predict what gets selected?

2.1. Arousal enhances perception of salient stimuli, but impairs perception of 
inconspicuous stimuli

In previous research on how arousal influences subsequent perception, there were two types 

of findings that were hard to reconcile. First, arousing stimuli impair perceiving subsequent 

stimuli. For instance, people preferentially perceive arousing stimuli (e.g., Anderson, 2005; 

Keil & Ihssen, 2004) but fail to perceive or encode neutral stimuli nearby either in time (e.g., 

embedded in a rapid series of images after an arousing image; Smith, Most, Newsome, & 

Zald, 2006) or in space (Kensinger et al., 2007; Tooley, Brigham, Maass, & Bothwell, 1987). 

But in the second type of finding, hearing or seeing an arousing stimulus enhances visual 

perception of a subsequent Gabor patch (Padmala & Pessoa, 2008; Phelps, Ling, & 

Carrasco, 2006).

How can we explain both the enhancing and impairing effects of arousing stimuli on 

perception of stimuli that appear nearby in time or space? Initial evidence supports the ABC 

hypothesis that inducing arousal should have opposite effects on perception: arousal should 

enhance processing of high priority (more salient) but impair processing of lower priority 

(less salient) stimuli. When asked to report as many letters as they could from a briefly 

flashed array (see Fig. 1), participants reported more of the high salience letters and fewer of 

the low salience letters if they had just heard an arousing emotionally negative sound than if 

they had just heard a neutral sound (Sutherland & Mather, 2012). Similar results were seen 

when arousal was induced by emotionally positive sounds (Sutherland & Mather, under 

review). These results indicate that arousal makes salient stimuli stand out even more than 

they would otherwise.

ABC also explains the enhanced processing of emotional stimuli, the focus of most previous 

theoretical accounts (e.g., Kensinger, 2004; LaBar & Cabeza, 2006; Mather, 2007; Murty, 

Ritchey, Adcock, & LaBar, 2010; Phelps, 2004). People tend to prioritize emotional stimuli 

due to top-down goals (e.g., increasing pleasure and avoiding pain), their emotional saliency 

(e.g., associations with reward/punishment) and/or bottom-up salience (e.g., a gunshot is 

loud as well as a threat to safety; Markovic, Anderson, & Todd, 2014). Thus, arousing 

stimuli should dominate competition for representation at their particular spatiotemporal 

position (Wang, Kennedy, & Most, 2012).

If the arousing stimulus appears in the exact same location as a neutral stimulus presented 

less than a second later, it will impair perception of that neutral stimulus, an effect known as 
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emotion-induced blindness (Kennedy & Most, 2012; Most, Chun, Widders, & Zald, 2005). 

On the other hand, arousing stimuli tend to enhance the dominance of high priority stimuli 

that are nearby but not competing for the same spatiotemporal spot. An emotionally salient 

word that impairs perceiving a subsequent target word flashed in the same location 50 or 500 

ms later can instead enhance perceiving a target word flashed 1000 ms later (Bocanegra & 

Zeelenberg, 2009), because after the longer interval, the priority of the target word is no 

longer overshadowed by the emotionally salient word.

2.2. Arousal enhances perceptual learning about salient stimuli but impairs learning about 
non-salient stimuli

In visual search, target salience depends on target-distractor similarity. Interspersing 

emotional or neutral pictures with a visual search task, had opposite effects on perceptual 

learning about salient and non-salient targets (Lee, Itti, & Mather, 2012). Emotional images 

enhanced perceptual learning of the exact tilt of a salient target line appearing in an array of 

distracting lines but impaired learning about a non-salient target (Fig. 2). Thus, whether 

arousal enhanced or impaired learning depended on the target’s salience.

2.3. How arousal modulates neural representations depends on salience

A recent study took advantage of the fact that faces and scenes activate distinct 

representational regions in the brain to test the ABC hypothesis that arousal increases brain 

activation associated with processing salient stimuli while decreasing brain activation 

associated with processing less salient stimuli (Lee, Sakaki, Cheng, Velasco, & Mather, 

2014). On each trial, one yellow-framed face and one scene image appeared briefly side-by-

side, followed by the appearance of a dot behind one of the images (Fig. 3A). The 

participants’ task was to indicate which side the dot was on. Participants responded fastest to 

dots that appeared behind the salient faces on trials preceded by a tone conditioned to predict 

shock and thereby induce arousal. In a follow-up fMRI study, there was an arousal-by-

saliency interaction in visual category-specific brain regions, such that arousal enhanced 

brain activation in the region processing the salient stimulus (i.e., fusiform face area) but 

suppressed brain activation in the region processing the non-salient stimulus (i.e., 

parahippocampal place area, see Fig. 3B; Lee et al., 2014).

2.4. Arousal enhances or impairs memory consolidation of representations depending on 
their priority

So far, we have focused on how arousal enhances processing of subsequent inputs. However, 

arousal should have similar effects on mental representations currently active at the moment 

arousal is induced. Previous research indicates that arousal induced after initial encoding 

sometimes impairs and sometimes enhances memory of preceding information (Knight & 

Mather, 2009). The critical ABC hypothesis is that experimentally manipulating priority of 

information should alter the effect of subsequent arousal on memory consolidation.

In the first study testing this hypothesis, participants viewed lists of objects one object at a 

time, with one perceptual oddball in each list (Fig. 4; Sakaki, Fryer, & Mather, 2014). The 

oddball was either emotionally salient or neutral. Some participants were asked to recall the 

name of the oddball picture as soon as the list presentation ended. In this condition, the 
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object shown just before the oddball (e.g., the cabbage in Fig. 4) was low priority. Other 

participants were asked to recall the name of the object shown just before the oddball 

(oddball-1 object). Thus, in this condition, the oddball-1 object (e.g., the cabbage) was high 

priority. After a series of lists, memory for the details of all the oddball-1 objects was tested. 

As predicted, when the oddball pictures had been positively or negatively emotionally 

salient, memory for prioritized oddball-1 objects was enhanced whereas memory for non-

prioritized oddball-1 objects was impaired.

While the brain mechanisms underlying this priority by arousal interaction in memory have 

yet to be tested, there is fMRI evidence that arousal enhances activity in regions processing a 

high priority stimulus. For instance, pairing shock with certain high priority (i.e., standalone) 

neutral scenes enhances successful encoding-related activity in the PPA, the brain region 

specialized to process scene information (Schwarze, Bingel, & Sommer, 2012). Thus, 

arousal-induced enhancement of brain activity processing prioritized information not only 

occurs during perception (e.g., Lee et al., 2014) but also predicts memory for such items.

2.5. Summary

Mather and Sutherland’s (2011) ABC model accounts for both the enhancement and 

impairment effects of arousal on neutral stimuli across a wide variety of experimental 

contexts. It makes novel predictions: 1) Arousal before exposure to stimuli should amplify 

the effects of salience on perception and memory encoding; 2) Arousal shortly after 

encoding information should amplify the effects of its goal relevance on memory 

consolidation. Both effects are due to arousal modulating representations based on priority. 

Other models also highlight the importance of interactions between arousal, attention and 

goals (Kaplan, Van Damme, & Levine, 2012; Levine & Edelstein, 2009; Montagrin, Brosch, 

& Sander, 2013; Talmi, 2013). However, so far there has been no account of how arousal 

amplifies the effects of priority in the brain.

3. Current brain-based models of arousal’s modulatory effects

Before we present our account of how arousal can modulate neural representations 

differently depending on their priority, we outline how existing brain-based models of 

arousal and cognition fail to adequately address how arousal has opposite effects depending 

on representational priority (see Table 1 for an overview).

3.1. Modular vs. "multiple waves” of emotion enhancement in perception

Noticing things like snakes and guns can increase the odds of survival. Consistent with this 

adaptive importance, studies show that emotionally salient stimuli are often detected more 

rapidly than neutral stimuli (Leclerc & Kensinger, 2008; Mather & Knight, 2006; Öhman, 

Flykt, & Esteves, 2001). Explaining the privileged status of emotional stimuli has been the 

focus of brain models of emotion perception. One common assumption is that the 

evolutionary value of noticing emotional stimuli led to a specialized emotion module or 

pathway to evaluate emotional salience (Tamietto & de Gelder, 2010). For instance, in their 

Multiple Attention Gain Control (MAGiC) model, Pourtois et al. (2013) argue that 

emotional salience shapes perception via amplification mechanisms independent of other 
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attentional processes. In the MAGiC model, the amygdala and other modulatory brain 

regions amplify neural responses to emotional relative to neutral stimuli along sensory 

pathways. The model also posits that these modulations occur in parallel to and sometimes 

compete with signals from bottom-up (exogenous) and top-down (endogenous) attentional 

control systems (see also Vuilleumier, 2005).

In contrast, Pessoa and Adolphs (2010) argue against a modular approach to emotion 

enhancement in perception. In their multiple waves model, affectively and motivationally 

significant visual stimuli rapidly engage multiple brain sites, including the amygdala, 

orbitofrontal cortex, anterior insula and anterior cingulate cortex, that then bias processing to 

favor these stimuli. From their perspective, the amygdala helps prioritize emotional aspects 

of information processing by coordinating activity in other regions involved in selective 

attention. Thus, in the multiple waves model, emotion influences general-purpose perceptual 

and attention systems rather than harnessing independent brain mechanisms to enhance 

perception of emotional items.

This latter perspective is more compatible than separate-system models with our findings; if 

emotional stimuli were processed via a separate system than neutral stimuli, it is not clear 

how emotional arousal could have both enhancing and impairing effects on neutral stimuli 

depending on their priority. However, even this modulatory multiple waves approach to 

emotion-cognition interactions fails to explain the full picture of how emotional arousal 

influences cognitive processing, as it focuses only on the enhanced perception of arousing 

stimuli, and ignores how arousal affects perceptual selectivity more generally.

3.2. The canonical amygdala modulation model of emotional memory enhancement

Noticing something creates initial trace representations that require additional resources over 

the next few minutes, hours and days to consolidate into a longer-lasting memory. Much 

research indicates that emotional arousal experienced before, during or after an event can 

enhance these memory consolidation processes (Hermans et al., 2014). The prevailing view 

of how emotion affects memory consolidation is that the amygdala enhances processes in the 

hippocampus and other memory-related brain regions in the medial temporal lobes, such that 

memory for emotional events is enhanced compared with memory for neutral events (e.g., 

McGaugh, 2004). Consistent with this idea, activity in the amygdala during encoding 

predicts later memory for emotional items but not memory for neutral items, as does greater 

amygdala functional connectivity with medial temporal brain regions (Dolcos, LaBar, & 

Cabeza, 2004; Kilpatrick & Cahill, 2003; Richardson, Strange, & Dolan, 2004; Ritchey, 

Dolcos, & Cabeza, 2008).

Converging rodent and human research indicate that NE facilitates the amygdala-mediated 

enhancement of emotional information. For instance, NE released in the amygdala during 

arousal is associated with enhanced memory for the emotionally arousing event (McIntyre, 

Hatfield, & McGaugh, 2002). Infusing noradrenergic agonists into the basolateral amygdala 

after training also enhances memory for emotionally arousing events (Hatfield & McGaugh, 

1999; LaLumiere, Buen, & McGaugh, 2003). In humans, administration of the β-adrenergic 

antagonist propranolol impairs emotional memories while pharmacological manipulations 

that increase NE levels, such as a selective NE reuptake inhibitor, tend to enhance them 
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(Chamberlain & Robbins, 2013), and enhanced amygdala activity during encoding 

emotional stimuli is reduced by propranolol (Strange & Dolan, 2004). Thus, NE-amygdala 

interactions enhance memory for emotional events.

NE activation of the amygdala can also impair memory for neutral information that is 

encountered near something emotional. For instance, as already described above in the 

context of the Sakaki et al. (2014) study, people often show worse memory for neutral low 

priority information shown right before an emotional compared with a neutral “oddball” 

stimulus. Patients with amygdala damage do not show decrements in memory for neutral 

words preceding emotional oddball words, and in normal individuals, a β-adrenergic 

antagonist prevents this retrograde memory impairment (Strange, Hurlemann, & Dolan, 

2003).

Although not usually articulated, the amygdala-modulation hypothesis presumably explains 

these impairment effects for neutral stimuli in terms of a trade-off effect in which the 

amygdala focuses resources on to emotional stimuli, leaving less available to process and 

consolidate the neutral stimuli. However, this trade-off explanation fails to explain how NE-

amygdala interactions also can enhance memory for non-arousing information (e.g., 

Barsegyan, McGaugh, & Roozendaal, 2014; Roozendaal, Castello, Vedana, Barsegyan, & 

McGaugh, 2008).

3.3. Biased attention via norepinephrine model

In the Biased Attention via Norepinephrine (BANE) model, Markovic et al. (2014) 

propose that affectively salient stimuli activate the LC-NE system in order to optimize their 

own processing. Like ABC (Mather & Sutherland, 2011), BANE builds on biased 

competition models of attention (Markovic et al., 2014). BANE proposes that affect-biased 

attention “is distinct from both ‘classic’ executive top-down and bottom-up visual attention, 

and is at least in part circumscribed by a different set of neural mechanisms” (Markovic et 

al., 2014, p. 230). In BANE, emotional salience is detected by an ‘anterior affective system,’ 

including the amygdala and the orbitofrontal cortex, based on the recent history of reward 

and punishment. In turn, the amygdala’s recruitment of the LC-NE system serves as an 

additional specialized pathway that further biases attention and memory in favor of the 

affectively relevant information that triggered NE release.

However, like other models of emotion and cognition, BANE focuses exclusively on how 

affectively salient stimuli outcompete less salient stimuli, and does not address how arousal 

induced by these stimuli sometimes enhances and sometimes impairs processing of proximal 

neutral information.

3.4. Emotional attention competes with executive attention for limited mental resources

Another line of work focuses on how emotional stimuli compete for executive resources 

(Bishop, 2007; Choi, Padmala, & Pessoa, 2012; Eysenck, Derakshan, Santos, & Calvo), with 

some researchers positing that a ventral affective system competes with a dorsal executive 

system (Bush, Luu, & Posner, 2000; Dolcos, Iordan, & Dolcos, 2011). For instance, when 

task-irrelevant emotional stimuli capture attention, they diminish dorsal executive brain 
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region function and therefore disrupt working memory for neutral faces that were just seen 

(Dolcos, Diaz-Granados, Wang, & McCarthy, 2008; Dolcos & McCarthy, 2006). However, 

meta-analyses indicate that emotional responses are associated with both ventral and dorsal 

prefrontal cortical regions (Phan, Wager, Taylor, & Liberzon, 2002; Shackman et al., 2011), 

and so the notion that emotional distractors lead ventral PFC to inhibit dorsolateral PFC 

(Dolcos et al., 2008) is unlikely to be universal across different contexts.

Instead of a ventral/dorsal antagonism model, the dual competition model posits that 

emotional stimuli compete for resources at both perceptual and executive levels of 

processing (Pessoa, 2009; Pessoa, 2013). For instance, when participants heard tones 

predicting shock, regions within the fronto-parietal network activated (Lim, Padmala, & 

Pessoa, 2009). Recruitment of these regions during intense emotional arousal should make 

them less available for concurrent neutral task-related processing and lead to behavioral 

impairments. At the perceptual level of the dual competition model, both cortical and 

subcortical structures help amplify visual cortex responses to emotional stimuli, again 

leading to the impaired perception of other concurrent stimuli.

As in the ABC framework, competition is a core feature of these models. However, these 

models only consider one type of competition: that between arousing and neutral stimuli/

tasks. Critically, our empirical results indicate that arousal also influences competition 

between two neutral stimuli as well, such that processing high priority stimuli is enhanced, 

while processing lower priority stimuli is impaired. It is not clear how, in competition 

models that focus on competition between arousing and neutral stimuli, arousal would 

interact differently with low and high priority neutral information. For instance, such models 

cannot account for the differential effects of arousing sounds on subsequent perceptually 

salient versus non-salient letters (Fig. 1).

3.5. Competition between items for memory consolidation

In a different type of competition account, Diamond (2005) proposes that there is “ruthless 

competition” between novel and existing memory representations, such that encoding a new 

emotional experience suppresses recently potentiated synapses, creating memory for 

emotional events at the cost of memory for information learned just before the emotional 

event (Diamond, Park, Campbell, & Woodson, 2005).

This ruthless-competition hypothesis argues that the acquisition of new information via the 

hippocampus depotentiates the most recently activated synapses, and that this suppression of 

recently formed memories is greater when the new information induces emotion or stress. 

Thus, inducing arousal should impair memory for a preceding sequence of items, regardless 

of whether those preceding items were themselves emotional or not. That is not the case, 

however. Inducing arousal via emotional or cold-pressor stress immediately after 

participants study a mixed list of emotional and neutral pictures selectively enhances 

memory for preceding emotional but not neutral pictures (Cahill, Gorski, & Le, 2003; Liu, 

Graham, & Zorawski, 2008).
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3.6. An arousing stimulus sometimes impairs and sometimes enhances memory of what 
just happened beforehand

How can inducing arousal enhance memory for preceding emotional items but not neutral 

items? Investigators proposed that emotional arousal “tags” synapses associated with 

representations of emotional items, making these synapses the selective target of protein-

synthesis-dependent long-term potentiation (LTP; Bergado, Lucas, & Richter-Levin, 2011; 

Richter-Levin & Akirav, 2003; Segal & Cahill, 2009; Tully & Bolshakov, 2010). The 

emotional-tagging hypothesis predicts that emotionally salient stimuli are remembered 

better than neutral stimuli, because emotional tags allow those particular synapses to capture 

the plasticity-related proteins released with subsequent inductions of arousal.

A problem for the emotion-tagging model is that inducing emotional arousal sometimes 

enhances memory for preceding neutral stimuli (Anderson, Wais, & Gabrieli, 2006; 

Dunsmoor, Murty, Davachi, & Phelps, 2015; Knight & Mather, 2009; Nielson & Powless, 

2007; Sakaki et al., 2014). Neither the emotional-tagging nor any of the other hypotheses 

outlined above can account for this retrograde enhancement of something neutral. In contrast 

to the emotional-tagging hypothesis, behavioral studies demonstrate that whether something 

arousing will yield retrograde enhancement or impairment depends on the priority of the 

preceding information (Section 2.5; Ponzio & Mather, 2014; Sakaki et al., 2014).

3.7. Summary

While there are many models of how emotion enhances perception, attention, and memory 

in the brain, these theories fail to account for both the enhancing and impairing effects of 

emotional arousal (see Table 1 for a summary). In the following sections, we make the case 

for GANE, a model of how NE released under arousal can impact high and low priority 

representations differently despite its diffuse release across the brain.

4. Locus coeruleus, NE and arousal

Like GANE, other theories also argue that the LC-NE system is important for emotion-

cognition interactions (McGaugh, 2000, 2004; McIntyre, McGaugh, & Williams, 2012; 

Markovic et al., 2014). However, they have focused mostly on how NE interacts with the 

amygdala to enhance processing and consolidation of emotional stimuli at the expense of 

processing neutral stimuli (e.g., Strange et al., 2003; Strange & Dolan, 2004). In contrast, we 

argue that the LC-NE system promotes selectivity for any prioritized stimuli, irrespective of 

whether they are emotional or non-emotional.

In this section, we review the functional anatomy of the LC-NE system. A small nucleus in 

the brainstem known as the locus coeruleus (LC) releases NE when people are aroused - 

whether it is by a reward or punishment, a loud noise, or a disturbing image. LC axons are 

distributed throughout most of the brain (Gaspar, Berger, Febvret, Vigny, & Henry, 1989; 

Javoy-Agid et al., 1989; Levitt, Rakic, & Goldman-Rakic, 1984; Swanson & Hartman, 

1975), enabling NE to modify neural processing both locally and more globally in large-

scale functional brain networks. How does the LC influence information processing in most 

cortical and subcortical regions? One might think that a hormone released under conditions 
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of arousal would amp up brain activity. But instead, NE quiets most neuronal activity. In 

turn, this quiet backdrop makes those select few representations that NE amplifies stand out 

even more.

4.1. Functional neuroanatomy of the LC-NE system

The LC is the primary source of cortical NE and helps determine arousal levels (Berridge, 

Schmeichel, & Espana, 2012; Berridge & Waterhouse, 2003; Samuels & Szabadi, 2008a, 

2008b). Tonic, or background, levels of LC activity help regulate levels of wakefulness 

(Carter et al., 2010). Phasic, or transient, bursts of LC activity occur in response to novel, 

stressful or salient stimuli (Aston-Jones & Bloom, 1981; Foote, Aston-Jones, & Bloom, 

1980; Grant, Aston-Jones, & Redmond Jr, 1988; Sara & Bouret, 2012; Sara & Segal, 1991; 

Vankov, Hervé-Minvielle, & Sara, 1995) or to top-down signals associated with decision 

outcomes or goal relevance (Aston-Jones & Cohen, 2005; Aston-Jones, Rajkowski, & 

Cohen, 1999). Emotionally salient stimuli also induce LC phasic activity irrespective of 

whether stimuli are positive (Bouret & Richmond, 2015; Grant et al., 1988) or aversive 

(Chen & Sara, 2007; Grant et al., 1988).

With highly divergent branching axons, the LC projects to every major region of cortex, 

despite its relatively small number of neurons (13,000 per hemisphere in humans; Foote & 

Morrison, 1987). Subcortical regions that underlie memory, attention, and emotional 

processing, including the hippocampus, fronto-parietal cortex and amygdala, are also 

innervated by the LC (Berridge & Waterhouse, 2003). LC axon varicosities release NE into 

extracellular space, allowing it to activate a broad swath of receptors within a diffusion zone 

(Beaudet & Descarries, 1978; Descarries, Watkins, & Lapierre, 1977; O'Donnell, 

Zeppenfeld, McConnell, Pena, & Nedergaard, 2012).

In target brain sites, NE binds to multiple receptor subtypes (i.e., α1, α2 and β receptors) 

that are located both pre- and post-synaptically on neurons and astrocytes (O'Donnell et al., 

2012; Berridge & Waterhouse, 2003; Terakado, 2014; Tully & Bolshakov, 2010). Whereas 

α2-adrenoreceptors limit global and local NE release via autoreceptors and decrease cell 

excitability, β-adrenoreceptor activation generally increases cell excitability, network activity 

and synaptic plasticity (Berridge & Waterhouse, 2003; Marzo, Bai, & Otani, 2009; Nomura 

et al., 2014; Starke, 2001). α1-adrenoreceptors recruit phospholipase activation and typically 

increase cell excitability via the inhibition of potassium channels (Wang & McCormick, 

1993). Thus, the relative density and localization of adrenoreceptor subtypes helps 

determine how arousal-induced NE release will affect neural processing in different brain 

regions.

4.2. NE decreases neuronal noise in sensory regions during arousal

In the 1970’s, researchers proposed that LC-NE activity enhances signal-to-noise ratios in 

target neurons in sensory regions (Foote, Freedman, & Oliver, 1975; Freedman, Hoffer, 

Woodward, & Puro, 1977; Segal & Bloom, 1976; Waterhouse & Woodward, 1980). For 

instance, recording from individual neurons in awake squirrel monkeys revealed that NE 

application reduced spontaneous activity more than it reduced activity evoked by species-

specific vocalizations (Foote et al., 1975).
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Noradrenergic regulation of signal-to-noise ratios is characterized by two simultaneous 

effects: 1) most neurons in a population decrease spontaneous firing, and 2) the few neurons 

that typically respond strongly to the specific current sensory stimuli either show no 

decrease or an increase in firing, unlike the majority of neurons for which the stimuli 

typically evoke weak responses (Foote et al., 1975; Freedman et al., 1977; Hasselmo, 

Linster, Patil, Ma, & Cekic, 1997; Kuo & Trussell, 2011; Livingstone & Hubel, 1981; 

O'Donnell et al., 2012; Oades, 1985; Waterhouse & Woodward, 1980).

Intracellular recording data in awake animals support and extend these early observations. 

Both inhibitory and excitatory neurons are depolarized in aroused cortex when mice run 

(Polack, Friedman, & Golshani, 2013). Yet, consistent with earlier reports of a quieter cortex 

under arousal, inhibitory neurons are more depolarized than excitatory neurons (Polack et 

al., 2013). Moreover, surround inhibition dominates sensory responses during wakefulness 

compared with anesthesia, increasing the speed and selectivity of responses to stimuli in the 

center of the receptive field (Haider, Häusser, & Carandini, 2013). NE mediates the increase 

in widespread depolarization and the increase in inhibitory activity in visual cortex that 

together increase the signal-to-noise ratio (Polack et al., 2013). The effect of NE has also 

been characterized as increasing the gain on the activation function of neural networks (Fig. 

5; Aston-Jones & Cohen, 2005).

Arousal is also characterized by cortical desynchronization, both globally when comparing 

wakefulness to anesthesia (Constantinople & Bruno, 2011) or locomotion to being stationary 

(Polack et al., 2013) and locally among neurons corresponding to attended representations 

(Fries, Reynolds, Rorie, & Desimone, 2001). Such decreases in cortical slow-wave 

synchrony under arousal are likely mediated by LC activity (Berridge & Foote, 1991; 

Berridge, Page, Valentino, & Foote, 1993). Synchronous slow-wave neural activity may gate 

sensory inputs, whereas desynchronized activity permits communication of cortical 

representations of stimuli across the brain (Luczak, Bartho, & Harris, 2013). Cortical cell 

depolarization, desynchronization, and increased responsiveness to external input also occur 

with pupil dilation (Reimer et al., 2014; Vinck, Batista-Brito, Knoblich, & Cardin, 2014), 

and pupil dilation tracks LC activity (Murphy, O'Connell, O'Sullivan, Robertson, & Balsters, 

2014).

4.3 Summary

Years of research indicate that NE suppresses weak or random neuronal activity but not 

strong activity. This is consistent with the increased selectivity seen under arousal (Section 

2). In the next section, we outline a model of how NE has such different outcomes 

depending on activity level.

5. Glutamate Amplifies Noradrenergic Effects (GANE): the core 

noradrenergic selectivity mechanism under arousal

Now we turn to our GANE model, a novel brain-based account of how arousal amplifies 

priority effects in perception and memory. We propose that local glutamate-NE interactions 

increase gain under arousal. Glutamate is the most prevalent excitatory neurotransmitter in 
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the brain (Meldrum, 2000). Glutamate receptors such as AMPA and NMDA receptors 

mediate rapid excitatory synaptic transmission, neural network connectivity and long-term 

memory (Bliss & Collingridge, 1993; Lynch, 2004; Traynelis et al., 2010).

In addition to point-to-point transmission across a synapse, some glutamate escapes the 

synaptic cleft, leading to ‘glutamate spillover’ (Okubo et al., 2010). In this section we 

outline evidence that glutamate spillover attracts and amplifies local NE release via positive 

feedback loops. These self-regulating NE hot spots generate even greater excitatory activity 

in the vicinity of synapses transmitting high priority representations, in contrast with NE’s 

suppressive effects in the more widespread non-hot-spot regions.

5.1. The NE hot spot: How local NE-glutamate positive feedback loops amplify processing 
of high priority information

1) High glutamate activity stimulates adjacent NE varicosities to release more 
NE—The first demonstrations of glutamate-evoked effects on NE found that, via NMDA 

and non-NMDA glutamate receptors on LC axons, glutamate increased NE release (Fink, 

Göthert, Molderings, & Schlicker, 1989; Göthert & Fink, 1991; Jones, Snell, & Johnson, 

1987; Lalies, Middlemiss, & Ransom, 1988; Nelson, Zaczek, & Coyle, 1980; Pittaluga & 

Raiteri, 1990, 1992; Vezzani, Wu, & Samanin, 1987; Wang, Andrews, & Thukral, 1992). In 

these studies, glutamate-evoked NE release occurred for NE varicosities in all cortical 

structures investigated in vitro: olfactory bulb, hippocampus and throughout neocortex. In 
vivo experiments replicated the effect with targeted glutamate in rodent prefrontal cortex 

(Lehmann, Valentino, & Robine, 1992). Other neurotransmitters associated with arousal, 

such as histamine (Burban et al., 2010) and orexin (Tose and Hirota 2005), enhance 

glutamate-evoked NE release. Central to our hypothesis, glutamate-evoked NE release 

occurs in human neocortex (Fink, Schultheiß, & Göthert, 1992; Luccini et al., 2007; 

Pittaluga et al., 1999).

How do these glutamate-NE interactions occur? LC axon varicosities rarely make direct 

synaptic contacts (e.g., only ~5% in rat cortex; Vizi, Fekete, Karoly, & Mike, 2010), but the 

distribution of these varicosities suggests they should often be found near glutamate 

terminals at excitatory synapses in neocortex (Benavides-Piccione, Arellano, & DeFelipe, 

2005; Gaspar et al., 1989). Another critical piece is that LC neurons produce the NMDA 

receptor subunits needed for glutamate to modulate the release of NE from LC axon 

varicosities (Chandler, Gao, & Waterhouse, 2014; Grilli et al., 2009; Petralia, Yokotani, & 

Wenthold, 1994; Zhu, Brodsky, Gorman, & Inturrisi, 2003).

New technologies enable the visualization of glutamate spillover in cerebellum, neocortex 

and hippocampus (Okubo et al., 2010; Okubo & Iino, 2011). Multiple action potentials in a 

row yield sufficient spillover glutamate to activate non-synaptic NMDA and Group I mGluR 

receptors (which are co-expressed on NE varicosities and enhance glutamate-evoked NE 

release in rodent and human cortices; Luccini et al., 2007), but is less likely to recruit lower 

affinity AMPA receptors (Okubo et al., 2010). Extracellular concentrations of the spillover 

rapidly decrease as distance from the synaptic cleft increases (Vizi et al., 2010) and the 

upper limit of glutamate spillover effects is estimated to be no greater than a few 

micrometers (Okubo & Iino, 2011).
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That spillover glutamate is sufficient to activate NMDA but not AMPA receptors is another 

key factor. Unlike AMPA receptors, NMDA receptors require synchronized glutamate 

stimulation and neuron depolarization to activate (Lüscher & Malenka, 2012). Thus local 

glutamate spillover must co-occur with phasic depolarizing bursts of activity in LC neurons 

to recruit additional local NE release. Furthermore, a unique feature of NMDA receptors is 

that they require a coagonist, which could either be glycine or D-serine (Wolosker, 2007). 

Glutamate stimulates astrocytes to release these coagonists (Harsing & Matyus, 2013; Van 

Horn, Sild, & Ruthazer, 2013), and both glutamate and NE stimulate astrocytes to release 

glutamate (Parpura & Haydon, 2000). These additional glutamate interactions should further 

enhance NMDA receptor-mediated NE release (see Fig. 6 and Paukert et al., 2014). Together 

these local glutamate-NE interactions support the emergence and sustainment of hot spots in 

the vicinity of the most activated synapses when arousal is induced.

Consistent with the existence of glutamate-NE interactions, local NE release in the region of 

an activated novel representation depends on the coincident timing of the novel event and an 

arousing event (Rangel & Leon, 1995). For instance, when footshock was administered to a 

rat while it explored a novel environment, NE levels rose substantially more and stayed 

elevated for longer than when footshock was administered in its holding cage (Fig. 7; 

McIntyre et al., 2002). The amygdala presumably activated in response to the novelty of the 

new environment (Weierich, Wright, Negreira, Dickerson, & Barrett, 2010), and glutamate 

associated with that representational network amplified the NE release initiated by the 

shock.

Hot spot effects have also been observed in the bed nucleus of the stria terminalis 

immediately after training rats on an inhibitory avoidance task (Liu, Chen, & Liang, 2009). 

When infused separately at low doses, glutamate and NE each had no effect. But when 

infused together at the same low doses, they produced marked memory enhancements. 

Infusing a higher dose of glutamate led to memory enhancements that were blocked by 

propranolol, indicating that the glutamate effect required β-adrenergic activity, which as we 

describe next, is another key feature of our hot spot model.

2) α- and β-adrenoceptors exert different effects on neuronal excitability and 
require different NE concentrations to be activated—To be engaged, β-

adrenoreceptors require relatively high NE concentrations, α1-adrenergic receptors more 

moderate levels, and α2-adrenergic receptors the lowest NE concentrations (Ramos & 

Arnsten, 2007). Thus, under arousal, α2-adrenoceptor effects should be widespread, 

whereas β-adrenoreceptors should only be activated at hot spot regions due to local 

glutamate-evoked NE release leading to higher NE levels. Next, we describe the importance 

of this distinction for adrenergic autoreceptors.

3) Adrenergic autoreceptors inhibit or amplify their own NE release—
Autoreceptors at NE varicosities serve as neural gain amplifiers by taking opposing action at 

low and high local levels of NE. The predominant presynaptic noradrenergic autoreceptor in 

humans is the α2A-adrenoceptor (Starke, 2001), which inhibits NE release when it detects 

low or moderate levels of NE (Delaney, Crane, & Sah, 2007; Gilsbach & Hein, 2008; 

Langer, 2008; Starke, 2001). In contrast, presynaptic β-adrenoceptors amplify NE release 
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when activated by high levels of NE (Chang, Goshima, & Misu, 1986; Misu & Kubo, 1986; 

Murugaiah & O'Donnell, 1995a, 1995b; Ueda, Goshima, Kubo, & Misu, 1985). In addition, 

α2A-adrenoceptors may lose affinity for NE when neurons are depolarized (Rinne, Birk, & 

Bünemann, 2013), which would remove their inhibitory influence as a region becomes 

highly active. However, this loss of affinity recovers at saturating levels of NE (Rinne et al., 

2013), which should help prevent runaway excitation that could otherwise emerge due to the 

NE-glutamate feedback loop. Together with glutamate-evoked NE release (see Section 

5.1.1), the opposing effects of these different auto-receptors at low and high levels of NE 

provide an elegant way for the LC to modulate signal gain depending on the degree of local 

excitation.

4) Elevated local NE at hot spots engages β-adrenoceptors on the glutamate 
terminals transmitting the prioritized representation—This stimulates an even 

greater release of glutamate, thereby amplifying the high priority excitatory signal (Ferrero 

et al., 2013; Gereau & Conn, 1994; Herrero & Sánchez-Prieto, 1996; Ji et al., 2008; 

Kobayashi et al., 2009; Mobley & Greengard, 1985). Because β-adrenoreceptors require 

relatively high NE concentrations to be engaged, this further biases this form of cortical 

auto-regulation towards the most active synapses. Through these feedback processes high 

priority representations are ‘self-selected’ to produce a stronger glutamate message and 

excite their connections more effectively under arousal. This stronger glutamate message 

should also promote selective memory of such stimuli (see Section 6.1). In contrast, 

activation of lower threshold α2-adrenoreceptors inhibits glutamate release (Bickler & 

Hansen, 1996; Egli et al., 2005), providing a mechanism for inhibiting lower priority neural 

activity under arousal.

5) Higher NE levels at hot spots help prolong the period of neuronal excitation 
by temporarily inhibiting processes that normalize neuron activity—Under 

normal conditions, the slow after-hyperpolarization current habituates a post-synaptic 

neuron’s responses following prolonged depolarization (Alger & Nicoll, 1980). However, 

even here NE seems to benefit prioritized inputs by prolonging neuronal excitation via β-

adrenoreceptors inhibiting the slow after-hyperpolarization (Madison & Nicoll, 1982; Nicoll, 

1988).

In summary, different receptor subtypes enable NE to ignite hot spots in regions with high 

glutamate while inhibiting activity elsewhere. As we outline later on, this diversity in NE-

receptor subtypes also plays an important role in shaping synaptic plasticity to favor 

prioritized representations under phasic arousal.

5.2. NE hot spots modulate interneurons and GABAergic transmission to increase lateral 
inhibition of competing representations

Increases in glutamate and NE at hot spots should also enhance inhibitory activity that 

mediates competition among neurons. GABA is the most widespread inhibitory transmitter 

from neurons that suppress the responses of other neurons or neuronal circuits (Petroff, 

2002). Strong glutamate activity in cortical circuits stimulates local GABAergic activity, 

which increases the inhibitory effects of highly active regions on neighboring, competing 
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neural circuits (Xue, Atallah, & Scanziani, 2014). Increases in NE also activate inhibition 

directly, with intermediate concentrations engaging maximal suppression (Nai, Dong, Hayar, 

Linster, & Ennis, 2009). Subtypes of interneurons respond differently to NE in ways that 

should further increase neural gain. While LC-NE activity activates interneurons that 

mediate lateral inhibition (Salgado, Garcia-Oscos, et al., 2012), it can also suppress 

interneurons with feedforward connections (Brown, Walling, Milway, & Harley, 2005), such 

that a strong signal will inhibit competing representations while enhancing activity in other 

neurons within its processing pathway.

5.3. NE directs metabolic resources to where they are most needed

To optimize processing of salient events, NE also helps coordinate the delivery of the brain’s 

energy supplies, allowing it to mobilize resources quickly when needed (e.g., Toussay, Basu, 

Lacoste, & Hamel, 2013). The brain’s most essential energy supplies, oxygen and glucose, 

are delivered via the bloodstream. One key way that NE coordinates energy delivery is by 

increasing the spatial and temporal synchronization of blood delivery to oxygen demand 

within the brain. For instance, in mice, increasing NE levels decreases overall blood vessel 

diameter in the brain but increases the spatial and temporal selectivity of blood distribution 

to active task-relevant regions (Bekar, Wei, & Nedergaard, 2012).

In addition to distributing blood flow, NE also interacts with astrocytes locally to mobilize 

energetic resources throughout the cortex. When a particular area of the brain needs more 

energy, it can obtain fuel not only from glucose but also from glycogen in astrocytes 

(Pellerin & Magistretti, 2012). NE speeds up the process of obtaining energy from glycogen 

(Magistretti, Morrison, Shoemaker, Sapin, & Bloom, 1981; Sorg & Magistretti, 1991; Walls, 

Heimbürger, Bouman, Schousboe, & Waagepetersen, 2009). While α1- and α2-

adrenoreceptors mediate glutamate uptake and glycogen production in astrocytes, β-

adrenoreceptors stimulate the breakdown of glycogen to provide rapid energy support in 

highly active local regions (O'Donnell et al., 2012), further amplifying NE hot spot activity.

5.4. Summary

At the local neuronal level, NE suppresses most activity but amplifies the strongest activity 

due to differential effects of NE on different adrenoreceptor subtypes. The amplification of 

strong activity occurs via “NE hot spots,” where positive feedback loops between local NE 

and glutamate release increase the strength of activated representations. To sustain higher 

levels of activity, hot spots also recruit limited metabolic resources. At the circuit level, the 

increased glutamate and NE produced at hot spots recruit nearby astrocytes that supply 

additional energy to active neurons. On a broader scale, NE facilitates the redistribution of 

blood flow towards hot spots and away from areas with lower activity. Thus, by influencing 

multiple levels of brain function, NE selectively amplifies self-regulating processes that bias 

processing in favor of prioritized information.

6. Roles of the LC-NE system in memory

So far we have focused on how arousal increases the gain on prioritization processes in 

perception, attention, and initial memory encoding. Now we turn to memory consolidation 
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processes. Experiencing an emotionally intense event influences the vividness and longevity 

of recent memory traces, enhancing or impairing them based on their priority (e.g., Fig. 4; 

Knight & Mather, 2009; Sakaki et al., 2014). Much research has shown that NE is involved 

in memory consolidation effects (for a review see McGaugh, 2013), but there has been little 

focus on the interplay between NE’s enhancing and impairing effects during memory 

consolidation.

The durability of memories depends on adjustments in the strength of communication across 

synapses via processes known as long-term potentiation (LTP) and long-term depression 

(LTD). Whether neural activity triggers LTP or LTD depends on the relative timing of spikes 

in pre- and post-synaptic neurons (Nabavi et al., 2014), and whether LTP and LTD are 

maintained depends on protein synthesis processes (Abraham & Williams, 2008). We 

propose that two main NE mechanisms modulate LTP and LTD processes, leading to 

“winner-take-more” and “loser-take-less” outcomes in long-term memory: 1) a hot-spot 

modulation of the probability of LTP (higher NE levels engaging LTP) and LTD (relatively 

lower NE levels promoting LTD), and 2) NE-enhanced protein synthesis supporting long-

term maintenance of LTP and LTD.

6.1. NE gates spike-timing-dependent LTD and LTP

LTP and LTD are often studied in brain slices in a petri dish using high frequency electric 

stimulation to induce LTP and repeated slow stimulation to induce LTD. But in the brain’s 

natural context involving constant barrages of presynaptic activity generating postsynaptic 

spikes, the relative timing of pre- and post-synaptic activity helps determine whether LTP or 

LTD occurs. Furthermore, to avoid constantly adjusting synapses up and down based on 

random firing patterns, neuromodulators such as NE and dopamine signal when the 

relationship between presynaptic and postsynaptic activity is likely to be meaningful 

(Pawlak, Wickens, Kirkwood, & Kerr, 2010). In vivo studies indicate that spike-timing-

dependent LTP or LTD requires these neuromodulators (Huang et al., 2014; Johansen et al., 

2014). In particular, by binding to G-coupled receptors, NE modulates kinases and 

phosphatases that determine whether LTP or LTD induction occur (Treviño, Huang, et al., 

2012; Tully & Bolshakov, 2010).

Different adrenoreceptor subtypes appear to mediate NE’s regulation of spike-timing-

dependent LTP and LTD. Spike-timing-dependent LTP is primarily initiated by β-

adrenoreceptor activation, whereas α1-adrenoreceptors promote spike-timing-dependent 

LTD (Salgado, Kohr, & Trevino, 2012). Critically, Salgado and colleagues showed that the 

LTP promoting activation of β-adrenoceptors requires ~25-fold higher concentrations of NE 

(8.75 micromolar) than the NE concentration that promotes α1-adrenoreceptor-mediated 

spike-timing-dependent LTD (.3 micromolar) in vitro. This agrees with an in vivo estimate 

of a 30-fold NE increase associated with NE-LTP in dentate gyrus (Harley, Lalies, & Nutt, 

1996). The required increase in NE to support spike-timing-dependent LTP is substantially 

higher than increases in NE levels seen when experimenters stimulate LC and measure NE 

in cortex or hippocampus using microdialysis (e.g., ~twice baseline, Florin-Lechner, 

Druhan, Aston-Jones, & Valentino, 1996; ~.5 micromolar, Palamarchouk, Zhang, Zhou, 

Swiergiel, & Dunn, 2000). Thus, there is a discrepancy between the NE levels needed for 
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spike-timing-dependent LTP to occur and the levels measured in laboratory studies. Our 

GANE model accounts for this difference, as it posits that LC activation interacts with 

prioritized representations to elicit much higher NE release in a select few local hot spots 

than elsewhere.

The NE hot spot model supports a range of simultaneous NE modulatory actions. At high 

priority hot spots, NE levels should be sufficiently high to engage β-adrenoreceptors and 

initiate spike-timing-dependent LTP (Salgado, Kohr, et al., 2012; Treviño, Huang, et al., 

2012). Conversely, areas with lower glutamate activity, where NE levels are by comparison 

modestly increased, would undergo LTD due to the engagement of relatively higher affinity 

α1-adrenergic receptors (Huang et al., 2014; Salgado, Kohr, et al., 2012; Treviño, Frey, & 

Köhr, 2012). Variations in NE levels in the alert brain thereby support bidirectional plasticity 

(Salgado, Kohr, et al., 2012; Treviño, Huang, et al., 2012).

6.2. NE increases protein synthesis processes that promote memory consolidation: the 
critical role of β-adrenoreceptors

Arousal levels in the minutes and hours before or after an event also influence later memory 

for it. Here we review evidence that these wider time window effects of arousal depend on 

NE enhancing protein synthesis processes that determine the long-term durability of salient 

memories. Critically, such regulation of memory processes by NE appears to be mediated by 

β-adrenoreceptors, which we propose are selectively activated in high priority 

representational networks.

NE’s role in gating the synthesis of plasticity-related proteins has been recognized for more 

than a decade (Cirelli, Pompeiano, & Tononi, 1996; Cirelli & Tononi, 2000). For instance, 

plasticity-related proteins promoted by an LC-NE novelty signal can enhance long-term 

memory consolidation of another salient but otherwise poorly consolidated event (i.e., 

learning that stepping off of a platform leads to a weak shock) that happens one hour later or 

even one hour prior to the novelty experience (Moncada & Viola, 2007; Moncada, Ballarini, 

Martinez, Frey, & Viola, 2011).

Blocking β-adrenoreceptors or protein synthesis prior to novelty exposure prevents novelty 

facilitation of LTP (Straube, Korz, Balschun, & Frey, 2003). What is particularly striking is 

that β-adrenoceptor activation at time 1 primes synapses to induce LTP at time 2 an hour 

later even when β-adrenoceptor receptors are blocked by propranolol during time 2 (Tenorio 

et al., 2010). However, if protein synthesis processes are blocked during time 2, the time-1 

priming event does not lead to enhancement. The plasticity marker, Arc protein, is recruited 

by β-adrenoceptor activation in the presence of NMDA receptor activation (Bloomer, 

VanDongen, & VanDongen, 2008). Hot spots are characterized by high levels of glutamate 

release and β-adrenoceptor activation, thus emotional arousal should elevate Arc selectively 

in NE hot spots.

β-adrenergic activation after learning or weak LTP induction can also convert short-term 

LTP to more lasting protein-synthesis-dependent late-LTP (Gelinas & Nguyen, 2005; 

Gelinas, Tenorio, Lemon, Abel, & Nguyen, 2008). Likewise, stimulating the basolateral 

amygdala either before or after tetanization of the hippocampus converts early-LTP to late-
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LTP via a β-adrenoreceptor mechanism (Frey, Bergado-Rosado, Seidenbecher, Pape, & Frey, 

2001). Activating β-adrenoreceptors also shields late-LTP from subsequent depotentiation 

(Gelinas & Nguyen, 2005; Katsuki, Izumi, & Zorumski, 1997).

Creating long-lasting memories depends on the protein synthesis cAMP/PKA/CREB 

signaling cascade (Kandel, 2012; O'Dell, Connor, Gelinas, & Nguyen, 2010). Neuronal 

ensembles in which the cAMP/PKA/CREB cascade has been activated, as happens with the 

engagement of β-adrenoceptors, have been shown to be selectively allocated to the engram 

representing a memory (Han et al., 2007). Furthermore, increasing excitability via different 

methods mimics the effects of CREB overexpression, suggesting that neurons are recruited 

to an engram based on their neural excitability (Frankland & Josselyn, 2015; Zhou et al., 

2009). Thus, by modulating CREB and other aspects of neural excitability, NE hot spots 

should help determine which neurons are allocated to an engram and stabilized in long-term 

memory.

6.3. Summary

Local NE concentration is the key to understanding how NE mediates arousal’s dichotomous 

effects on memory. Previous research has shown that different NE levels regulate different 

forms of spike-timing-dependent plasticity by engaging distinct adrenoreceptors. Whereas 

NE binding to moderate affinity α1-adrenergic receptors leads to LTD and memory 

suppression, NE binding to lower affinity β-adrenoreceptors leads to LTP and memory 

enhancement. We propose that local discrepancies in NE levels arise from self-regulating 

NE-glutamate interactions. Where NE concentrations become high enough to engage low-

affinity β-adrenoreceptors, a cascade of intracellular events triggers protein synthesis 

processes that enable long-term memory consolidation of the high priority trace. In contrast, 

more modest increases in NE levels at less active regions lead to LTD, ensuring less 

important events are forgotten. Before or after encoding, the confluence of protein synthesis 

and β-adrenoreceptor activation selectively strengthen memory consolidation when these 

mechanisms are recruited close by in time.

7. Beyond local GANE: Broader noradrenergic circuitry involved in 

increased selectivity under arousal

Beyond local effects, NE increases biased competition processes by altering how different 

brain structures interact. With its widely distributed afferents, the LC-NE system influences 

neural processing in many brain regions when an arousing event occurs. NE release can 

translate local hot-spot effects to more global winner-take-more effects by modulating 

neuronal oscillations. Furthermore, cortical and subcortical priority signals modulate 

glutamate release in sensory regions and the hippocampus as mental representations are 

formed and sustained. As previously reviewed (see Section 5.1), glutamate is essential for 

NE release to selectively amplify the processing of significant information. Thus, by 

stimulating local glutamate release and recruiting LC firing, key brain structures can 

optimize synaptic conditions for arousal to ignite hot spots.
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7.1. The activation of inhibitory networks by NE primes neuronal synchronization among 
high priority neural ensembles

So far, we have reviewed evidence that NE hot spots amplify the effects of priority, 

enhancing salient features while noisy background activity is suppressed. In this section, we 

discuss the possibility that neuronal oscillations communicate activity in local hot spots 

more globally (Singer, 1993).

The first candidate is gamma synchrony (30–80 Hz). Conceptual frameworks of neural 

oscillations posit that gamma synchrony supports gain modulation in local networks (Fries, 

2009), such that a target area can only oscillate in phase with one of two competing inputs. 

As a result, the synaptic input that more successfully synchronizes its activity with the target 

region gets amplified while the less synchronized input gets suppressed. Gamma synchrony 

is likely a key component of selective attention (Baluch & Itti, 2011; Fries, 2009; Fries et al., 

2001).

Gamma oscillations are generated by a feedback loop between excitatory pyramidal cells 

and fast-spiking parvalbumin positive inhibitory interneurons (Buzsáki & Wang, 2012; 

Cardin et al., 2009; Carlen et al., 2012; Sohal, Zhang, Yizhar, & Deisseroth, 2009). 

Noradrenergic release activates these interneurons (Cox, Racca, & Lebeau, 2008; Huang, 

Huganir, & Kirkwood, 2013; Toussay et al., 2013) and increases gamma synchrony in these 

target regions (Gire & Schoppa, 2008; Haggerty, Glykos, Adams, & LeBeau, 2013; Marzo, 

Totah, Neves, Logothetis, & Eschenko, 2014). Emotional arousal also modulates gamma 

oscillations in regions that process motivational significance, such as the amygdala, sensory 

cortex and PFC (Headley & Weinberger, 2013). These results suggest that arousal-induced 

NE release selectively biases gamma oscillations in favor of the most activated 

representations in local neuronal ensembles.

Consistent with the hot spot model, increases in local gamma power during cognitive 

processing in humans are associated with increases in glutamate levels (Lally et al., 2014). 

Increases in local gamma power are also associated with successful memory encoding in 

humans (Burke et al., 2013). Likewise, in rats, fear conditioning increases gamma 

synchronization in sensory cortex (Headley & Pare, 2013). Increased gamma power predicts 

retention of tone-shock associations and enhanced representations of the tone associated 

with shock in the primary auditory cortex (Headley & Weinberger, 2011).

Recent research shows that β-adrenoreceptors recruit in-phase oscillations with gamma 

activity, while α1-adrenoreceptors recruit out-of-phase oscillations (Haggerty et al., 2013). 

Given the higher threshold for activating β-adrenergic than α1-adrenergic receptors (see 

Section 5.1), these results suggest that high NE levels at hot spots engage β-adrenoreceptors, 

recruit in-phase oscillations and increase local network connectivity for prioritized 

representations. Elsewhere, lower NE levels should only engage α1-adrenoreceptors and 

thereby reduce local gamma power and diminish local synchronization.

In addition to modulating oscillations in local neuronal ensembles, NE also facilitates 

oscillatory coupling across regions. Current frameworks of neural synchrony posit that long-

range/inter-regional communication between areas is modulated by oscillation in low 
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frequency bands, such as theta (4–8 Hz), while communication within local networks is 

modulated by high frequencies, including gamma synchrony (Canolty & Knight, 2010; Von 

Stein & Sarnthein, 2000). New research further suggests that optimal network function 

occurs when gamma is embedded in, and phasically facilitated by, slower theta (or even 

delta; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008) oscillations (Canolty & Knight, 

2010; but see Burke et al., 2013). This theta-gamma coupling seems to provide a mechanism 

for inter-regional communication and cross-location phase coupling across regions to help 

translate local NE hot spots to global effects.

LC-NE system activation promotes hippocampal theta (e.g., Berridge & Foote, 1991; 

Walling, Brown, Milway, Earle, & Harley, 2011), and is linked to enhancement of novelty-

related hippocampal theta (Kocsis, Li, & Hajos, 2007). In humans, the phase coupling of 

gamma with slower oscillations has been described primarily for neocortex (Canolty et al., 

2006) where the LC-NE role in slower rhythms is less well studied. However, hippocampal 

theta entrains prefrontal cortical theta (Paz, Bauer, & Paré, 2008). Recently, selective LC-NE 

activation has been shown to increase neocortical theta in anesthetized animals (Vazey & 

Aston-Jones, 2014). The parvalbumin neurons modulated by NE participate in setting not 

only gamma but also theta rhythms (Varga et al., 2014; Wulff et al., 2009); thus, 

parvalbumin interneurons provide a mechanism for LC-NE support of phase-coupled 

rhythms. Indeed, lesions of NMDA receptors in the parvalbumin neurons results in 

decreased power of theta oscillations and reduced modulations of gamma oscillation by theta 

(Korotkova, Fuchs, Ponomarenko, von Engelhardt, & Monyer, 2010). NE modulation of the 

hyperpolarization-associated Ih current has also been proposed to support thalamocortical 

driving of slower neocortical oscillations (Yue & Huguenard, 2001). Thus, by modulating 

gamma and theta, the LC-NE system can amplify the winner-take-more effects of hot spots.

7.2. Key brain regions help evaluate priority and modulate NE hot spots

Here we review how several key brain regions help enhance GANE selectivity mechanisms 

under arousal. These regions help detect saliency and interact with the LC to fine-tune 

priority signals via their own hot-spot-like effects (e.g., amygdala) and/or other NE 

mechanisms (e.g., PFC and thalamus).

The amygdala plays a central role in enhancing selectivity under arousal. It helps notice and 

track salient information (Sander, Grafman, & Zalla, 2003) and recruits the LC when 

activated (e.g., Bouret, Duvel, Onat, & Sara, 2003; Fallon, Koziell, & Moore, 1978; Jones & 

Moore, 1977; Price & Amaral, 1981; Van Bockstaele, Colago, & Valentino, 1998). The LC 

in turn modulates amygdala activity via NE to further enhance the saliency signal (Sears et 

al., 2013). Through its strong anatomical projections to sensory cortices (Amaral, Behniea, 

& Kelly, 2003), the amygdala amplifies cortical processing of behaviorally relevant events 

(Chau & Galvez, 2012; Pessoa & Adolphs, 2010). Such modulation of other regions may be 

mediated by glutamate-NE interactions amplifying saliency signals within the amygdala 

(Fig. 7; see also Liu et al., 2009), thereby enhancing its selective modulatory influence on 

other regions. In addition, as reviewed previously (see Section 3.2), β-adrenoreceptors in the 

amygdala mediate the selective effects of arousal on memory.
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The thalamus helps control the communication of sensory information across the brain 

(Sherman, 2005). Within the thalamus, there are dense NE fibers and high levels of NE in 

the pulvinar-posteriorlateral/posteriormedial complex, but very few in the lateral geniculate 

nucleus (Morrison & Foote, 1986; Oke, Keller, Mefford, & Adams, 1978). Through its 

widespread reciprocal connections with cortical and subcortical structures (Shipp, 2003), the 

pulvinar helps filter inputs based on behavioral relevance (Fischer & Whitney, 2012), 

promotes communication across brain regions (Saalmann & Kastner, 2009; Saalmann, 

Pinsk, Wang, Li, & Kastner, 2012), modulates gamma oscillations (Shumikhina & 

Molotchnikoff, 1999), and controls the gain of sensory processing (Purushothaman, Marion, 

Li, & Casagrande, 2012). In addition, the pulvinar is sensitive to emotional saliency (Liddell 

et al., 2005; Padmala, Lim, & Pessoa, 2010; Troiani & Schultz, 2013). Thus, anatomically, 

NE is set up to modulate thalamic signals of priority.

Furthermore, in rats, NE increases signal-to-noise processing within the thalamus. When 

directly infused with NE, rat ventral posteriomedial thalamus shows reduced spontaneous 

firing but enhanced firing in response to whisker stimulation (Hirata, Aguilar, & Castro-

Alamancos, 2006). When stimulated by phasic or tonic LC activation, ventral posteriomedial 

thalamus also showed increased firing in response to whisker stimulation (Devilbiss & 

Waterhouse, 2011). However, an intriguing observation was that in sensory barrel field 

cortex phasic stimulation of LC enhanced firing to strong whisker stimulation but slightly 

impaired firing to weak whisker stimulation, an outcome consistent with the NE hot spot 

model. However this differential response based on stimulus intensity did not occur within 

the ventral posteriomedial thalamus, where both strong and weak sensory inputs increased 

firing (Devilbiss & Waterhouse, 2011). This initial finding suggests that NE influences in 

sensory thalamus may occur through mechanisms other than NE hot spots. Thus, further 

work is needed to examine NE’s modulatory role in the thalamus. In any case, the thalamus 

plays a key role in amplifying selectivity under arousal by coordinating responses to salient 

stimuli across the brain. Such local representations of salient stimuli are then subject to NE 

modulatory influences.

The prefrontal cortex (PFC), including the OFC and ACC, has reciprocal connections with 

the LC (Arnsten & Goldman-Rakic, 1984; Jodo, Chiang, & Aston-Jones, 1998) and is an 

important regulator of LC output. PFC regions help appraise sensory information and recruit 

the LC based on goal-relevance (Aston-Jones & Cohen, 2005), motivational relevance 

(Mohanty, Gitelman, Small, & Mesulam, 2008), reward (for the OFC; Schoenbaum & 

Roesch, 2005), conflict (Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Sheth et al., 

2012), monetary loss (Gehring & Willoughby, 2002) and pain (Rainville, Duncan, Price, 

Carrier, & Bushnell, 1997). The ACC is also a key site for integrating task-relevant and 

arousal inputs (Pessoa, 2009; Shackman et al., 2011). In humans, LC innervation of the PFC 

is relatively sparse, especially in anterior regions (Gaspar et al., 1989; Javoy-Agid et al., 

1989), but NE modulates working memory processes in PFC (Arnsten, 2011; Wang et al., 

2007).

These PFC noradrenergic influences over working memory have different mechanisms than 

the NE hot spot. First, in our model, β-adrenoceptors support positive feedback loops at NE-

glutamate hotspots but α2-adrenoceptors suppress those feedback loops (see Section 5.1). 
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However, the facilitatory versus inhibitory roles of these adrenoceptors reverses in the 

context of working memory. β-adrenoceptors stimulate cAMP whereas α2-adrenoceptors 

inhibit it (Duman & Enna, 1986; Nomura et al., 2014; Robinson & Siegelbaum, 2003). 

Inhibition of cAMP via stimulation of post-synaptic α2-adrenoceptors increases input 

resistance and enhances recurrent network activity and working memory performance (Wang 

et al., 2007). Thus moderate levels of arousal should enhance working memory processes 

that maintain goal-relevant information in mind, whereas high levels of arousal should 

impair these processes (Arnsten, 2011; Kuhbandner & Zehetleitner, 2011). Such 

impairments may, in turn, disrupt initiating top-down prioritization goals after exposure to 

emotionally salient stimuli (Sutherland, Lee, & Mather, in preparation).

One interesting question is what might occur when top-down and bottom-up priority 

conflict. The insula plays a key role in this aspect and integrates salience signals from 

internal and external stimuli (Craig, 2009; Uddin, 2015). The insula is involved in various 

types of saliency processing, including error detection (Ullsperger, Harsay, Wessel, & 

Ridderinkhof, 2010), interoception (Craig, 2009), oddball detection (Harsay, Spaan, Wijnen, 

& Ridderinkhof, 2012), aversive memory (Miranda & McGaugh, 2004), and detection of 

events that require cognitive resources (Cai et al., 2015). Although not much is known about 

LC-insula interactions, the LC and other NE brainstem sites project to the insula (at least in 

rats; Robertson, Plummer, de Marchena, & Jensen, 2013). Neuroimaging studies also 

suggest that elevated LC-NE activity is associated with encoding-related activity in the 

insula to aversive stimuli (Clewett, Schoeke, & Mather, 2014; Rasch, Spalek, Buholzer, 

Luechinger, Boesiger, Papassotiropoulos, & Quervain, 2009). Consistent with GANE, 

motivated (higher priority) versus passive viewing of emotional faces enhances functional 

connectivity within a face-processing network, including the insula and LC (Skelly & 

Decety, 2012; but see Astafiev, Snyder, Shulman, & Corbetta, 2010 for caution when 

interpreting results from LC fMRI).

7.3. NE amplifies activity in behaviorally relevant functional brain networks

Along with the dorsal ACC, the insula is a key node in a broader “salience network” (Eckert 

et al., 2009; Hermans et al., 2011) that helps integrate different sources of saliency (Seeley et 

al., 2007), guide adaptive behavior (Bressler & Menon, 2010; Cocchi, Zalesky, Fornito, & 

Mattingley, 2013), and regulate shifts from rest to task-oriented behavior (Sidlauskaite et al., 

2014). Based on these findings, recent models of the salience network propose that it 

mediates competitive interactions between antagonistic attention networks that prioritize 

internal versus external stimuli (Bressler & Menon, 2010; Menon & Uddin, 2010). Current 

data suggest that the LC-NE system modulates salience network activity. For instance, β-

adrenoreceptor blockade during stress reduces salience network activity (Hermans et al., 

2011), and salience network activity is associated with pupil and autonomic responses to 

errors (Critchley, Tang, Glaser, Butterworth, & Dolan, 2005) and overall arousal (Sadaghiani 

& D'Esposito, 2014). In neuroimaging studies, the LC co-activates with the dorsal anterior 

cingulate during the detection of novel stimuli (Krebs, Fias, Achten, & Boehler, 2013) and 

during task switching (von der Gablentz, Tempelmann, Münte, & Heldmann, 2015), a 

proposed function of the salience network.
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Anatomically, activating the LC-NE system is well positioned to modulate activity based on 

priority, as some of the most dense NE innervation is to fronto-parietal regions (Gaspar et 

al., 1989; Javoy-Agid et al., 1989; Morrison & Foote, 1986) that coordinate attention to 

salient stimuli via priority maps (Ptak, 2012). Indeed, phasic LC responses, as indexed by 

pupil dilation, correlate with activity in a dorsal fronto-parietal network during focused 

attention (Alnæs et al., 2014). However, more generally, according to GANE, activating the 

LC-NE system should amplify activity in whichever functional network is transmitting high 

priority information. Consistent with a role of NE in mediating this process, while subjects 

rest, pupil dilation precedes the moment of maximal antagonism between competing cortical 

networks, with motor network activity being suppressed and task-negative network activity 

being enhanced (Yellin, Berkovich-Ohana, & Malach, 2015). In addition, NE preferentially 

enhances ventral fronto-parietal attention network activity during the detection of salient 

events that trigger re-orienting (Corbetta, Patel, & Shulman, 2008; Strange & Dolan, 2007). 

Thus, NE’s influence on gain modulation also manifests at the whole-brain level.

7.4. Summary

Arousal’s dual effects on cognition pervade multi-level brain systems to amplify the priority 

of important information. By modulating theta and gamma oscillations, NE preferentially 

synchronizes activity between high-glutamate regions, leading to “winner-take-more” effects 

in perception and memory. Like some earlier emotion-cognition theories (e.g., Pessoa & 

Adolphs, 2010), GANE favors the perspective that the amygdala coordinates information 

transfer within broader networks that influence salience processing and is not the only route 

by which NE enhances processing of prioritized stimuli. Brain regions that evaluate saliency 

modulate LC activity either via direct afferent inputs or indirectly via broader networks. 

Without contextual signals from these central structures and the periphery, the LC would be 

blind to salient events that demand attention (Sara & Bouret, 2012). In turn, the resulting 

increase in NE release activates these modulatory structures to further bias neural processing 

in favor of high priority stimuli. On a larger scale, NE modulates activity in a salience 

network that mediates competitive interactions between fronto-parietal attention networks 

supporting higher-level representations of priority. Thus, according to GANE, reciprocal 

interactions between the LC and hierarchical brain networks help strengthen and reinforce 

priority-biasing signals under phasic arousal (see Fig. 8).

8. Existing models of LC modulation of cognition

In the next section, we discuss how GANE relates to existing theories of LC 

neuromodulation of cognition that we have not already discussed.

8.1. Adaptive Gain Theory

The Adaptive Gain Theory (Aston-Jones & Cohen, 2005) posits that two different modes 

of LC activity (phasic vs. tonic) adaptively adjust the gain of cortical information processing 

to optimize behavioral performance. Phasic LC activity serves as a temporal attentional filter 

to selectively process task-relevant stimuli and filter out task-irrelevant stimuli, whereas 

tonic LC activity regulates overall arousal level in the brain. Phasic LC responses to target 

detection are constrained by background LC activity and occur most frequently during 
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moderate levels of tonic activity (Usher, Cohen, Servan-Schreiber, Rajkowski, & Aston-

Jones, 1999). This theory provides similar predictions to GANE in terms of the role of the 

phasic LC mode: phasic LC activity should increase the gain of task-relevant inputs over 

noisy or task-irrelevant activity. Our model provides a neuromechanism for these effects by 

proposing that low-to-moderate NE levels create ideal conditions to ignite and sustain local 

NE hot spots via greater phasic LC responses. In support of this notion, a recent fMRI study 

used baseline pupil dilation before trials of a reward-learning task as a measure of tonic LC-

NE activity (Eldar, Cohen, & Niv, 2013). Both low baseline pupil diameter before the trial 

and high pupil dilation response during the trial were associated with stronger brain 

activation in response to task-relevant but not task-irrelevant stimuli.

8.2. Network Reset Theory

The LC-NE system activates to various salient stimuli, including novel, uncertain, or 

emotionally salient stimuli (Sara, 2009; Yu & Dayan, 2005). The Network Reset Theory 
proposes that, when these stimuli are detected, the LC issues a phasic “reset” signal that 

reorganizes neural networks to facilitate behavioral and cognitive shifts accordingly (Bouret 

& Sara, 2005; Sara & Bouret, 2012). This theory explains why emotionally salient stimuli 

and the sudden onset of goal-relevant or perceptually salient stimuli are preferentially 

perceived and remembered: these events activate LC, which then reconfigures functional 

brain networks to process new sources of priority while impairing ongoing processing of 

other stimuli. This model, however, does not offer a clear explanation about why phasic 

arousal induced when encountering emotional stimuli can enhance processing of preceding 

stimuli when they have high priority.

To explain both the facilitative and impairing effects of emotional arousal on preceding 

stimuli, GANE posits that the incidental release of NE by something emotional can instead 

maintain - or even enhance - ongoing functional network connectivity when those networks 

are highly activated. Stimulating the LC can inhibit feedforward inhibition by interneurons, 

thereby increasing the throughput of coincident sensory (glutamatergic) inputs (Brown et al., 

2005). While this “loosening” of neurotransmission enables network flexibility and the 

building of a new representations, GANE’s prediction that strong glutamatergic signals 

transmitting a prioritized representation will benefit from sudden LC activation explains how 

the “reset” signal triggered by phasic LC activity can still enhance processing of preceding 

high priority stimuli.

8.3. Summary

GANE both complements and extends previous models of how cognition is influenced by 

the LC-NE system. According to Adaptive Gain Theory, high phasic LC activity promotes 

exploitation of the current focus of attention over exploration of other options. In contrast, 

the Network Reset Theory proposes that phasic LC activity promotes a global reset of 

attention. GANE reconciles these two theories by highlighting the role of priority. According 

to GANE, if the current focus of attention has sufficient priority to yield high glutamate 

release in synapses transmitting those stimuli, then a phasic increase in LC activity should 

enhance processing of those representations. Otherwise, increases in LC activity should shift 

attention and neural resource allocation towards new sources of priority.
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GANE extends current models of LC function by positing that, under arousal, local 

glutamate-NE interactions will amplify activity of high priority representations regardless of 

how those representations initially became highly active. Thus, while GANE provides neural 

mechanisms that account for arousal increasing biased competition outcomes, it can also 

accommodate other models or modes of information prioritization (Friston, 2010; Keitel, 

Andersen, Quigley, & Müller, 2013; Reynolds & Heeger, 2009; Wieser, McTeague, & Keil, 

2011).

9. Potential boundary conditions and questions for future research

In the current paper, we have argued that arousal leads to winner-take-more and loser-take-

less effects in perception and memory via local and global noradrenergic mechanisms in the 

brain. Yet, while GANE explains many findings observed in the emotion-cognition 

literature, there are a number of important questions for future research.

First, arousal may not increase selectivity as effectively among older adults because of age-

related changes in the LC-NE system, including loss of LC neurons (Manaye, McIntire, 

Mann, & German, 1995; Sladek Jr & Sladek, 1978; Vijayashankar & Brody, 1979). Recent 

autopsy evidence indicates that lower LC neuron density is related to the rate of cognitive 

decline prior to death, even after controlling for decline in other aminergic nuclei (e.g., 

dorsal raphe, ventral tegmental area; Wilson et al., 2013). β- and α2-adrenoreceptors may 

also be affected in aging. In a human postmortem sample, there was no correlation with age 

in overall β-adrenoreceptors but an increase in the β2/β1 ratio (Kalaria et al., 1989). 

Decreases in α2-adrenoreceptor activity may contribute to age-related cognitive declines, as 

agonists that engage α2A-adrenoreceptors can improve age-related deficits in working 

memory (Arnsten & Cai, 1993; Arnsten & Goldman-Rakic, 1985; Ramos, Stark, Verduzco, 

van Dyck, & Arnsten, 2006). This α2A-induced recovery of working memory may be 

mediated by improvements in the ability to maintain focused attention (Decamp, Clark, & 

Schneider, 2011). Aging also affects how effectively glutamate triggers additional NE 

release (Gonzales et al., 1991; Pittaluga, Fedele, Risiglione, & Raiteri, 1993), which would 

disrupt the emergence and/or efficacy of NE hot spots in older adults.

Another question is the role of sleep, which plays a crucial role in selectively consolidating 

salient memory traces (Diekelmann & Born, 2010), including emotional stimuli (Hu, Stylos-

Allan, & Walker, 2006; Payne, Stickgold, Swanberg, & Kensinger, 2008; Payne, Chambers, 

& Kensinger, 2012) and top-down prioritized information (Rauchs et al., 2011; Saletin, 

Goldstein, & Walker, 2011). Emerging research suggests that the LC-NE system may 

enhance memory consolidation during slow wave sleep (NREM), a period when high 

priority neural ensembles reactivate (for a review, see Sara, 2010; Dang-Vu et al., 2008; 

Eschenko, Magri, Panzeri, & Sara, 2012). For instance, there is a learning-dependent 

increase in LC activity during slow wave sleep (SWS; Eschenko & Sara, 2008) and 

depleting NE prior to encoding reduces SWS that night (Cirelli, Huber, Gopalakrishnan, 

Southard, & Tononi, 2005). Pharmacologically enhancing LC-NE system activity during 

SWS improves recognition of odors learned within the previous three hours, whereas 

blocking LC-NE activity impairs odor recognition (Gais, Rasch, Dahmen, Sara, & Born, 

2011). Blocking NE during sleep also leads to greater memory impairment for emotional 
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than for neutral stimuli (Groch et al., 2011). The timing of transient LC activity coincides 

with the slow-wave grouping of hippocampal sharp-wave ripples complexes and sleep 

spindles that promote NMDA-mediated cellular plasticity (Diekelmann & Born, 2010; 

Rosanova & Ulrich, 2005). NE may interact with these processes, given evidence that 

pharmacologically activating β-adrenoreceptors facilitates the emergence of sharp-waves 

and the induction of LTP (Ul Haq et al., 2012). Together these findings raise the intriguing 

possibility that the precise timing of NE release interacts with the reactivation of high-

priority memory networks to facilitate GANE effects during SWS.

In this paper, we focused on perception, encoding and consolidation processes, but another 

important question for future research is how NE modulates memory retrieval (e.g., 

Sterpenich et al., 2006). For instance, when encountering a new experience, our memory 

system needs to decide whether this novel information will be stored as a distinct memory 

(i.e., requiring pattern separation) or used to reactivate existing memories (i.e., requiring 

pattern completion; Bakker, Kirwan, Miller, & Stark, 2008). Previous research showed that 

arousal facilitated pattern separation (Segal, Stark, Kattan, Stark, & Yassa, 2012) and that 

NE facilitated retrieval or pattern completion (Devauges & Sara, 1991). But it has been 

unclear how NE/arousal modulates competition between these two hippocampal processing 

modes. GANE might also affect the stability of a salient memory after it is retrieved, or re-

consolidated, since this process involves β-adrenoreceptor and NMDA receptor activation 

(Lee, Milton, & Everitt, 2006; Przybyslawski, Roullet, & Sara, 1999).

Another open question is the timing of these effects. Behavioral data indicate that presenting 

an emotionally salient item influences memory of items appearing in the past few seconds 

(e.g., Sakaki et al., 2014) and memory of items appearing in the next few seconds, as well 

(e.g., Sutherland & Mather, 2012). It is plausible that the phasic release of NE would have 

effects on this time scale, but research examining NE-glutamate interactions is needed to 

address this question.

On the tonic side of the equation, events that induce stress activate both the LC-NE system 

and the hypothalamic pituitary adrenal (HPA) axis (Pacak & Palkovits, 2001; Sved, Cano, 

Passerin, & Rabin, 2002) and these two systems interact in many ways, especially via the 

actions of corticotropin releasing factor (CRF). Released by the hypothalamus under stress, 

CRF helps to initiate the HPA axis response while also targeting the LC (Carrasco & Van de 

Kar, 2003; Valentino & Van Bockstaele, 2001; Van Bockstaele, Bajic, Proudfit, & Valentino, 

2001). CRF influences both tonic LC activity and sensory-evoked phasic discharge - either 

enhancing or impairing sensory-evoked phasic responses depending on waking state and 

CRF levels administered (Bangasser & Valentino, 2012; Devilbiss, Waterhouse, Berridge, & 

Valentino, 2012; Zitnik, Clark, & Waterhouse, 2014). One possibility is that by modulating 

tonic levels of LC activity, stress also enhances or constrains the impact of phasic arousal 

responses (see Section 8.1).

Human genetic studies suggest that different NE polymorphisms moderate the strength of 

arousal’s influence on memory and perceptual processing. To date, much of this research has 

focused on the ADRA2B-deletion variant in which there is reduced NE inhibitory signaling. 

Human ADRA2B-deletion carriers show greater activity in the amygdala and insula during 
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the viewing or encoding of emotional versus neutral images (Cousijn et al., 2010; Rasch, 

Spalek, Buholzer, Luechinger, Boesiger, Papassotiropoulos, & de Quervain, 2009). Such 

patterns of NE-related activity are believed to underlie the larger advantage of emotionally 

salient over neutral stimuli in memory (de Quervain et al., 2007) and perception (Todd, 

Palombo, Levine, & Anderson, 2011; Todd et al., 2013) observed in these individuals.

However, it is unclear how these genetic effects relate to the NE hot spot mechanisms 

outlined in GANE. Whereas α2A-adrenoreceptors are found throughout much of the brain 

and have been clearly identified as autoreceptors regulating NE release, the α2B receptors 

associated with this genetic polymorphism have a different profile (Brede, Philipp, Knaus, 

Muthig, & Hein, 2004). They are most dense in striatum, globus pallidus and thalamus 

(Saunders & Limbird, 1999; De Vos, Vauquelin, Keyser, Backer, & Liefde, 1992) and are 

essential for regulating the fetal blood supply (Brede et al., 2004). Thus, although it is 

possible that these genetic effects alter the feedback cycle in NE hot spots, the genetic 

differences could also be mediated by different developmental pathways, thalamic 

modulation of emotional input, or some other factor.

Related to this point about the differential brain localization of α2B-adrenoreceptors is the 

more general question of how regional variation in receptor density (e.g., Zilles & Amunts, 

2009) will modulate hot spot effects. Modeling and direct comparisons of NE-glutamate 

interactions across regions could help address this question.

In addition, while we have focused on how the LC-NE system influences cognition, other 

neuromodulators such as serotonin, dopamine and acetylcholine share many mechanisms of 

action with NE (Hurley, Devilbiss, & Waterhouse, 2004) and interact with NE to regulate 

attention, memory, and arousal (Arnsten, 2011; Briand, Gritton, Howe, Young, & Sarter, 

2007; Sara, 2009). Such interactions are likely to modulate the NE-glutamate interactions 

highlighted here (some examples already described in Section 5.1 are interactions with 

orexin, histamine, glycine and serine). These interactions may allow for more nuanced 

effects and some redundancy within the arousal system. However, given NE’s core role in 

arousal and broad innervation of much of the brain, including source nuclei of other 

neuromodulators (e.g., ventral tegmental area and basal forebrain; Jones, 2004; Sara, 2009), 

we expect that it plays the lead role in modulating cognitive selectivity as arousal levels 

fluctuate.

10. Conclusion

Selection is at the core of what allows our cognitive systems to function effectively, allowing 

us to process the constant influx of information and retrieve the experiences most relevant 

for adaptive behavior and maintenance of wellbeing. The ability to focus on salient 

information is especially important during situations that induce arousal, such as during 

exposure to threatening or exciting sounds or objects, or the pressure to perform a 

challenging task. For over 50 years, there has been robust behavioral evidence that arousal 

often simultaneously enhances and impairs processing of different types of neutral 

information (Easterbrook, 1959). Yet brain-based accounts of how arousal influences 

cognition failed to address how such dual effects could arise.
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Our GANE model fills this critical gap. In this framework, we propose that increases in NE 

levels under arousal enhance the selectivity of information processing. GANE builds on the 

previous arousal-biased competition (ABC) model to provide neural mechanisms of how NE 

leads to winner-take-more and loser-take-less effects in perception, attention and memory. 

However, unlike ABC, GANE does not require competition to be a fundamental mechanism. 

Instead, GANE selectively amplifies the activity of whatever priority mechanisms are 

operating.

Under phasic arousal, local glutamate signals corresponding to a highly activated percept 

interact with NE to create a hot spot of even higher levels of activity, while lower priority 

representations are either neglected or further suppressed. These self-regulating hot spots are 

further aided by NE’s recruitment of brain structures and large-scale functional networks 

that determine which stimuli deserve attention. NE directs blood flow and energetic 

resources to brain regions transmitting prioritized information. It supports selective memory 

consolidation via initiation of LTP and LTD. Through all of these processes, NE increases 

the gain of prioritized information in the brain, such that things that matter stand out even 

more and are remembered even better, while the mundane or irrelevant recede even more 

into the background and are ignored or forgotten.
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Figure 1. 
Participants heard an arousing or neutral sound before a letter array was flashed briefly. 

They then reported as many of the letters as they could. Some of the letters were shown in 

dark grey (high contrast and therefore salient) and some in light grey (low contrast and less 

salient). Participants reported a higher proportion of the salient letters than the non-salient 

letters, but this advantage for salient letters was significantly greater on arousing trials than 

on neutral trials, and the disadvantage for the non-salient letters was significantly greater on 

arousing than on neutral trials (Sutherland & Mather, 2012).
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Figure 2. 
Estimated tuning curves for averaged “target” responses as a function of emotion in the 

high-salience condition (A) and low-salience condition (B). In the high salience condition, 

having interspersed emotional pictures enhanced perceptual learning of the exact tilt of the 

target (55°), whereas in the low salience condition, emotion impaired learning the exact tilt 

of the target. Figure adapted from Lee et al., (2012).

Mather et al. Page 51

Behav Brain Sci. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
In Lee et al.’s (2014) fMRI study, tones conditioned to predict shock (CS+ tones) played 

before the display of a salient face and a less salient scene increased activity in the left 

fusiform face area (FFA) associated with face processing, while decreasing activity in the 

left parahippocampal place area (PPA) associated with the scene processing, compared with 

tones conditioned not to predict shock (CS− tones).*p < .05, **p < .005.
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Figure 4. 
Schematic representations of a neutral trial in the prioritize-oddball condition (A) and a 

negative trial in the prioritize-oddball-1 condition (B). Memory performance for oddball-1 

objects differed as a function of their priority and the valence of oddball pictures (C). 

Oddball pictures depicted here were obtained from iStockPhoto for illustration purposes and 

differ from those used in the experiments. Figures from Sakaki et al. (2014).
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Figure 5. 
NE gain modulation makes the nonlinear input-output function more extreme, increasing the 

activity of units receiving excitatory input and decreasing the activity of units receiving 

inhibitory input. Adapted from Aston-Jones and Cohen (2005).

Mather et al. Page 54

Behav Brain Sci. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The norepinephrine (NE) “hot spot” mechanism. (1A) Spillover glutamate (green dots) from 

highly active neurons interacts with nearby depolarized NE varicosities in a positive 

feedback loop involving NMDA and other glutamate receptors that leads to greater local NE 

release (maroon dots). The glutamatergic NMDA receptors require concomitant 

depolarization of noradrenergic axons (lightning symbol). Thus, hot spots amplify 

prioritized inputs most effectively under phasic arousal. (1B) Glutamate also recruits nearby 

astrocytes to release serine, glycine (orange dots), and additional glutamate. (2) Greater NE 

release creates concentration levels sufficient to activate low-affinity β-adrenoreceptors, 

which enhances neuron excitability. (3) Via activation of β and α2A auto-receptors, NE can 

stimulate or inhibit additional NE release, respectively. (4) Within hot spots, NE engages β-

adrenoceptors on pre-synaptic glutamate terminals to increase glutamate release. (5) Finally, 

NE binding to post-synaptic β-adrenoceptors also inhibits the slow afterhypolarization, 

enabling the neuron to fire for even longer.
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Figure 7. 
A rat receiving a shock in its home cage shows a brief increase in NE levels (grey triangles). 

A novel training environment does not increase NE on its own (black squares), but NE levels 

increase dramatically when shock is combined with that novel training environment (black 

diamonds). Figure from McIntyre et al. (2002).
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Figure 8. 
Summary of the GANE model. (A) An example of how arousal biases perception and 

memory to favor prioritized information. High perceptual contrast (bottom-up) and top-

down attention prioritize processing the cow stimulus in the brain over a less salient hay 

bale. The sound of booming thunder induces arousal and triggers phasic NE release. (B) 

Salience-evaluating structures, such as the amygdala and PFC, recruit LC firing to enable 

NE to modulate ongoing processing at multiple levels of brain function. In the high priority 

processing pathway, NE interacts with high local glutamate to create “hot spots” that 

increase the “cow” representational activity even further. These local hot spots recruit 

energetic resources, synchronize oscillations, lead to enhanced activity in high priority large-

scale networks, and increase synaptic plasticity. Local glutamate-NE effects occur in parallel 

with more broad-scale suppression, as NE recruits lateral and auto-inhibitory processes that 

suppress weaker glutamate signals in lower priority processing pathways. Together these 

noradrenergic mechanisms lead to “winner-take-more” and “loser-take-less” outcomes in 

perception and memory under arousal, such that the cow is even more likely to be 

remembered, whereas the hay bale is even more likely to be forgotten.
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Table 1

Brain-based emotion-cognition theories

Description Inconsistent/unexplained findings

Models that focus on 
enhancement of emotionally 
salient stimuli

Multiple attention gain control 
model (Pourtois et al. 2013)

The amygdala and other modulatory regions 
amplify emotionally salient signals in the 
sensory pathway in parallel with bottom-up 
and top-down systems.

Emotional arousal can enhance perception of not only 
emotional information, but also non-emotional 
information.

Multiple waves model (Pessoa 
& Adolphs 2010)

The amygdala and other modulatory regions 
coordinate activity in attention systems to 
enhance perception.

Emotional arousal does not always enhance perception.

Amygdala modulation 
hypothesis (McGaugh 2004)

The amygdala enhances processing in other 
memory-related regions to enhance memory 
for emotional events via noradrenergic 
mechanisms.

Norepinephrine–amygdala interactions enhance 
memory not only for emotional stimuli, but also for 
non-emotional stimuli.

Models that address selective 
effects of emotion

Biased attention via 
norepinephrine (BANE) 
model (Markovic et al. 2014)

The anterior affective system detects emotional 
saliency and recruits the locus coeruleus–
norepinephrine system to bias attention and 
memory in favor of emotionally salient stimuli.

Emotional information sometimes enhances perception 
and memory for nearby neutral information.

Dual competition model 
(Pessoa 2009)

Emotional stimuli compete for resources with 
other stimuli, leaving fewer resources available 
for non-emotional stimuli.

Emotional information sometimes enhances perception 
and memory for nearby neutral information.

Ruthless competition model 
(Diamond et al. 2005)

Encoding new emotional information 
suppresses recently potentiated synapses, 
resulting in enhanced memory for emotional 
information at the cost of preceding events.

Emotional arousal enhances memory for what occurred 
earlier if the preceding event is emotional.

Emotional-tagging hypothesis 
(Richter-Levin & Akirab, 
2003)

Memories for emotional events are tagged, 
which allows for subsequent arousal to 
selectively enhance memory for preceding 
emotional events.

Emotional arousal can produce retrograde enhancement 
even when preceding information is non-emotional.
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