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Abstract

We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-

crystallin (γ B) and study the probability distributions of its proton occupancy patterns. Using a 

simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54 

× 54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due 

to an elementary charge at another site. The matrix quantifies interactions within patches of sites, 

including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the 

absence of other charges, with use of experimental data on the dependence of pK values on 

aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo 

simulations to calculate a model grand-canonical partition function that incorporates both the 

work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the 

probabilities of leading proton occupancy configurations, for 4 < pH < 8 and Debye screening 

lengths from 6 to 20 Å. We select the interior dielectric value to model γB titration data. At pH 7.1 

and Debye length 6.0 Å, on a given γB molecule the predicted top occupancy pattern is present 

nearly 20% of the time, and 90% of the time one or another of the first 100 patterns will be 

present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage 

profile. We illustrate how charge pattern probabilities deviate from the multinomial distribution 

that would result from use of effective pK values alone and estimate the extents to which γB 

charge pattern distributions broaden at lower pH and narrow as ionic strength is lowered. These 

results suggest that for accurate modeling of orientation-dependent γB-γB interactions, 

consideration of numerous pairs of proton occupancy patterns will be needed.
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I. INTRODUCTION

In considering interactions between proteins in solution, one interesting feature is that many 

different protonation patterns of the titratable, possibly charged amino acid residues coexist 

in equilibrium [1–3]. Because its acidic and basic residues continually exchange protons 

with the surrounding solution, an individual protein molecule presents many different spatial 

patterns of positive and negative charges to its neighbors, and the corresponding voltage 

patterns around each molecule keep changing. Each possible pair of such charging patterns 

can in principle give rise to a distinct spatial and orientational dependence of the screened 

electrostatic interaction between two nearby protein molecules [4–6], and the basins of 

attraction and repulsive parts of the corresponding potential energy landscape may change in 

depth or height, angular and spatial extent, and number.

The probabilities of individual charging patterns on molecules that are close enough, 

approximately within one or two Debye electrostatic screening lengths, also change in 

response to the altered voltages at neighboring sites on the two surfaces [2,7–11]. Such 

proximity can already occur more than 20% of the time even at protein volume fractions 

near 1% [12] and is of critical importance at the high macromolecular volume fractions in 

living cells, which have been estimated to range from 0.07 to 0.40 [13].

Phase transitions are ubiquitous in the normal and pathological physiology of living cells 

and tissues [14–19]. Many of these transitions involve multiple chemical equilibria, such as 

the protonation equilibria studied here. Such protonation and other ligand-binding features, 

in solutions of proteins and other macromolecules that undergo phase transitions, are 

analogous to the simultaneous multiple chemical equilibria and phase transitions occurring 

in micellar solutions, microemulsions, and other self-associating systems [20–24]. How do 

the relevant chemical equilibria and kinetics affect phase transitions in macromolecular 

solutions?

For a protein with 20 residues that may change charge at a particular pH, by accepting or 

donating protons from its surroundings, there are 220 or about 106 such coexisting 

protonation patterns. Even if most of these patterns are highly unlikely, it still may be 

necessary to consider the interactions of many different pairs of charging patterns in order to 

build quantitative models of their consequences for protein-protein interactions. For 

example, within a given pair of γB molecules at pH 7.1, the present model predicts that on 

each molecule, one or more of the most frequent 100 charging patterns will be present about 

90% of the time. Thus, in order to account for 80% of the possible pair interaction potentials 

between these molecules, in principle one then needs to consider the approximately 5050 

distinct pairings that can occur between members of these top 100 charging patterns.

Therefore, one important element for understanding protein-protein interactions is to know 

how often each charge pattern occurs in the isolated molecules, which is the focus of the 

present work. While the probabilities of each of these charge patterns will change with 

increasing protein concentration, their probability distributions for the isolated protein 

molecules nevertheless form part of the groundwork for characterizing pairwise and higher-

order orientation-dependent interactions between proteins.
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In order to evaluate how often a given pattern occurs, it is important to account for the fact 

that substantial electrostatic coupling can occur between charge patterns on a single protein, 

as well as between neighboring proteins, in the phenomenon known as charge regulation. 

Due to these electrostatic couplings, the probability of a given pattern is not, in principle, 

given by the product of the probabilities for each titratable residue to be occupied with a 

proton. Indeed, on a lattice such couplings can give rise to a charge-patterning phase 

transition [25].

That is, knowledge of the individual pH values at which each titratable residue is occupied 

with a proton half the time on average, called the pK1/2 values, in combination with the 

Henderson-Hasselbalch dependence [26] of occupancy on pH − pK1/2, is in principle not 

sufficient to evaluate the pattern probabilities. A better description is that effective pK values 

for given groups change in response to neighboring charges [27–30]. However, because 

neighboring titratable site occupancies can be substantially altered [31–34] from the 

Henderson-Hasselbalch form, a more comprehensive description can be given by a grand-

canonical distribution model or equivalent consideration [2,7,10,11,25,29,32,33,35,36] that 

incorporates screened electrostatic couplings, as we pursue here for γB-crystallin (Protein 

Data Bank ID 1AMM).

In the present model we calculate a work-of-charging matrix that models screened 

electrostatic links between titratable sites on the protein, which are assumed to be fixed in 

position relative to the protein. In so doing it is important to recognize that other factors can 

contribute that we do not incorporate, including changes in conformation that are important 

in allosteric effects and in calculations that use more microscopic representations of 

dielectric properties [31,37–42], hydration and the hydrophobic effect [43], hydrogen-

bonding [44,45], static dipole potentials [45–47], and ion binding [48], each of which can 

also be expected to produce changes in local charge patterns. We note that γ B-crystallin is 

believed to have a fairly robust internal structure; for example, circular dichroism 

measurements [49] showed no significant spectroscopic changes between −20 °C and 60 °C, 

though this does not rule out the possible role of conformational flexibility in affecting the 

present model. In the larger context of protein-protein interactions, we note that the work-of-

charging matrix also involves sites on neighboring proteins and itself depends on the relative 

positions and orientations of the protein neighbors [10].

We focus the present model on studying the probability distributions of the protonation 

patterns of an eye lens protein, bovine γB-crystallin (γB). In aqueous solution, the eye lens 

γ-crystallins show liquid-liquid phase separation with an upper consolute temperature 

[12,50–53], a phenomenon that can compromise transparency of the eye lens and has been 

linked to cataract disease [54]. The human counterpart of bovine γ B-crystallin, human γ D-

crystallin (HGD), exhibits many single amino acid mutations that lead to congenital 

cataracts. The effects of a number of these mutations on the phase diagrams of HGD or 

HGD–α-crystallin mixtures are consistent with cataractogenesis [55–60]. These findings 

motivate the present work, as an aid to building models of how particular amino acid 

changes affect protein interactions, the resulting phase diagram, and ultimately lens 

transparency and the cataract.
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We build our model for the probability distributions using the notation of a previous paper 

[10], though it is important to note that study of protein charge regulation has a very long 

history [1,2,7,27,29,32,33,35,36,61–63] (for a recent review see Ref. [3]) and there are other 

equivalent sets of notation. Briefly, we use a linearized Poisson-Boltzmann equation to 

compute a work-of-charging matrix. This matrix enables modeling of the work required to 

assemble a given pattern of charges on the protein. The linearized Poisson-Boltzmann 

equation is a useful starting point for this purpose because its linearity allows for the use of 

superposition in considering the effects of many charges and the work of charging is a 

symmetric quadratic form in the vectors of site charges [10]. We model the pK values of the 

titratable residues, with a simplified consideration of their dielectric environments. The 

combined work-of-charging matrix and pK values enter into a grand-canonical distribution 

that models the relative probabilities of occupancy patterns. We fix an assumed constant 

interior dielectric value through comparison with existing experimental charge vs pH data 

for γ B. We then use Monte Carlo simulations and direct calculations to study the resulting 

probability distributions of protonation patterns. We note that while numerical Poisson-

Boltzmann solvers are available that provide calculations of the screened electrostatic 

environment around proteins and other biological macromolecules (see, e.g., Refs. [64–67]) 

and corresponding acid-base titration characteristics [68], we developed a program with a 

view towards flexibility in analyzing model systems [10], including the protonation pattern 

probability distributions studied here, and for ongoing work on protein-protein interactions.

Figure 1 sets the stage for this work, by depicting the screened electrostatic potential that 

corresponds to the top proton occupancy pattern near neutral pK, modeled to occur about 

17% of the time. Interestingly, in view of the attractive interactions that lead to liquid-liquid 

phase separation of this protein [50], the contours of zero voltage extend fairly far from the 

protein, in comparison with the Debye length, here 6 Å. For a 1:1 electrolyte in water at 298 

K, a Debye length of 6 Å corresponds to an ionic strength of 257 mM, close to that at which 

the γB phase diagram has been studied [12,50,52,69–72]. One might expect that negative 

and positive patches on neighboring molecules, separated by one or more Debye lengths, are 

quite capable of creating attractions by facing one another at relatively specific orientations.

To help study the resulting voltage variation, Fig. 1(b) shows the sign of the potential on 

auxiliary spheres that were placed over the top and bottom portions of the molecule for this 

purpose, about a one-half Debye length from the surface of the protein, with projected 

positions of possibly charged residues also indicated. Figure 1(c) shows conjoined Lambert 

azimuthal equal-area projections of the top and bottom auxiliary spheres, which provide a 

single view of the voltages around the entire protein surface.

Thus, the electrostatic interactions between γB molecules can contribute to the short-range, 

orientation-dependent interactions long known to be important for understanding the broad 

widths of γ-crystallin liquid-liquid coexistence curves and the position of the crystal 

solubility boundary, or liquidus [52]. However, because the voltage patterns depend on 

which γB residues are protonated, different protonation patterns may significantly affect the 

relative orientations that lead to attraction and repulsion, much like the problems that can 

occur in attempting to fit jigsaw pieces together. Our purpose here is to build groundwork 
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for studying the distribution of orientation-dependent interactions that result from probable 

protonation patterns.

The paper is organized as follows. We briefly recap the relevant theory as it is presented in 

[10,25]. We then describe the construction of our simplified dielectric model for γ B, and 

model pK values that would occur in the hypothetical absence of electrostatic interactions 

between sites, termed the intrinsic, or pKint, values, as defined by Tanford and Kirkwood [2]. 

The pKint values are functions of the geometry of the interior dielectric environment, 

because of its effect on the energy stored in the electrostatic field. We then calculate the 

work-of-charging matrix as a function of the electrostatic screening length in the solvent and 

the internal dielectric environment, as input to the model grand-canonical partition function. 

The resulting function gives predictions for the charge vs pH, or titration, curve of the 

protein, which we compare with existing titration [73] and isoelectric point [74,75] data. 

Because the predictions depend on the assumed internal dielectric coefficient, we make use 

of the data for tuning this coefficient. We then quantify and study the resulting probability 

distributions of protonation patterns. Although very few protonation patterns occur 

compared to the possible ones, we find that their probability distributions are nevertheless 

broad. We study the extent to which charge pattern probabilities deviate from the 

multinomial distribution that would result from use of variously defined effective pK values, 

called pKeff,α* below, and study how the distributions broaden at lower pH and narrow at 

lower ionic strength. It turned out, somewhat to our surprise, that seemingly subtle changes 

in the work-of-charging matrix, for example, ignoring entries smaller than 0.2kBT, can still 

produce changes in the modeled rank order of protonation patterns and we analyze why this 

is so. We briefly discuss possible implications for protein interactions and refinements 

before concluding.

II. MODEL

A. Screened electrostatic model

As in previous work [10,25], we model the response of the electrostatic potential ϕ(r) to a 

specified distribution of fixed charge per unit volume ρ(r) through use of the linearized 

Poisson-Boltzmann equation [76], written here for a medium with spatially varying relative 

dielectric coefficient εr(r) and Debye screening parameter :

(1)

In Eq. (1), ε0 is the vacuum permittivity, εr(r) is the local, relative static dielectric 

coefficient, ϕ(r) is the local electrostatic potential, ρ(r) is the local free charge per unit 

volume, and κ is related to the standard Debye screening length in water 1/κ by , 

where εw is the static dielectric coefficient of liquid water. More sophisticated models of 

electrolyte solutions are needed in order to accurately model ionic solutions that are not 

dilute or contain divalent ions and explicit solvent [76–80], to incorporate important physical 

effects such as finite ion size and ion-specific interactions, including ion absorption [81–83], 

to include dipolar and polarizability-related interactions [84,85], and to take account of 
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nonlinear dielectric response [86,87]. In the case of ion absorption, for example, one could 

construct expanded grand-canonical distribution models that would incorporate equilibria 

with ions other than protons or with polar ligands (see, e.g., [31,88]). Also, the application 

of Eq. (1) to molecular length scales, on which the protein and the solvent are 

heterogeneous, involves inherent problems that call for the use of more microscopic, 

quantum-mechanical approaches, as have been studied for many years (see, e.g., [37,40,89–

93] and references therein). Nevertheless, at low ionic strengths and surface charge densities 

[94], Eq. (1) is a useful starting point for investigating patterned, charge regulation-mediated 

electrostatic interactions, because its linearity allows the use of superposition in considering 

the effects of many charges. Also, the work of charging a given configuration of titratable 

sites may be expressed as a symmetric quadratic form in the vectors of site charges [10].

B. Grand canonical partiton function

In the present model [10], the grand-canonical partition function  can be written formally 

as a sum over the occupancy patterns, indexed by α, of protons on the protein

(2)

in which ΔGα is the free energy of formation of pattern α, ζ = 10−pH, kα is the total number 

of protons bound to the protein in configuration α, and  is a 

vector of standard chemical potential differences for the occupancy of each site. Each  is 

related to the corresponding intrinsic pKint,i value of a titratable site by

(3)

By the pKint,i value we mean the value of the pK that site i would have hypothetically in the 

absence of electrostatic interactions with charges on other sites and in the absence of the 

electrolytes in the solvent, as in Ref. [2]. That is, it is not the pK1/2 that would be measured 

as the value of the pH at which that amino acid residue is, on average, 50% occupied, for 

example, with use of appropriate nuclear magnetic resonance (NMR) experiments. Instead, 

pK1/2 values emerge as a consequence of models of the present type [2,10,29,32–34]. In Sec. 

II D below we describe the model we used for estimating the pKint,i values.

The vector Oα in Eq. (2) is the occupancy pattern in configuration α, for example, 

{1,0,0,1,1,0,0, …}. The quantity Wel,α in Eq. (2) denotes the work of charging contribution 

to the free energy when the protein assumes occupancy pattern α. The Wel,α is a quadratic 

form constructed from the work-of-charging matrix W, which in this formulation is 

dimensionless. Each entry Wij in W is the screened electrostatic potential produced at site i 
by a unit charge at site j, multiplied by the electronic charge e, and divided by kBT. That Wij 

= Wji can be shown with use of Eq. (1) [10]. In this notation, Wel,α is given by
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(4)

Here the vector (q1,q2, …, qn)α denotes the actual signed charge numbers on the protein for 

a specific pattern α and Qb denotes the vector of signed, bare charge numbers of the 

titratable groups, for example,−1 or 0. The bare charge numbers are 0 for arginine, histidine, 

and lysine residues, as well as the terminal amino group, and −1 for aspartate, glutamate, 

cysteine, and the terminal carboxylate. The probability of occupancy pattern α, Pα(x), is 

given by

(5)

We note that the grand-canonical partition function  is also called the binding polynomial 

[31], because it can be written as a polynomial in powers of the proton activity ζ, as in Eq. 

(2).

C. Interior dielectric model and salt exclusion zone

We now describe our model for the quantities εr(r) and  that appear in Eq. (1). We use a 

simplified model in which εr(r) is assumed to be a scalar that takes a low and constant value 

inside the protein and a high value outside. After constructing the grand-canonical 

distribution, we adjusted the interior dielectric coefficient so as to best match the available 

experimental protein net charge vs pH titration data [73,75], as described below in Sec. II F. 

The value that gave the best match to these data was εr,in = 3.0. Outside the protein, we take 

a value experimentally determined for water at 25 °C, εr,out = 78.5 [95]. We modeled the 

boundary of the low dielectric to be a surface that is 1.4 Å outside the Protein Data Bank 

(PDB) coordinates of the appropriate atoms (PDB entry 1AMM, from Ref. [96]) and a salt-

exclusion zone to extend 3.3 Å beyond this boundary, in approximate accord with hydrated 

radii of monovalent ions in aqueous solvent [97]. The resulting surfaces are illustrated in 

Fig. 2.

D. Model for pKint values

In view of our primary present purpose of studying the nature of the probability distributions 

of the protonation patterns on γB-crystallin, we adopted a simple classical approach to 

modeling the pKint values. We start from tabulated pK values in water for relevant charged 

groups [98–100] and then calculate the change in the integral that, in a linear dielectric, 

gives the free energy stored in the electrostatic field per unit volume [101,102], (1/2)D(r) · 

E(r). The integral is taken over the volume outside spheres of radii r0 surrounding the group 

in question, when water is replaced by a heterogeneous dielectric environment like that near 

the surface of the protein. This approach omits a number of factors that also affect pK 

values, many of which call for molecular mechanics and/or quantum mechanical treatment 

[37,39,93,103–107]. These include hydrogen bonding [44,45,108], bound ions, and 
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nonlinear dielectric effects [86,87] that require a different integration of E(r) δD(r) than that 

which yields (1/2)D(r) · E(r) [86,101,102].·Hydrogen bonds can stabilize charged 

carboxylates [44], among other effects, and the presence of metal or other ions, often bound 

between titratable residues [109], would call for a grand-canonical formulation that involves 

more exchangeable components [88]. These phenomena are not modeled here. In addition, 

there are problems involved in characterizing dielectric response at molecular length scales 

[37,40,89–93], as mentioned above. A related factor not modeled here is the local 

electrostatic potential from strong static dipoles such as backbone and side-chain amide 

groups [45–47,110]. There are also solvent effects that can be studied with liquid-state 

theory approaches [111–113]. However, the present approach is useful as a first 

approximation; its value may be illustrated, for example, by its remarkable ability to help 

understand the dependence of salt solubilities on a solvent’s static dielectric coefficient [97]. 

The resulting modeled contribution to the change in pK, ΔpK, can be written as

(6)

In Eq. (6), the + sign is appropriate for groups that become charged when they are not 
occupied by a proton, that is, for glutamate, aspartate, cysteine, and the terminal carboxylate, 

while the − sign is appropriate for groups that become charged when they are occupied by a 

proton, that is, for lysine, arginine, histidine, and the terminal amino group. To evaluate the 

needed integral in Eq. (6), as described in detail in the Appendix, we took advantage of the 

fact that a rough approximation to the shape of our more complicated dielectric model can 

be constructed by conjoining two spheres, each of radius 15.5 Å. Then we used Kirkwood’s 

analytical solution for the potential due to a charge placed in a low-dielectric sphere, near its 

surface [61]. We placed the charges a depth of 1.4 Å inside this sphere. We used Gauss’s 

theorem to convert the volume integral of (1/2)D · E in Eq. (6) to a surface integral over the 

small sphere of radius r0; symmetry then permits the needed integral to be converted to a 

one-dimensional integral, also given in the Appendix, that we evaluated numerically.

To estimate appropriate values of an effective r0 for use in Eq. (6), we used a facility within 

the quantum-chemistry package GAUSSIAN09 that provides for estimating recommended 

radii for self-consistent reaction field calculations [114]. For each titratable side-chain group 

and for the terminal amino and carboxyl groups, we constructed the test molecules listed in 

Table I, which included the side-chain titratable group in its charged form, and calculated the 

r0 values in Table I from repeated runs, for which the test ions were surrounded by a medium 

having the static dielectric coefficient of water. We first used Hartree-Fock calculations with 

the 6-31G(d,p) basis set to optimize the test molecules in the presence of implicit solvent. 

Vibration frequency analyses were performed on the optimized structures to determine 

whether they represented true minima. No structure exhibited imaginary frequencies. We did 
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not perform a conformational analysis of the test molecules or optimize them in their protein 

environment, for simplicity and consistent with the fact that the present model does not 

incorporate cross-talk between conformational changes and charge regulation, as noted in 

the Introduction. We performed r0 calculations at least 10 times for each of the test 

molecules, which yielded standard deviations (Table I) that ranged from 0.1 to 0.2 Å. For 

modeling the solvent, we used the GAUSSIAN09 program’s default implementation of the 

integral equation formulation of a polarizable continuum model. The needed  values 

were estimated with use of the tables given in the work of Dawson et al. [98], Ellenbogen 

[99], and Serjeant and Dempsey [100]. Because this work is spurred by our interest in 

building models for γB-γB interactions in the range 4 < pH < 8, we did not include the 

titration of tyrosine side chains, which typically occurs in the range 10 < pH < 10.3 [110].

The resulting pKint values and uncertainties are listed in Table I. The values calculated for 

the charged sites just inside the low-dielectric sphere are designated as pKint,ε =3. Here we 

are anticipating the fact that, as explained below, the grand-canonical distribution model was 

used to predict titration curves as functions of ε, which were then compared with experiment 

to settle on an assumed, continuum model internal static dielectric coefficient value ε = 3.

However, when carrying out this process, we found that there was a discrepancy between the 

modeled titration curve and the data, displayed in Fig. 4(a) below, which suggested that our 

modeled values for the histidine pK were lower than would be compatible with the titration 

curve [73] and the measured isoelectric point of bovine γB-crystallin, pH = 7.8 [74,75]. 

Therefore, as input to the grand-canonical simulations we instead tried using the PROPKA 

(version 3.1) web server estimates [115–118] to replace the initially estimated histidine pKint 

values for γB, again with use of the PDB entry 1AMM, while leaving all the other pKint D · 

E integral method described above. The resulting PROPKA histidine pK estimates are listed 

in Table I. The comparison of the modeled titration curve with the data, for various 

assumptions about the inner dielectric coefficient and the histidine pK values, is described 

and shown in Sec. II F below, in connection with Fig. 4. As the authors emphasize [115–

118], PROPKA uses a phenomenological approach to achieve speed and scope in estimating 

pK values for a large variety of proteins. It incorporates factors that the present approach 

does not, including hydrogen bonding and varying degrees of penetration of residues into the 

interior. For histidines PROPKA starts from a higher model pK of 6.5 than the 6.0 initially 

used here and it assigns smaller pK reductions to H14, H84, H117, and H122 than the Table 

I ΔpK of −1.20, due to their varying degrees of penetration. PROPKA also predicts that 

hydrogen bonds raise the pK values of H14, H53, and H84, by from 0.6 to almost 0.9 pK 

units.

The Table I cysteine , 10.5, chosen to be near the pK values for methanethiol (10.33) 

and ethanethiol (10.5 and 10.61) [100], leads to pKint values of 12, well above the 9–9.5 

typical of protein cysteines [110]; indeed, many proteins exhibit cysteine pK1/2 values much 

less than 9, due primarily to hydrogen bonding [119] and somewhat to nearby amide dipole 

potentials [47,119]. We did not alter the present approach given our focus on 4 < pH < 8, 

although better modeling of cysteine pK values is of interest, given the importance of 

cysteine oxidation for gamma crystallins and other lens proteins [54–56,120,121]. In 
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particular, the present model does not attempt to model hydrogen bonding of C18 with both 

C78 and S20, predicted by PROPKA to lower the C18 pK to 6.88. We included only C15, 

C18, and C22 in our model, which appear less buried than C32, C41, C78, and C109. 

However, due to the high model cysteine pKint, C15, C18, and C22 were charged only rarely 

in simulations, at higher pH values, as tabulated in the Supplemental Material [122].

We will find it instructive to study the ability of “effective” pK values, , defined 

below, to model the probability distributions of the protonation patterns. These effective pK 

values are closely related to those used in Refs. [27–29], among others; briefly, the 

difference is that here we study the  with respect to particular choices α* of on-or-off 

charge patterns , as contrasted with patterns of average residue charge values at a 

given pH,  in the present notation, as analyzed, for example, in Ref. [29].

In the present notation, the  are expressed as follows [27]. For any particular 

protonation pattern α on the protein, the numerator of Eq. (5) can be written

(7)

in which Qb is the vector of bare charges of the titratable residues; pK, pH, and qα also 

denote vectors; and the symmetric work-of-charging W is defined above Eq. (4). The idea is 

now to use a chosen configuration , which could be, for example, the most probable 

configuration at a certain pH, as a reference configuration; the algebraic development given 

here also applies for the reference configuration choice ⟨Oα⟩, as used in Refs. [27–29]. The 

probabilities of other configurations can now be expressed in terms of how much their 

occupancy vectors differ from that of the reference configuration. For configuration α, the 

occupancy vector is , where . Letting 

 and  one finds

The first two multiplicative factors in the above expression are common to all . In the 

expression for the probabilities Pα, these factors cancel with the same common factors in the 

denominator, . Therefore, we have , in which we define  and 

via
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With these definitions,

(8)

With , Eq. (8) can be written as

(9)

From a comparison of Eqs. (7) and (9), it is natural to define a vector  of 

values by

(10)

so that

(11)

(12)

Equations (10)–(12) correspond to the combination of Eqs. (2)–(4) of Ref. [27], as expressed 

there in terms of a particular constellation of charges (here symbolized by the vector ). As 

indicated above, except by its use of a particular on-off pattern α*, Eq. (10) is also related to 

Eqs. (1a), (1b), and (16) in Ref. [29], where the average pH-dependent approach introduced 

in Ref. [27] is expressed and its mean-field-approximation nature is elucidated. In this 

connection we note that the use of  below, to study its capability to approximate 

probability distributions of protonation patterns, has a different focus than the study of the 

reduced-site approximation also introduced in Ref. [29]; that approximation becomes better 

as the criteria to regard less-labile sites as fixed become progressively more strict. Reference 

[29] demonstrates that the reduced-site approximation is more effective than the mean-field 

approach for representing the average occupancy states of particular sites, while typically 

more efficient computationally than using the exact expressions.

Equation (10) expresses the fact that for configurations that are similar to the chosen 

configuration , the effective pK values are typically biased by charges  on neighboring 
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sites. These charges, in turn, produce voltages that bias the occupancy of a given site. Thus, 

at a given pH, one expects that the site occupancies can be fairly well described by 

values for a well-chosen , say, the most common configuration. The extent to which this is 

not the case is clearly afunction ofthequantities , according to Eqs. (11) and 

(12). We will find below that a given set of  values accurately represent only part of 

the probability distribution of the protonation patterns at a given pH, precisely because of 

this latter factor.

E. Calculation of the potential and work-of-charging matrix

The numerical methods we used to calculate the potential are those described previously 

[10]. We used grid sizes from 0.3 to 0.6 Å, the domain was 100 × 100 × 120 Å3, and the 

protein was placed at its center. We used the Neumann boundary condition that the normal 

component of the field is zero there. While we expect that a more accurate boundary 

condition would be that a linear combination of the normal field component and the 

potential would be zero, for the Debye lengths investigated here, the zero-field condition 

suffices. To calculate the ith row of the work-of-charging matrix W, a charge is placed at site 

i; the potential at site j then gives the entry wij. Each such work-of-charging matrix was 

symmetric, providing an important check on the calculation.

We note that there are also self-energies associated with the interaction of each charge with 

its counterion cloud. In principle, this factor also changes the effective pK of a site, above 

and beyond the fact that the site is near a dielectric boundary. We calculated the magnitudes 

of these effects from our numerical solutions of Eq. (1), by evaluating the potential at a 

given charged site produced by the nearby net charge within its surrounding, screening ionic 

atmosphere. The magnitudes we calculated for this effect were very uniform and would 

produce changes in the given pK on the order of only ±0.1 pK units, which we regard as 

insignificant compared with the uncertainties in the modeled pKint values themselves. 

Accordingly, we simply set the diagonal entries of the work-of-charging matrices to 0 for 

further calculations.

Figure 3 illustrates a work-of-charging matrix calculated in this fashion. To find a 

permutation of the residue order that would yield the approximately block-diagonal forms 

shown in Fig. 3, we used simulated annealing, with an objective function that was linearly 

proportional to the distance of (the symmetric) work-of-charging entries from either the 

diagonal or the upper right or lower left corners. On repeated runs, this yielded a robust 

grouping of sites. While we grouped the sites in this fashion in order to identify patches of 

residues predicted by the model to be more highly correlated, we left all entries intact for 

computing the partition function. That is, this grouping does not represent a block-diagonal 

approximation method, an avenue that has been pursued by a number of investigators (see 

Ref. [123] and references therein).

Figure 3(a) displays an approximate block-diagonal form of the work-of-charging matrix W, 

for the adopted inner dielectric value εin = 3.0. The symbol code for Wij magnitude 

categories is given in the caption, ranging from white for entries less than 0.05kBT/e to red 

circles for entries greater than or equal to 3.2kBT/e. The prominent entries adjacent to the 
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main diagonal show a high degree of charge pairing, long noted to occur for γ-crystallins 

[124]. The 0.05 lower cutoff is close to the value below which we observed very little 

change in the order of probabilities of the protonation patterns, if smaller entries were 

ignored [see Fig. 10(a)]. Residue identities are indicated on the borders of Fig. 3(a). A 

perspective view of the work-of-charging matrix of Fig. 3(a) is given in Fig. 2 of the 

Supplemental Material [122]. Figure 3(b) displays the work-of-charging entries in the form 

of line segments that link the titratable groups on the protein, using the same symbol code as 

in Fig. 3(a). Figure 3(c) shows labeled sets of titratable sites, circled in black, that participate 

in approximate blocks of W, with use of the same projection as in Fig. 1(c). The 

corresponding blocks are outlined by the thick black squares in Fig. 3(a). In addition, 

prominent charge pairs are circled in purple (lighter) in Fig. 3(c). Tables of the work-of-

charging matrices we calculated for Debye lengths 6, 12, and 20 Å are given in Figs. 6–11 of 

the Supplemental Material [122].

F. Calculation of the grand-canonical distribution function and the protonation pattern 
probabilities

We performed Metropolis Monte Carlo simulations that included all 54 sites of the present 

model to determine the grand-canonical partition function (GCPF) and the associated 

statistics of the distributions of protons on the protein. Protonation pattern statistics were 

studied using Monte Carlo runs of 108 iterations. We determined GCPF vs pH in 0.1 pH 

increments by finding top protonation configuration probabilities in 106 iteration runs and 

using Eq. (5) with that configuration’s ΔGα. While the results given here were calculated 

from the simulations, it is convenient to note that in the Monte Carlo simulations, many of 

the residues, primarily the arginines with the highest  values, never changed their 

occupation states at some of the pH values in the range of primary interest here, 4–8, or did 

so very few times, even in 108 iterations. A table of the number of times each residue 

switched protonation state, as a function of pH, and a table that includes individual 

values appear as Figs. 4 and 5, respectively, in the Supplemental Material [122]. Therefore, 

to speed calculations, it can be convenient to omit such residues from calculation of the 

partition function, as was done in the reduced sites approximation of Ref. [29], and with 

fewer titratable sites, about 25 or 30, the model partition function  can be evaluated 

exactly. By either method, once  is known, the probability of protonation pattern α is then 

given by Eq. (5). Likewise, the average number of protons ⟨n⟩ on a protein can be found 

from

(13)

in which ζ = 10−pH.

Titration curves calculated in this manner are shown in Fig. 4. The experimental data [73] 

are shown by the black curve in each panel. These data were obtained with use of an 

aqueous 100 mM potassium chloride solvent, corresponding to a Debye length of 9.6Å, the 

value we therefore used in the 54 solutions of Eq. (1) for each choice of εin, to generate the 
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matrices W needed for the comparisons shown in Fig. 4. Figure 4(a) shows the calculated 

titration curves when the  values were calculated according to the D·E integral 

method described above. Note that in this case both the work-of-charging matrix W resulting 

from application of Eq. (1) and the  values resulting from the first two lines of Eq. 

(6) are functions of the interior dielectric coefficient value εin and were calculated as input to 

the GCPF simulations for the values εin = 2, 4, 8, and 12. Therefore, the calculated 

values relevant to the curves in Fig. 4(a) are not those listed in Table I for εin = 3. In Fig. 

4(a) each test model titration curve predicts a lower isoelectric point (pI) than that observed 

experimentally for γ B-crystallin, pI = 7.8 for the native protein [74,75], though in Ref. [74] 

a minor component was also observed at a lower pI of 7.3, a component that was sensitive to 

the presence of reducing agents [74]. Also, note that bovine γ B-crystallin was termed γ-II 

at the time of publication of Refs. [74,75].

In addition to the purpose of studying the probability distributions of the protonation 

patterns, we have a goal of modeling small-angle neutron scattering data from γ B-crystallin 

solutions in the pH range between 4.5 and 7.1, and as a preliminary step want to create a 

charge-regulation model in a pH range that spans these values and reproduces the observed 

isoelectric point. Therefore, as described above, we used the PROPKA estimates for the 

needed histidine pKint values, while continuing to use the D · E integral procedure for the 

other residues. Figure 4(b) shows the resulting model titration curves. Although there is 

clearly a range of εin values that could be used and there is room for improvement, the 

highlighted red curve, with W and nonhistidine pK values generated using εin = 3.0, 

provides a relatively good match to the experimental titration curve in the range 4 < pH < 8 

of particular interest and we took it to be sufficient for studying the general nature of the 

protonation pattern probability distributions. We did so despite the fact that the PROPKA 

estimates include a model of charge-charge interactions [117] and therefore are not intended 

to be intrinsic pKint values as they are used here.

We anticipate that as NMR assignment and titration data become available for γ B-

crystallin, it will become possible to test and refine the present model in much more detail. 

Accordingly, we postponed detailed study of using different histidine  values, which 

are expected to depend on their tautomeric states [125], in addition to the possible hydrogen 

bonding, dipolar potential, and other effects mentioned above.

The value εin = 3.0 of the model we use here is compatible with calculations of continuum-

model static dielectric coefficients of 2–4 for interior regions of many proteins and with 

measurements of dry protein powders [90,126–129]. The quoted range is approximate, 

depending on the protein and the method of calculation, and represents an ongoing area of 

investigation, as noted above [92]. Recent analyses of NMR chemical shifts within proteins, 

in particular their dependence on modeled local electric fields, found that values of εin near 

3 gave the best matches to data [130,131].
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III. PROBABILITY DISTRIBUTIONS OF PROTONATION PATTERNS

A. Features of the distributions at constant pH

In this section we address the following questions. How broad are the distributions at a given 

pH? How different are these distributions from the multinomial distribution that would occur 

if the off-diagonal work-of-charging entries were all zero? What simple approximations 

provide good quantitative agreement with the exact model probabilities? How different are 

the patterns of surface voltage that correspond to probable protonation patterns? In order to 

study these questions, in Figs. 5, 7, and 8 we plot the base-10 logarithm of the modeled 

probability of each protonation pattern vertically vs its net charge. In each figure, the line 

segments join two configurations that differ by a single switch in proton occupancy. We call 

such configurations adjacent. In addition to giving a visual picture of the protonation pattern 

probabilities and the possible single-step transitions between them, these and related 

diagrams can help to study how pattern probabilities are distributed with respect to factors 

that can affect protein-protein interactions, here net charge.

Figure 5 shows that γ B protonation patterns that have both positive and negative net protein 

charge readily occur at pH 7.1. Figure 5(a) shows the most prominent pH 7.1 configurations 

that together account for 97% of the configuration probability.

In Fig. 5(b) the cumulative probability down to a given level is plotted horizontally as the 

curve on the far right, the boundary of the striped yellow region. This curve, taken together 

with Fig. 5(a), shows that each of the topmost 70% of the configurations has a non-negative 

net charge. However, below that level quite a few pH 7.1 configurations have net negative 

charge. Because oppositely charged proteins are more likely to exhibit attractive interactions, 

Fig. 5 gives rise to the interesting possibility that at high concentrations, where proteins have 

many near neighbors, the probability distributions of net charge may even become bimodal. 

In this work we do not analyze the biasing of the distributions because of protein proximity.

The square of the cumulative probability is filled in blue (dark) in Fig. 5(b). It provides an 

estimate of the fraction of pairs of neighboring proteins, both molecules of which have a 

configuration with a probability above a given level. This estimate again neglects biasing of 

probabilities due to protein proximity. The blue-yellow boundary suggests that close pairs of 

proteins, both of which have net non-negative charge, will account for only the top half of 

neighboring protein pairs. Also, to account for about 80% of the configuration pair types, 

configurations that range down to those that occur only one one-thousandth of the time must 

be included. Thus the blue-yellow boundary gives a rough guide to how many configurations 

to include in a model of electrostatic interactions for this protein.

Figure 6 compares the voltage patterns around the 12 most probable proton configurations at 

pH = 7.1 and Debye length 6 Å. Residues that have gained or lost protons, with respect to 

the next more common configuration, are shown by blue (darker) and red (lighter) arrows, 

respectively. At this pH, histidine protonation switches are modeled to account for the first 

20 patterns. It is very interesting that as a consequence of the majority of these switches, the 

connectivity of the positive [blue (darker)] and negative [red (lighter)] potential regions on 

the projection spheres also changes, much like straits and isthmuses in continental drift. 
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Thus one might expect that in the presence of neighboring proteins that also have charged 

patches, the ease of reorientation of each protein could depend on voltage channels that open 

and close, as each of their protonation configurations changes. The similarity of many of the 

voltage patterns that result from different protonation patterns, illustrated in Fig. 6, suggests 

that larger classes of such pairs may be sufficient for creating accurate models of the relevant 

pair potentials. Thus a very interesting question is how best to construct a good coarse-

grained level of detail in the protonation pattern distributions in order to model protein 

interactions accurately. In the present work we do not focus on the protein interaction 

consequences of the patterns shown in Fig. 6.

We now study the origins of the switching pattern shown in Fig. 5(a) in more detail, in a 

residue-by-residue manner. Each line segment in Fig. 5(a) can be identified with the 

particular residue that gained or lost a proton. The probabilities of protonation patterns 

reflect both the affinity of each residue for protons and the correlations between sites that are 

strongly affected by their mutual electrostatic interaction.

The quantitative consequences are illustrated in Fig. 7. If two residues are uncorrelated, as 

are H122 and H84, the change in the pattern probability when one of them switches 

protonation state will not depend on the state of the other. Because their occupation 

probabilities are essentially independent, when H122 changes its charge, the logarithm of the 

pattern probability will change by a given amount that does not depend on whether H84 is 

protonated. Thus, the slope of the line segment that links H122-adjacent patterns (purple 

solid line) will not depend on the state of H84 and vice versa. In contrast, if two sites are 

strongly correlated, their protonation probabilities are no longer independent and the 

corresponding slopes that link adjacent configurations will depend on the protonation of the 

second residue.

Consider Figs. 7(a) and 7(b). In Fig. 7(a), because residue H117 is uncorrelated with 

residues H122, H84, and H14, protonating H117 simply translates (red short-dashed lines) 

the line segments for switches of the three other residues. In Fig. 7(b), because E120 is in 

residue group 12, as is H122 [see the lower right corner of Fig. 3(c)], H122-adjacent pattern 

probabilities change in different ways that depend on the state of E120.

If the work-of-charging matrix were diagonal, the distribution of protonation patterns would 

be multinomial and a translation-without-distortion property would hold exactly for all line 

segments in a diagram such as the ones in Figs. 5, 7, and below in Fig. 8. Thus the 

deviations from congruence of residue-switch polygons in the coordinates (net protein 

charge log10 P) display the degree to which parts of the protonation pattern distribution 

differ from multinomial. We note that in the present work the choice of net charge on the 

horizontal axis underlies this polygon translation property, simply because the net charge is 

here assumed to be solely due to protonation switches. Clearly, if ion absorption played a 

significant role or if other coordinates were used in place of or in addition to net charge, 

such as the percentage of the surface that has a positive voltage, a more complex picture 

would result.
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Figure 7(c) focuses on the configurations in the lower, eight-vertex polygon in Fig. 7(b). It 

illustrates the deviation of the probabilities calculated from the full model from those of the 

Henderson-Hasselbalch approximation, in a log-log plot. The blue closed circles compare 

these two probabilities using the topmost configuration as the reference (α* = 1) for 

calculating  values in the Henderson-Hasselbalch approximation. In this case the 

Henderson-Hasselbalch probability of configuration 72, which is found by a direct single-

proton switch from configuration 1, agrees with the probability predicted by the full model, 

together with the configurations in its attached, translated blue-green polygon, namely, 117, 

154, and 242 [see Fig. 7(b)], while the other four configurations (27, 38, 47, and 78) have 

probabilities that are 10 times those predicted by the Henderson-Hasselbalch model. In 

contrast, if α* = 2, the open red circles show that the two methods of estimating probability 

agree for configurations 27, a direct switch from 2, together with 38, 47, and 78, while the 

other four no longer agree. Because E120 is in the same group as H122, there is no reference 

state for which all of the pattern probabilities can be computed with use of the Henderson-

Hasselbalch approach. Indeed, the factors  in Eqs. (10)–(12), in which the 

vectors δqα depend on both α and α*, together with the existence of nonzero off-diagonal 

elements of W, imply that, in general, some full GCPF pattern probabilities will differ from 

Henderson-Hasselbalch ones, regardless of the choice of α*. Some individual residue 

protonation probabilities must then also differ from Henderson-Hasselbalch values. This can 

occur whether or not the residue is charged as it is in α*; this can be shown by expressing 

individual residue protonation probabilities as sums of the Pα of Eq. (12) over the 

appropriate patterns α, the key point being that each summand can carry a different factor of 

.

Figure 8 is a larger-scope version of the translating polygons picture. In the present γB-

crystallin model, at pH 7.1 the switching of protonation states of the five histidines accounts 

for a large fraction of the topmost protonation configurations of the entire protein. Thus for 

this pH it is interesting to construct sets of 32-vertex polygons, in which the vertices 

represent all of the 25 histidine protonation patterns that occur for a given configuration of 

all the other residues. Figure 8(a) shows the topmost such polygon.

The entire probability distribution of protonation patterns can be represented as the family of 

all such 32-vertex polygons; each possible pattern belongs to just one such polygon. Figure 

8(b) illustrates the distortion of the topmost polygon that results when residue E7, strongly 

coupled to H14, switches protonation. It is now harder for H14 to become protonated, which 

is reflected in the fact that the slopes of the green long-dashed segments that represent the 

H14 protonation switches become smaller; in this case they go from positive to negative. As 

in Fig. 7, Fig. 8(c) shows that when E7 switches, the Henderson-Hasselbalch approach does 

not work well for the resulting polygon, even though it does work well for the topmost 

polygon. The choice α* = 48, suggested by the fact that it is the topmost configuration in 

Fig. 8(b), produces a linear arrangement that is parallel to but displaced from the line of 

agreement.

Figure 9 compares full model configuration probabilities with those calculated using 

values, at pH 4.5 and 7.1. Figures 9(a), 9(b), 9(d), and 9(e) show that a large number of the 
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configurations have quite different probabilities from those calculated using  values 

alone, due to linkage between groups of titratable residues. Because the protein becomes 

more highly charged as pH is decreased (see Fig. 4), it is natural to expect that the broader 

distribution of probabilities relative to the Henderson-Hasselbalch approximation may be 

associated with this increased net charge. Also, there might be more charged residues at the 

lower pH, which might bias the probabilities from Henderson-Hasselbalch values.

However, the Henderson-Hasselbalch probabilities in Fig. 9 already incorporate the 

influence of the most common charge patterns because they use the top configuration α* 

appropriate for each pH to construct the needed  values, via Eq. (10). Thus, the 

existence of residues that are charged differently at the two pH values is not, by itself, 

sufficient to account for the broader distribution in Fig. 9(d), as compared with that in Fig. 

9(b).

Also, for the very top configurations at each pH, fewer residues, 43, are modeled as charged 

at pH 4.5 (28 positive, 15 negative, 11 neutral, net charge +13) than at pH 7.1, where 48 are 

charged (25 positive, 23 negative, 6 neutral, net charge +2). Thus, positively and negatively 

charged residues, taken together, make for a larger total number of charges at pH 7.1, despite 

the fact that the net charge is lower at pH 7.1. This situation is physically reasonable because 

it corresponds mainly to the fact that at pH 4.5, eight glutamate and aspartate residues that 

carried negative charges at pH 7.1 are neutral, which can readily occur because the pH is 

much closer to their  values; H53, H117, G1, and Y174 also change charge. Thus the 

fact that there are fewer titratable groups that carry charge (positive or negative) at pH 4.5 

than there are at pH 7.1 depends on the set of  values [see Fig. 15(a) herein and Fig. 

5 in the Supplemental Material [122]), combined with the bare charge numbers. This is not 

directly connected with the fact that the deviation from the Henderson-Hasselbalch 

distribution is greater at pH 4.5.

Rather, Eqs. (11) and (12) indicate that the broader width of the distribution of protonation 

pattern probabilities must arise from the switches δqα of charge patterns from that of α* that 

contribute significantly to the factors . More specifically, the broader width of 

the protonation pattern probabilities relative to the Henderson-Hasselbalch approximation at 

pH 4.5, as compared with that at pH 7.1, is due to Glu and/or Asp residue pairs in the same 

work-of-charging group [see Fig. 3(c)]. Frequent charge switches of these residues at pH 4.5 

produce the most probable protonation patterns, while at the same time their work-of-

charging linkages bias pattern probabilities away from Henderson-Hasselbalch ones. At pH 

7.1, histidine residue switches produce the most probable patterns, but because each 

histidine is in a different work-of-charging group, pattern probabilities more closely track 

the Henderson-Hasselbalch approximation. Figures 9(c) and 9(f) show log-log plots similar 

to those in Figs. 7(c) and 8(c) for the top-ranked 1000 configurations. At pH 7.1, the 

deviations cluster along lines parallel to the diagonal line of agreement. At pH 4.5 this 

clustering feature is less clear; the scale was expanded to make it apparent.

The polygons linking protonation patterns shown in Figs. 7 and 8 suggest that the use of 

effective pK values holds both value and danger. If the effective pK values were to be 

considered as fixed, they would not account for the lack of independence of the protonation 
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pattern probabilities that is represented graphically by the distortion of the polygons shown. 

Nevertheless, as suggested by Figs. 9(c) and 9(f), one might accurately model the probability 

distributions with use of judicious choices of a changing set of base configurations α* for 

calculating effective pK values according to Eq. (10).

How large do off-diagonal parts of the work-of-charging matrix need to be before they 

significantly affect the probability distribution of protonation configurations, at a given pH? 

Figure 10 examines the sensitivity of the probabilities of the topmost few configurations to 

the omission of elements of the work-of-charging matrix that are smaller than chosen cutoff 

levels. Figure 10(a) shows that at pH 7.1, the order of the top-ranked six configurations is 

stable up to a cutoff level of only 0.07, a level that is shown by the vertical dashed line. Such 

a dimensionless work-of-charging level corresponds to an electrostatic potential φ, produced 

at one member of a pair of titratable groups by the other, charged member, of 0.07kBT/e, or 

approximately 2 mV. This rather small value to which the ranking of protonation patterns is 

sensitive occurs for two principal reasons, which are illustrated in Figs. 10(b) and 10(c), 

respectively.

First, while many of the entries in W are quite small, there are many such entries. To 

quantify this, Fig. 10(b) shows the cumulative distribution function of the work-of-charging 

matrix entries. While for 0.07 < Wij < 1, individual titratable site pairs have relatively little 

effect on one another, a large number of such pairs occurs; 1133 entries are less than 0.07, 

262 entries are between 0.07 and 1, and 36 entries are more than 1.

Second, and more specifically, the cutoff values depend on how close the pH is to one or 

more  values. At the pH illustrated, the titration of histidine residues is modeled to 

account for the relative prominence of the top-ranked configurations, as discussed above and 

shown by the polygons in Figs. 7 and 8. Further, the agreement between the Henderson-

Hasselbalch probabilities and those of the full model for the topmost 32-vertex polygon, 

shown in Fig. 8(c), suggests that the changes shown in Fig. 10(a) should correspond to 

changing  values.

This is borne out by Fig. 10(c), which shows how the  values of the five histidines 

change as the work-of-charging cutoff value is increased from 0.01 to 10, all at a pH of 7. 

The 0.07 level is again shown by the vertical dashed line. At cutoffs lower than 0.07, the 

 values show small fluctuations much like those of a random walk, a feature that 

corresponds to the large number of small work-of-charging entries below this level, shown in 

Fig. 10(b). The ranking of configuration probabilities [shown in Fig. 10(a)] consequently 

remains stable until the net result of these fluctuations overcomes the difference between 

two neighboring  values. This occurs just beyond the 0.07 cutoff level, when the H84 

 crosses below that of H122. As a result, the H84  is now closer to the 

ambient pH 7.1 and its deprotonation would now be modeled as more probable than that of 

H122. In terms of the configuration probability polygon in Fig. 7(a), the H84 segments will 

now be less positively sloped than those of H122. Such a change corresponds precisely to 

the fact that the configurations initially ranked 2 and 3 switch their order in Fig. 10(a) just 

above cutoff level 0.07. It is also consistent with the fact that configurations 5 and 6 also 

switch their rankings at a very similar cutoff level. Further comparison shows that the 
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prominent migration of the H84  value with increasing cutoff level, shown in Fig. 

10(c), is largely responsible for the further configuration ranking changes shown in Fig. 

10(a). Finally, Fig. 10(c) shows that at higher cutoff levels, many additional switches occur, 

until the cutoff level is so high that it is larger than any off-diagonal values.

In summary of the implications of Fig. 10, off-diagonal elements of the work-of-charging 

matrix that are quite small in the dimensionless units eϕ/kBT can nevertheless change the 

ranking of protonation configuration probabilities. Also, as larger and larger off-diagonal 

elements are set to zero, a random-walk-like migration of  values provides an 

approximate accounting for the ranking changes of the top configurations, whose 

probabilities are well represented by the  values at this pH.

B. The pH dependence of protonation pattern distributions

The modeled probability distributions of protonation configurations show a marked 

dependence on pH, which we now study. By way of introduction, Fig. 11 shows how the 

screened potential contours change with pH for the most common protonation patterns, 

those occurring at pH = 7.1 [Fig. 11(a), as in Fig. 1(a)], pH = 6.5 [Fig. 11(b)], pH = 5.0 [Fig. 

11(c)], and pH = 4.5 [Fig. 11(d)]. The contour values displayed are for +kBT/e V (blue with 

horizontal curves), 0 V [gray with curves as in Fig. 1(a)], and −kBT/e V (red with vertical 

curves). In each case the Debye length is 6 Å. Prior experimental results, to be analyzed and 

reported with the help of the model being developed here, led to the choice of pH values for 

Fig. 11. Specifically, at pH 7.1, 6.5, and 5.5, at a Debye length of 6 Å, we observe reversible 

liquid-liquid phase separation in concentrated γB-crystallin solutions, strongly suggesting 

attractive net protein-protein interactions. However, we see no phase separation at pH 4.5, 

and at this pH small-angle neutron scattering indicates repulsive interactions.

It is interesting that in this context the balance between the positive and negative voltage 

regions is fairly even at pH 7.1 and pH 6.5, while in contrast the positive regions 

progressively dominate at pH 5.0 and pH 4.5. Further, the zero potential contours extend far 

from the protein at the upper three pH values shown, but collapse to inside or near the 

protein at pH 4.5. In combination with the findings mentioned above, Fig. 11 suggests that 

with the more even balance of positive and negative surface regions modeled at the higher 

pH values, neighboring proteins may readily bias their orientations so that oppositely 

charged surface patches can face one another and interact so as to produce net attractive 

forces. However, if the balance between positive and negative surface regions becomes 

skewed beyond that corresponding to Fig. 11(c), net repulsive forces can result. Figure 11(d) 

illustrates that at pH 4.5 the majority of the protein surface is positive. At this pH, the 

angular-averaged interprotein interactions may be relatively insensitive to changes in the 

particular configuration of protons. It is important to note that a quantitative model will also 

need to include dispersion forces and hard-core interactions, at least.

Figure 12 shows log10 P vs net protein charge for configurations in the modeled distributions 

at pH 5.5 and pH 4.5, together with their single-protonation switch line segments, 

accompanied by the pH 7.1 distribution shown in Fig. 5. As pH decreases within this range, 
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there is a substantial spread of net charge and the topmost configuration becomes 

considerably reduced in probability, reaching below 1 part in a thousand at pH 4.5.

Figure 13 illustrates summary statistics of the configuration probability distributions vs pH. 

Figure 13(a) shows that near neutral pH the distributions are relatively narrow for this 

protein; for example, one of the top 100 patterns is expected to occur about 90% of the time. 

Because 27 = 128, this corresponds to on the order of seven sites switching their protonation 

status. As discussed in connection with Fig. 5, even though the distribution is relatively 

narrow near pH 7.0, Fig. 13(a) implies that a large number of pairs of patterns may be 

needed in order to model electrostatically mediated interactions between the proteins. The 

needed number of pairs can be estimated from the figure. For example, assuming for the 

purpose of illustration that neighboring patterns do not bias each other’s probabilities, it 

would mean that considering (100 × 101)/2 distinct pairs of patterns would enable one to 

model a fraction 0.9 × 0.9 of the pairs that contribute to the effective interaction strength. 

The distributions are much broader at lower pH values; the pH 4.5 curve in Fig. 13(a) shows 

that at that pH, one of the first 1000 patterns will be present only 20% of the time. Figure 

13(b) shows the contours of the cumulative probabilities of the top sets of patterns at each 

pH, in the [pH, log10(number of configurations)] plane.

Figure 14(a) shows the pH dependence of the probabilities of patterns that are each the top 

pattern within some interval of pH. To understand these probabilities more thoroughly, 

consider any pattern α that has a specified number kα = n of protons bound. Such a pattern 

has the probability

(14)

in which ζ = 10−pH and B(Oα) denotes a Boltzmann factor for occupancy vector Oα; B(Oα) 

includes the intrinsic pK values as well as the work-of-charging contribution. Note that all of 

the pH dependence in the last line of Eq. (14) occurs in the last two terms; the partition 

function  in the final term depends on pH through ζ. Therefore, for a given value of n, all 

of the curves of log10 Pn vs pH are simply vertically displaced with respect to one another, 

because they differ only due to the quantities log10 B(Oα). This feature is illustrated in Fig. 

3(a) in the Supplemental Material [122]. The nearly parabolic shapes in the coordinates (pH, 

log10 Pn) correspond to nearly Gaussian shapes when Pn is plotted vs pH, as shown in Fig. 

14(b) for the top-ranked 12 configurations at pH 7.1; these are the configurations illustrated 

in Fig. 6. In Fig. 14(c) we show the partition function in the form  in the range 4 < 

pH < 8. In this pH range,  can be represented well by cubic or quartic polynomials, 

specifically 

 and 
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, respectively. Such fits can be convenient for estimating  in Eq. (5) or (14) for protonation 

pattern probabilities. The fit residuals in Fig. 14(c) illustrate the degree of error to be 

expected in using such a fit for  and show their polynomial appearance; such correlation of 

residuals can be detected using, for example, the Durbin-Watson statistic. Physically, such 

an appearance is to be expected given that  is a polynomial of essentially higher order than 

4, because more than four prominent overall protonation numbers occur in 4 < pH < 8 [see 

Eq. (2) and Fig. 14(a)]. A perspective view of the joint dependence of pattern probabilities 

on net charge and pH is given in Fig. 3(b) in the Supplemental Material [122].

The finding that the  values are useful for predicting the ranking of configurations 

suggests that it is interesting to compare them with the pK1/2 values calculated using the full 

model. Figure 15 makes such a comparison, with use of  values that take α* to be the 

top-ranked configuration for 6.6 < pH < 7.3 (red closed circles) and to be the top-ranked 

configuration for 4.4 < pH < 4.6 (blue open circles). Figure 15(a) shows that for the 

histidines that are modeled to titrate near neutral pH, the  values are indeed almost 

exactly equal to the corresponding pK1/2 values. This is to be expected from the agreement 

shown by the black squares in Fig. 8(c). It is instructive to compare the order in which 

histidine residues first switch to the difference between pH 7.1 and their respective 

values. From Fig. 6 or from Table I, the order of switching is H122, H84, H14, H117, and 

H53, consistent with the corresponding  values of 0.19, 0.29, 0.44, 0.57, and 

0.80.

Figure 15(a) also shows that for residues whose  values are further from the range for 

which the chosen α* configuration is appropriate, the pK1/2 and  differ more 

strongly. Thus, when using  as a tool for estimating experimental pK1/2 values, it is 

important to choose α* configurations that are prominent, and representative, in a pH range 

that ideally includes the pK1/2 in question. We note that because 1 < pH < 12 in the 

simulations used to create Fig. 15(a), residues with model pK1/2 values outside this range are 

not shown; in addition to 12 of the arginines and the three cysteines, these included D72 and 

D107.

Figure 15(b) shows that, except for H53 and H122 below their respective pK1/2 values, the 

histidine titration curves from the full model agree well with Henderson-Hasselbalch curves, 

as expected because they are in different work-of-charging groups [Fig. 3(c)]. Thus, 

although many protonation configuration probabilities are not well predicted by a 

Henderson-Hasselbalch approach, this may not show up prominently in the titration curves 

of selected residues.

C. Dependence of the distributions on ionic strength

The possible effects of ionic strength on solutions of γ B-crystallin and other proteins are 

very interesting, in that one expects that they will depend on both the balance and shapes of 

the negative and positive voltage surface regions. On one hand, if attractive interactions are 

in part created by protein orientations that put negative and positive surface regions of 

neighboring proteins face-to-face to some degree, lowering ionic strength would be expected 

to increase attractions, because then the negative and positive regions would affect one 
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another over a larger range of protein separations. On the other hand, if the net electrostatic 

portion of the interaction is repulsive, lowering ionic strength would be expected to increase 

the repulsion. In this context it is interesting to see how large the effects of ionic strength are 

on the distribution of protonation patterns, which could also play some role in mediating 

such effects.

Figures 16(a) and 16(b) show that the off-diagonal work-of-charging entries, as expected, 

can increase substantially as ionic strength is lowered. Figure 16(c) shows the corresponding 

changes in the configuration distribution at pH 7.1. In these coordinates the changes appear 

modest for the case illustrated. However, the effect is nevertheless evident; it is to make the 

most prominent configurations slightly more probable, at the expense of some of the less 

probable configurations. Figure 16(d) shows this in summary fashion. Note the crossover 

between the changes shown by the top-ranked configurations, whose probabilities generally 

increase (blue curve above black curve), at the expense of lower-ranked configurations, 

whose probabilities generally decrease, though not without exception.

D. Possible implications for protein-protein interactions

As discussed in the Introduction, our primary purpose here is to provide part of a basis for 

further investigation of the molecular properties that determine the magnitude of interactions 

between γ B- and related γ-crystallin and other eye lens crystallin proteins, investigation 

that we hope can eventually achieve sufficient detail to provide for quantitative, predictive 

modeling of the origin of the cataractogenic effects of single-residue mutations. Because 

many known cataractogenic mutations of γ-crystallins involve changes of residue charge, it 

is natural to study the protonation configuration probability distributions in detail. While 

many models of orientation-dependent protein-protein interactions have been developed at 

various levels of coarse graining [3–6,11,132–134], some of which incorporate charge 

regulation, including models for lysozyme interactions [4–6,132,135,136] and for gamma 

crystallin interactions [52,88,137], achieving the degree of fine graining for the more 

predictive modeling needed in many contexts remains an outstanding challenge [19].

Although a quantitative investigation of the consequences of the present model for how site-

specific chemical changes influence interactions is not the focus of the present work, we 

nevertheless comment here on three features that illustrate the scope of the problem. These 

include (i) the small fraction of the pairs of configurations accounted for by each choice of 

individual protonation configurations in neighboring proteins, even if those choices are each 

the top-ranked choice, (ii) the six-dimensional space of the relative positions of two 

neighboring proteins, and (iii) the biasing of protonation configuration probabilities because 

of protein proximity [10], a biasing that is itself a function in that same six-dimensional 

space. Of course, additional relative position and orientation dimensions are needed if the 

concentration is high enough so that clusters of more than two neighboring proteins are 

needed to represent the situation adequately. We now briefly discuss each of these features.

First, Fig. 17 shows the calculated voltage contours around two neighboring γB-crystallin 

molecules, at pH 7.1 and Debye length 6 Å. Each of these molecules has been given the 

most common protonation configuration, that illustrated in Fig. 1. Note that the zero voltage 

contours appear dramatically altered from those surrounding the isolated protein in Fig. 1(a). 
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Yet the corresponding pair of proton occupancy patterns accounts for only about 0.165 × 

0.165 = 0.0272 of the contributions to the protein-protein interactions. An illustration of 

interaction contributions by common pairs of patterns is given in Fig. 1 of the Supplemental 

Material [122].

Now, for each chosen pair of protonation configurations, the space of relative orientations of 

the two proteins has five dimensions, two for each protein to choose the surface points that 

are in closest proximity and one more for the relative twist about the line joining their 

centers. Radial separation gives a sixth dimension. Among the many choices of how to 

visualize the space of possible relative orientations, one shown in Fig. 18 is to make a 

projection so as to be able to plot the voltages around both protein surfaces above and below 

two planes and to represent the space of possible proximities by the collection of all line 

segments or arrows that join pairs of points, one from each plane. Twist can then be added as 

a position along each line segment, if desired. In Fig. 18,a few such line segments are drawn 

that indicate connections that could correspond to strong electrostatic attractions between 

neighboring γ -crystallins, for the most common pair of protonation configurations, shown 

at left. While the few connections shown in Fig. 18 simply join positive to negative peaks, 

nonpeak locations can also show electrostatic attractions, depending on the twist angle. With 

use of calculations that consider the possible relative orientations, one can find prominent 

basins of attraction and saddle points in the five- or six-dimensional space and illustrate 

these by points on the appropriate connection lines.

Returning now to Fig. 17, protein proximity dramatically alters the surrounding voltage zero 

contours, as mentioned above. As a consequence the protonation pattern probability 

distribution will now reflect between-protein, off-diagonal elements of an enlarged work-of-

charging matrix. The existence of these elements means that the joint configuration 

probabilities can only be approximately represented by the products of probabilities of the 

individual configurations of hypothetical isolated proteins. As a consequence, the study of 

the probability distributions of protonation patterns becomes much more intricate for close 

protein neighbors. Figure 19 gives an example in which changing the relative orientations of 

two neighboring proteins alters the expanded, two-protein work-of-charging matrix. This 

example illustrates that the expanded matrices are now functions of the six-dimensional 

space of the relative positions of the two proteins. Figure 19 also shows that only a small 

portion of the protein-protein blocks in the expanded matrices differ substantially from zero, 

which suggests that a perturbation approach might accurately represent the resulting joint 

probability distributions. To create Fig. 19, we streamlined the needed calculation by using a 

simpler dielectric boundary than that used above, which consisted of two conjoined, 

interpenetrating low-dielectric spheres, and by omitting the three cysteine residues that are 

incorporated in the 54 titratable residues considered above.

Note that close protein proximity can be quite common even at rather low concentrations 

compared with those that occur in the living eye lens, which can range into the hundreds of 

milligrams per milliliter. For example, in a square-well model of the phase behavior of γB-

crystallin [12], Monte Carlo simulations using parameters that gave the closest fit to the 

observed critical temperature and concentration (a square-well width over diameter of 0.25 

and square-well depth of 1.267kBT) indicate that even at a concentration of 0.5 mM protein, 
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the mean-field estimate of the average number of contacts per particle [Eq. (30) in [12]] is 

0.2; that is, a given protein will already have an essentially close neighbor about 20% of the 

time. This concentration, which for γB-crystallin is close to 10.5 mg/ml, corresponds to a 

volume fraction of 0.0074, a small fraction of its critical volume fraction of 0.18–0.20, and 

small compared with estimates of the macromolecular volume fraction in living cells [13], 

which range from 0.07 to 0.40. Thus one expects altered protonation probability 

distributions, due to molecular proximity, to contribute substantially to the thermodynamics 

of protein and other macromolecular solutions within living cells.

IV. CONCLUSION

We have used the linearized Debye-Hückel approximation to model the probability 

distributions of protonation patterns on bovine γB-crystallin as functions of pH. The breadth 

of the probability distributions indicates that a very large number of pairs of such patterns 

will be needed in order to account for how the distribution of protonation patterns affects 

γB- γB interactions. The key to such an analysis will be to understand not simply the 

distribution of protonation patterns of a single protein, but rather the probability distribution 

of protonation patterns, spatial variations of electrostatic potential, and consequent 

electrostatic interaction free energies present on pairs and larger tuples of neighboring 

proteins, as functions of their relative positions and orientations.

Accurate, angle-dependent potential of mean force models are needed to provide a sound 

molecular basis for understanding the statistical thermodynamics and the liquid structure of 

protein solutions [111–113] and the corresponding dramatic effects of mutations, post-

translational modifications, and solution environment on protein phase separation and 

aggregation in solution. The present model is a step towards building an accurate angle-

dependent model of electrostatic contributions to the potential of mean force for γ -crystallin 

interactions. Clearly, such a model will also need to encompass other aspects of protein-

protein interactions not considered here, including dispersion interactions, the hydrophobic 

effect, and hydration forces.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: EVALUATION OF ELECTROSTATIC ENERGY INTEGRALS AND 

CORRESPONDING pK SHIFTS

Consider a single charge on the z axis located at (0,0,z0). We wish to compute 

 over the unbounded volume V exterior to a small sphere (neighborhood) of 

radius R, centered at the charge. To do so, we make use of the linearized Poisson-Boltzmann 

equation

Within V, ρ(x) = 0, and in the absence of ionic screening (κ = 0), the equation reduces to

(A1)

To compute the volume integral

we use the relation

The second term on the right-hand side of the relation is equal to zero by Eq. (A1), in which 

case we have

Then the integral can be written as

The integral can be evaluated using Gauss’s divergence theorem by closing the volume with 

a second concentric sphere of radius R′ > R and letting R′ approach infinity. Let V′ be the 

volume bounded by the two spheres and let ∂R and ∂R′ denote the spherical boundary 

surfaces of radius R and R′, respectively. Then
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(A2)

where the unit vectors n and n′ are normal to the respective boundary surfaces. We choose 

the unit normal vectors to be directed outward relative to the spheres, rather than to the 

volume itself. The second integral on the right-hand side of Eq. (A2) approaches zero as R′ 
approaches infinity. In this limit, we are left with

It is convenient to evaluate the integral in spherical coordinates with the origin translated to 

the charge location at (0,0,z0). Since the point charge is located on the z axis and ε is 

assumed to be symmetric about the z axis, the integrand is independent of the azimuthal 

angle θ. Therefore, the surface integral reduces to a single-variable integral given by

Outside a sphere of radius r0, surrounding an isolated charge of magnitude q, placed in a 

dielectric having relative dielectric coefficient εr,

(A3)

Therefore, if we transfer a charged group surrounded by water, which has dielectric 

coefficient εw, into a medium with coefficient εr, the work required is

(A4)

The corresponding change in the pK of such a group, ΔpK, is therefore given by
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(A5)

which corresponds to Eq. (6) in the text. Whereas the last substitution may seem 

superfluous, in view of Eq. (A3), it is the last equality that enables calculation of how pK 

values can be expected to change in a nonuniform (scalar) dielectric environment, such as 

the one being used for the present model. This is how we have proceeded (except for the 

histidines) to model γB-crystallin’s pK values.

To understand which sign is to be used in Eq. (A5), it is valuable to recognize that for a 

lower dielectric than water, that is, εr < εw, the right-hand side of Eq. (A4) is positive, 

corresponding to the fact that one must do work to bury a charge, of either sign, in a low-

dielectric environment. Consider first an acidic residue such as glutamic or aspartic acid. In 

that case, partially surrounding the charge site with a low-dielectric environment will favor 

the protonated state, which is uncharged, and therefore a lower concentration of protons 

(higher pH) will suffice for protonation. Thus, the pK will shift upward and the + sign 

should be used in Eq. (A5). The opposite is true for basic residues such as lysine, arginine, 

and histidine, for which a higher concentration of protons will be needed in order to 

protonate the site.
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FIG. 1. 
(a) Screened potential contours produced by the charges of γ B-crystallin, for the most 

common protonation pattern occurring at pH = 7.1 and Debye length 6.0 Å, corresponding 

to an ionic strength of 257 mM for a 1:1 electrolyte in water at 298 K: +kBT/e V (blue with 

horizontal curves), 0 V (light), and −kBT/e V (red with vertical curves). Black spheres, gray 

octahedra, and white spheres show positive, neutral, and negative sites, respectively. Curves 

on the 0 V contour are spaced by two Debye lengths from the center of the protein. The 

netted surface is the low-dielectric boundary and the plain (light blue) surface just outside it 

is the electrolyte boundary (see Fig. 2). (b) To aid in visualization, auxiliary spheres of 

radius 18.5 Å were placed over top and bottom parts of the molecule, and the potential and 

charges are shown in blue (+) (dark gray and nearly black, respectively) or red (−) (potential 

light and charges dark gray). Neutral charges are lightest in (b). (c) A simultaneous view of 

voltages around the entire protein surface can be given with the use of two Lambert 

azimuthal equal-area projections, one for each of the top and bottom spheres; projected 

locations of amino-acid residues of possibly charged sites are indicated. The grayscale 

description of (c) is like that in (b). The dashed rectangle in (c) shows the portion that is 

visible in (b). The top and bottom perimeter circles in (c) are both images of the crease 

between the auxiliary spheres in (b). Darker curves in (b) and (c) show +kBT/e and −kBT/e 
V contours.
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FIG. 2. 
Illustration of the dielectric and salt-exclusion zone model for bovine γ B-crystallin, based 

on PDB entry 1AMM [96], rotated and translated to the coordinate system used for 

numerical solution of Eq. (1). The dark gray netted surface is the boundary of the low-

dielectric region and the light plain surface is the boundary of the salt-exclusion zone, 

described in the text. Larger black and white spheres and gray octahedra show titratable sites 

that are positive, negative, and neutral, respectively, for the most probable configuration at 

pH 7.0, modeled to occur about 20% of the time [see Fig. 13(a)]. Smaller dark gray spheres 

are locations of nonhydrogen atoms in the 1AMM structure and smaller lighter spheres are 

positions of heteroatoms.
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FIG. 3. 
(a) Approximate block-diagonal form of the dimensionless work-of-charging matrix W for 

interior dielectric coefficient 3 and Debye length 6.0 Å. The Wij magnitude categories are as 

follows: white < 0.05 ≤ dark purple quarter circles < 0.1 ≤ purple half circles < 0.2 ≤ blue 

3/4 circles < 0.4 ≤ green triangles < 0.8 ≤ yellow squares < 1.6 ≤ orange pentagons < 3.2 ≤ 

red circles. The matrix includes all 54 titratable residues used in the present model, which as 

noted in the text omits the tyrosine residues and four of the cysteine residues; the entire 

protein contains 174 residues. Designations for the 54 residues considered alternate between 

left and right (and top and bottom) margins. (b) Cylinders with radii proportional to Wij 

mapped onto the PDB 1AMM structure of γ B-crystallin. The Wij magnitude categories are 

as follows: 0.4 ≤ green cylinders with three gaps < 0.8 ≤ yellow cylinders with two gaps < 

1.6 ≤ orange cylinders with one gap < 3.2 ≤ red cylinders. (c) Lambert projections with 

potential and charges indicated as in Fig. 1(c). Groups of titratable sites participating in 

approximate blocks of W are circled in black and numbered in (c) and indicated by black 

squares in (a). Group numbering corresponds to the order of sites in W in Fig. 3(a), from top 

to bottom, and group numbers are those to which Figs. 7 and 8 refer. In (b) and (c) the 

protonation configuration is that modeled to be the most common one at pH 7.1.
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FIG. 4. 
Selection of interior dielectric coefficient and pK values through comparison of modeled 

titration curves with experiment. The experimental data [73] are shown by the labeled curve. 

The work-of-charging matrix W was calculated as described in the text, for different choices 

of εin. (a) Calculated titration curves when all  values were calculated according to 

the D(r) · E(r) integral method described in Sec. II D, for the same εin values used for 

solution of Eq. (1) to yield the matrix W. (b) Calculated titration curves when all but the 

histidine  values were estimated with the integral method, as functions of εin, while 

PROPKA 3.1 values were used for histidine (Table I) pKint values (see the text). In (b) the 

red (bold) εin = 3 curve is that of the model adopted for further study of the probability 

distributions.
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FIG. 5. 
Protonation patterns that have opposite net protein charge readily occur at pH 7.1. In both 

panels, log10 P is plotted vertically for the most prominent pH 7.1 configurations that 

together account for over 97% of the configuration probability. (a) The net protein charge of 

each configuration is plotted horizontally. Line segments join configurations that can be 

transformed into one another with a single-residue protonation switch. (b) (i) The horizontal 

coordinate of the yellow-striped–clear boundary is the sum of the probabilities of that 

configuration and more common ones, that is, their cumulative probability. (ii) The 

horizontal coordinate of the blue–yellow-striped boundary is the square of the same 

cumulative probability. The blue–yellow-striped boundary estimates the fraction of pairs of 

neighboring proteins, both molecules of which have one of the configurations down to a 

given log10 P level; this estimate neglects biasing of pattern probabilities due to protein 

proximity.
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FIG. 6. 
Lambert projections, with potentials and charges indicated as in Fig. 1(c), for the 12 most 

probable configurations at pH = 7.1 and Debye length 6 Å, in order of probability (see Table 

II). Residues that have gained or lost a proton, with respect to the more common 

configuration that is adjacent in order, are shown by blue (darker) and red (lighter) arrows, 

respectively. For many protonation switches, positive [blue (darker)] and negative [red 

(lighter)] voltage regions change connectivity.
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FIG. 7. 
(a) Because H117 is only weakly linked to other residues [see Fig. 3(c), group 11], when 

H117 switches charge (red short-dashed lines), the eight-vertex polygon representing the 

possible switches of H122 (purple solid lines), H84 (blue dash-dotted lines), and H14 (green 

long-dashed lines) undergoes translation with very little distortion (see the text). (b) Because 

E120 and H122 interact strongly, when E120 changes from charge −1 to 0 the H122 

switching segments markedly change slope, distorting the same polygon. (c) Further 

analysis of the changes in (b), by comparing the full model probabilities with those of a 

Henderson-Hasselbalch approach. Agreement would correspond to all points being on the 

solid diagonal line. (c) Illustration that the E120 switch markedly alters some probabilities 

from Henderson-Hasselbalch values (see the text).
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FIG. 8. 
(a) Most common 32-vertex polygon representing possible switches of all five histidine 

residues at pH 7.1; H53 switches (orange dotted lines) are shown as well as the H122 

(purple solid lines), H84 (blue dash-dotted lines), and H14 (green long-dashed lines) 

depicted in Fig. 7. (b) The 32-vertex polygon of histidine switches that occurs under the 

condition that E7, a neighbor of H14, has gained a proton to become neutral. The positively 

charged state of H14, which had been stabilized by a neighboring negative charge, is now 

less probable than its neutral state and the green long-dashed segments have negative slopes, 

while the others retain their slopes. Note the change in the vertical scale. (c) Comparison of 

probabilities from the full model and a Henderson-Hasselbalch approach for the topmost 32-

vertex polygon in (a) (black squares), using α* = 1, and the choices α* = 1 (blue closed 

circles), α* = 4 (red open circles), and α* = 48 (purple open squares) for the polygon in (b). 

The diagonal solid line is that of agreement between the two methods.
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FIG. 9. 
(a) Percentage deviation of the Henderson-Hasselbalch probabilities of the top-ranked 200 

configurations from those of the full model at pH 7.1. Panels (a)–(c) all use α* = 1 for pH 

7.1 to determine  values for use in calculating Henderson-Hasselbalch probabilities. 

(b) Histogram of the same deviations, for the top-ranked 1000 configurations at pH 7.1. (c) 

A log-log comparison of the top-ranked 1000 configuration probabilities from the full model 

with the Henderson-Hasselbalch probabilities. Note the clustering along diagonal lines. (d) 

Similar percentage deviations of the top-ranked 200 configurations at pH 4.5. Panels (d)–(f) 

all use α* = 1 for pH 4.5 to determine  values for use in calculating Henderson-

Hasselbalch probabilities. (e) Histogram of the deviations at pH 4.5. (f) A log-log 

comparison of the top-ranked 1000 configuration probabilities; note the changed scales.
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FIG. 10. 
(a) Dependence on dimensionless work-of-charging cutoff level of the six most common 

proton configurations at pH 7.1 and Debye length 6.0 Å. At each cutoff level on the 

horizontal axis, all of the entries in W below the given level were set to zero and the 

probabilities of the configurations were recalculated using Eq. (5). At this pH, the order of 

the configurations is stable up to a cutoff level of 0.07, which is shown by the vertical 

dashed line. (b) Cumulative distribution function of the work-of-charging matrix entries (see 

the text). The left vertical line in (b) corresponds to the cutoff level of 0.07 indicated in (a). 

The right vertical line is at 1. (c) Changes in  values of the indicated histidine 

residues, whose protonation switches produce the top-ranked configurations shown in (a). 

Above a cutoff of 0.07, the H84  value changes are the primary reasons for the 

configuration probability changes in (a) (see the text).
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FIG. 11. 
Screened potential contours of γ B-crystallin, for the most common protonation patterns at 

(a) pH = 7.1 (as in Fig. 1), (b) pH = 6.5, (c) pH = 5.0, and (d) pH = 4.5. The Debye length is 

6.0 Å; contour values are +kBT/e V (blue with horizontal curves), 0 V [gray with curves as 

in Fig. 1(a)], and −kBT/e V (red with vertical curves); dielectric and electrolyte boundaries 

are designated as in Fig. 1(a). Note the changing balance between positive and negative 

voltage regions with pH and an accompanying shrinkage of zero-voltage contours, most of 

which, at pH 4.5, extend to less than a Debye length from the protein.
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FIG. 12. 
Plot of log10 P vs net charge, with line segments indicating single-residue protonation 

switches, for protonation patterns that occur at pH 7.1 (black solid line, the same as in Fig. 

5), pH 5.5 (purple dash-dotted line), and pH 4.5 (blue dotted line) (see the text).
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FIG. 13. 
(a) Cumulative probabilities of the most probable protonation patterns at a Debye length of 

6.0 Å. For example, the dots on the pH 7.0 curve show that under these conditions, the top 

γB occupancy pattern occurs nearly 20% of the time, one of the first 10 patterns will be 

present 60% of the time, and one of the top 100 patterns occurs 90% of the time. The pH 4.5 

curve shows that one of the first 1000 patterns will be present 20% of the time. (b) Contours 

of the cumulative probabilities displayed in the [pH,log10(number of configurations)] plane. 

For example, the 0.99 contour indicates that at pH ≈ 6.8, 1000 configurations account for 

99% of the probability.
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FIG. 14. 
(a) The pH dependence of the probabilities of patterns that are each the top pattern in some 

interval of pH. (b) The Pα vs pH for the top 12 configurations at pH 7.1 have nearly 

Gaussian distributions with respect to pH. (c) The  from the present model, 

determined using Monte Carlo simulations (10 × 106 samples per pH, in 0.1 pH steps). The 

inset shows the residuals to two of the fits, which for the quartic fit in this pH interval have a 

range of about 1 part in 4000 of .
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FIG. 15. 
(a) The pK1/2 values from simulations of the full model with interactions, on the horizontal 

axis, are close to the  values. Red dots result from taking α* to be the most 

prominent protonation configuration within 6.6 < pH < 7.3; pK1/2 values farther from 6.6 < 

pK1/2 < 7.3 differ from those , as expected. Blue open circles result from taking α* 

to be the most prominent configuration within 4.4 < pH < 4.6; again pK1/2 values farther 

from that of α* differ more from those of . (b) Except for H53 and H122 below their 

respective pK1/2, histidine titration curves from the full model (solid line) also agree well 

with Henderson-Hasselbalch curves (dashed line) as parametrized by the  values of 

the α* used in (a).
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FIG. 16. 
Lowering ionic strength, corresponding to increasing the Debye length λD from (a) 6 Å to 

(b) 20 Å, increases off-diagonal work-of-charging entries and makes the top configurations 

more prominent while suppressing others, as shown in (c) and (d). In (a) and (b) Wij 

magnitude codes are as in Fig. 3(a). A 1:1 electrolyte in water at 298 K corresponds to ionic 

strengths of (a) 257 mM and (b) 23.1 mM. In going from (a) to (b), in all categories but the 

top (red circles), entries above 0.05kBT increase in number with increased λD. (c) Plot of 

log10 P vs net charge, as in Fig. 5. Black dash-dotted lines show λD = 6 Å and blue solid 

lines λD = 20 Å. (d) Plot of log10 P for the top 20 configurations; note the changed vertical 

scale. The black dashed line shows λD = 6 Å and the blue solid line λD = 20 Å. The contrast 

between changes in top- and lower-ranked probabilities is shown by the crossing of the 

dashed and solid curves.
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FIG. 17. 
Screened voltage contours around neighboring γ B-crystallin molecules, with pH 7.1 and 

Debye length 6 Å. The voltage contour surface designations are as in Fig. 1(a), except that 

the curves on the 0 V contour surface are spaced by 12 Å from the calculation box center. 

Each molecule has the top-ranked protonation configuration.
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FIG. 18. 
Visualization of the sets of relative orientations that could give electrostatic attractions 

between neighboring γ-crystallins. Lambert projections, as in Fig. 3(c) and described there, 

of the electrostatic potential at about one-half Debye length from two copies of the most 

common pH 7.1 protonation configuration are shown on the left. Voltages on the same 

surfaces are plotted vertically on the right, above and below the Lambert projections, with 

positive up. While the arrows here simply join positive to negative peaks, nonpeak locations 

can also attract, depending on twist angle.
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FIG. 19. 
Changing the relative orientations of two neighboring proteins alters the expanded, two 

protein work-of-charging matrix. The voltage contour surface designations in (a) and (c) are 

the same as in Fig. 1(a), except that the curves on the 0 V contour surface are spaced by 12 

Å from the calculation box center. The dielectric surfaces are outlined by white longitude 

and latitude curves. (b) and (d) Same color code as in Fig. 3. (b) and (d) Upper left and 

lower right squares show the within-protein recalculated work-of-charging matrix entries, 

while the off-diagonal squares show the between-protein entries. (a) and (c) Different sets of 

residues are adjacent to one another, as indicated, producing differences in the 

corresponding work-of-charging matrices shown in (b) and (d), respectively. The order of 

residues is the same for each protein in (b) and (d), but differs from that in Fig. 3.
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