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Abstract

Background—Trajectories of complex neurocognitive phenotypes in preclinical aging may be 

produced differentially through selective and interactive combinations of genetic risk.

Objective—We organize three possible combinations into a “network” of genetic risk indices 

derived from polymorphisms associated with normal and impaired cognitive aging, as well as 

Alzheimer’s disease (AD). Specifically, we assemble and examine three genetic clusters relevant 

to non-demented cognitive trajectories: (1) Apolipoprotein E (APOE), (2) a Cognitive Aging 

Genetic Risk Score (CA-GRS; Catechol-O-methyltransferase + Brain-derived neurotrophic 
factor), and (3) an AD-Genetic Risk Score (AD-GRS; Clusterin + Complement receptor 1 + 

Phosphatidylinositol-binding clathrin assembly protein).

Method—We use an accelerated longitudinal design (n = 634; age range = 55–95 years) to test 

whether AD-GRS (low versus high) moderates the effect of increasing CA-GRS risk on executive 

function (EF) performance and change as stratified by APOE status (ε4+ versus ε4-).

Results—APOE ε4 carriers with high AD-GRS had poorer EF performance at the centering age 

(75 years) and steeper 9-year decline with increasing CA-GRS but this association was not present 

in APOE ε4 carriers with low AD-GRS.

Conclusions—APOE ε4 carriers with high AD-GRS are at elevated risk of cognitive decline 

when they also possess higher CA-GRS risk. Genetic risk from both common cognitive aging and 

AD-related indices may interact in intensification networks to differential predict (1) level and 

trajectories of EF decline and (2) potential selective vulnerability for transitions into impairment 

and dementia.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that accounts for 

approximately 60–80% of dementia cases worldwide [1–3]. The AD pathophysiological 

process includes the build-up of amyloid plaques and neurofibrillary tangles, which start 

years before the onset of clinical symptoms that lead to diagnosis [3,4]. Current theoretical 

models of AD suggest that the accumulation of amyloid-β (Aβ) peptide triggers a 

pathological cascade that leads to increased cerebrospinal tau production, brain atrophy, and 

cognitive impairment [5]. Primary clinical characteristics include memory loss, decline in 

global cognition, and early impairments in executive function (EF) [6]. Although age is a 

prominent factor in the incidence and prevalence of sporadic AD [7], studies have shown 

that genetic risk factors play a critical role in AD development [8]. Single AD risk genes 

may operate through (1) interactive effects with other AD genetic polymorphisms [9], (2) 

panel effects with other polymorphisms of similar structure and function [10], (3) aggregated 

or magnified associations with genetic risk for exacerbated but non-demented cognitive 

decline [11], and (4) networks of panels that reflect coordinated functions or canonical 

pathways [12]. Arguably, network-based approaches may lead to early identification of 

individual non-demented adults with elevated genetic risk for accelerated cognitive decline, 

Mild Cognitive Impairment (MCI) or AD, thus promoting timely and effective prevention 

programs [13]. In the present study, we examine a network approach assembling three 

clusters of genetic risk: (1) a prominent and commonly examined AD risk gene (i.e., 

Apolipoprotein (APOE; rs7412, rs429358)), (2) three AD risk genetic polymorphisms with 

different functions in the central nervous system (i.e., Clusterin (CLU; rs11136000), 

Complement receptor 1 (CR1; rs6656401), and Phosphatidylinositol-binding clathrin 
assembly protein (PICALM; rs3851179)), and (3) two commonly studied polymorphisms 

relevant to EF trajectories in non-demented aging (i.e., Catechol-O-methyltransferase 
(COMT; rs4680) and Brain-derived neurotrophic factor (BDNF; rs6265)). As we focus on 

testing a network of genetic risk for preclinical aging, we examine these three clusters for 

interactive predictions of longitudinal cognitive trajectories in non-demented older adults. 

We have selected the EF domain, which involves cognitive processes such as planning, goal-

directed actions, and problem solving [14,15]. Recent studies have shown that changes in EF 

performance and decline can be detected prior to clinical diagnosis making EF an important 

and promising early marker for MCI and AD [16].

The APOE gene located on chromosome 19q13.2 has three isoforms, ε2, ε3, and ε4 [17]. 

The ε4 allele is consistently associated with increased risk for sporadic AD [18–20] and also 

observed in recent AD genome wide association studies (GWAS) [21,22]. The ε2 allele is 

shown to have a protective effect and the ε3 allele is considered neutral [17]. Approximately 

40% of AD patients across major ethnic groups are carriers of at least one copy of the ε4 

allele [17,23]. APOE is involved in regulating cholesterol levels which plays an important 
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role in Aβ metabolism, aggregation, and deposition, leading to increased senile plaques and 

cerebral amyloid angiopathy in brains of APOE ε4 carriers diagnosed with AD. In healthy 

older adults, APOE ε4 homozygotes are associated with higher amyloid pathology, greater 

medial temporal lobe atrophy, elevated resting-state activity in the default mode network, 

neuroinflammation [17] and accelerated decline on cognitive tests [24,25].

Recent studies have identified additional single nucleotide polymorphisms (SNPs) that may 

play an important role in AD development [26]. A meta-analysis conducted by the AD 

Genetics Consortium confirmed that CLU, CR1, and PICALM [9,21,22] are associated with 

high AD risk susceptibility in independent samples [9]. These three SNPs have been further 

replicated for association with late-onset AD in European [27], North American [28], and 

Chinese [29] populations. The three SNPs represent varying functions in the brain where 

CLU is mainly involved with cholesterol metabolism, CR1 is associated with immune 

response, and PICALM with endocytosis [30]. We now summarize the three polymorphisms 

as related to risk for cognitive decline and AD.

CLU is located on chromosome 8p21.1 and differentially regulates lipid transport, Aβ 
clearance, brain atrophy, and apoptosis [30]. AD patients show higher CLU levels implying 

that CLU acts in response to poor neuronal functions [31]. In such cases, CLU may (1) act 

as an anti-apoptotic signal, (2) provide oxidative stress protection, (3) defend activated 

complement proteins as a result of inflammation, and (4) bind to partially unfolded proteins 

to prevent aggregation [31]. CLU allelic risk carriers (C+) are at 1.16 greater odds of 

developing AD compared to their low risk homozygotes (T/T) [32]. In healthy young adults, 

CLU allelic risk had lower white matter integrity than their counterparts [33] which may 

indicate an increased risk for developing dementia in old age. CLU is also similar in 

structure with the molten globule structure of APOE and they may influence each other in 

frontal lobe regions [10,34,35].

CR1 gene is located on chromosome 1q32. CR1 is a multifunctional glycoprotein expressed 

on many cells including dendritic cells [36]. The protein is involved in a number of functions 

including regulation of the complement cascade and clearance of immune complexes. In 

relation to AD, CR1 acts as a receptor for the Aβ-42 peptide removal from the brain and the 

circulatory system [22]. Thus, the CR1 SNP may be responsible for modifying the rate of 

Aβ-42 clearance in AD patients [37].

The PICALM gene is located on chromosome 11q14 is involved in the production of Aβ 
peptide and linked to the formation of amyloid plaques and Aβ metabolism [38]. The 

PICALM protein is involved in clathrin-mediated endocytosis. A recent study replicated 

GWAS findings with 2816 AD and 2706 control subjects in a European population [22] and 

confirmed that the T allele was associated with AD risk. PICALM risk (T/T) homozygotes 

have been associated with decreased cerebrospinal fluid Aβ-42 levels and therefore 

increased Aβ-42 levels in the brain [39]. A meta-analysis reported that PICALM interacts 

with APOE such that APOE ε4 risk carriers with the PICALM risk genotype are at 

increased AD risk [9]. Similarly, a recent study reported interaction effects for PICALM 
rs3851179 risk and APOE ε4+ leading to changes in brain atrophy and cognitive 

performance in AD [40].
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The three AD-related SNPs have also independently been associated with accelerated 

cognitive decline in healthy older adults. Specifically, a faster rate of memory decline in 

older adults was observed for PICALM risk carriers [41], CLU risk carriers who eventually 

converted to MCI or AD [42], and CR1 risk carriers as mediated by amyloid plaque burden 

[43]. Although identified and confirmed in large GWAS and examined in single candidate 

gene association studies with normal cognitive performance [42,43], the neurobiological 

underpinnings for the synergistic effect of CLU, CR1, and PICALM on cognitive trajectories 

in non-demented aging has not yet been studied. CLU, CR1, and PICALM broadly represent 

three distinct processes (cholesterol metabolism, immune response, endocytosis) in the brain 

[30] and all been linked to Aβ metabolism and production, and cognitive decline in older 

adults at risk for dementia.

Complex neurocognitive phenotypes observed in non-demented older adults may be a result 

of select combinations of genes associated with AD and those linked with cognitively 

normal aging. Network-based approach incorporating interactions between cognitive aging 

and AD genes may provide insight into specific AD disease mechanism and molecular 

interactions in preclinical decline [12]. Although inconsistent in their independent effects, 

select combinations of COMT and BDNF polymorphisms have been shown to play a 

magnifying role in predicting the extent of neurocognitive deficits observed among groups 

of non-demented older adults [44–46]. COMT homozygotes and carriers of the risk allele 

(G/G, G/A) have lower dopamine levels in the prefrontal cortex [47]. BDNF homozygotes 

and carriers of the risk allele (A/A, A/G) secrete lower levels of neurotrophic factors, 

particularly in the hippocampus [48]. In two previous studies [11,49], we established an 

additive (COMT + BDNF) Cognitive Aging Genetic Risk Score (CA-GRS). We observed a 

significant additive effect (and no interactive associations) between COMT and BDNF, 

where higher CA-GRS was associated with poorer EF decline. This implies additive 

pathways for cognitive aging SNPs (i.e., COMT and BDNF) where eliminating one risk 

factor does not reduce the risk associated with the other allelic risk. The CA-GRS effect was 

further modified by APOE genotype, where APOE ε4 carriers displayed poorer EF 

performance with increasing CA-GRS. EF risk associated with increasing CA-GRS may be 

especially magnified for older adults who are carriers of a notable genetic risk allele for 

cognitive impairment and AD [11].

Recent genetic reports on AD and cognitive impairment have involved (1) single candidate 

genes, (2) genetic risk scores, and (3) network of molecular and pathway analysis of genetic 

variants. AD genetic network based approaches focus on using large molecular networks 

[50] to identify and understand specific AD-related biological functions. For example, recent 

network approaches include (1) co-expression networks (gene-gene correlations), (2) genetic 

integration (protein-protein interactions), (3) tissue specificity (network for tissues 

associated with AD), (4) robustness (strength in patterns of gene co-expressions in specific 

regions) [51,52], (5) network-based stratification (protein-protein interaction to stratify 

patients and identify disease molecules within the network), (6) analysis of directed 

networks (predicts specific signals), and (7) disease state-specific networks (networks that 

are only significant in specific disease states) [12,51,52]. The present network analysis 

represents a combination of three genetic risk clusters integrated by elements of both 

network-based stratification and disease state-specific network approaches. Specifically, we 
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examine the interaction between an Alzheimer’s disease-Genetic Risk Score (AD-GRS) and 

a CA-GRS as modified by APOE genotype. The target phenotype is EF performance (level 

and trajectories) in non-demented older adults. We examine select group of cognitive aging 

and AD risk alleles that may work in synergy to magnify cognitive decline in non-demented 

older adults. To date, previous work with additive risk panels [53,54] have been examined 

independently and lack integration with complex interactive networks between additive 

panels commonly linked to AD independently, in risk panels, and mechanisms related to 

cognitive impairment.

Genetic risk scores for AD and cognitive impairment risk have included varying number and 

types of polymorphisms. AD genetic risk scores have been associated with increased risk of 

late life cognitive impairment [55], AD risk [56], greater risk of conversion from MCI to AD 

[54,57,58], and discriminating an AD group from controls [59]. Research on genetic risk 

approaches have used several procedures for calculating risk scores. For example, prior 

studies have used an explained variance-weighted genetic risk score [60], an odds ratio 

weighted risk score [53,54], large number of SNPs to create a polygenic risk score [61,62], 

weighted sum of the top risk scores [56], and an additive allelic risk score [11,53,63].

Although previous studies have focused on a variety of methods to create AD genetic risk 

scores, the results have been incomplete with potential biases [12]. Previous reports have not 

examined interactive and modification effects with AD and cognitive aging genetic risk 

scores to predict non-demented cognitive change. In the present study, we focus on 

predicting actual trajectories of non-demented cognitive change, not the outcome of AD 

diagnosis. AD genetic risk is one important component, but not the only source, of genetic 

prediction of preclinical cognitive decline or impairment. We therefore design a test of a 

“network” approach that combines not only AD risk genes but also brain/cognitive decline 

risk genes that, in combination or interaction, may magnify cognitive decline and 

impairment in non-demented older adults. Accordingly, we examine interactions between 

sets (or panels) of genotypes that could intensify their effects on cognitive trajectories. 

Specifically, we select three components: (1) a genetic cognitive aging risk panel (COMT + 
BDNF), (2) a targeted set of relatively well-known AD risk genes for an AD genetic risk 

panel (CLU + CR1 + PICALM) and (3) the best-known and predominant AD risk gene 

(APOE) as modifier. We then test the interactions among these three genetic risk 

components, with APOE playing the special role of modifier. Regarding APOE, we elected 

to stratify APOE ε4− and ε4+ because AD and cognitive aging genes may differentially 

influence the mechanisms in these two groups. We select these specific genetic risk factors 

as previous research has accumulated considerable information on associated mechanisms 

(often as independent or candidate gene predictors) so that we could both (1) provide a 

strong test of potential genetic network effects and (2) propose mechanisms that underlie 

them and promote future research with this approach and on these mechanisms. In our own 

previous research [11], we have been investigating all of the genes (and their possible 

mechanisms and interactions) we examine in this research report, building to the point that 

we can now examine whether their influence on non-demented cognitive trajectories can be 

modelled as a network largely influenced by selected sets of AD-related and cognitive-

aging-related risk genes.
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In designing the present study, we acknowledged and adapted several important 

methodological and mechanistic contributions from both candidate gene approaches and 

basic gene x gene interaction approaches. Our network approach included a sequence of 

interactions between two clusters of aging and AD genetic risk, as modified by APOE, in the 

context of predicting differential cognitive trajectories over a 40-year band of aging. 

Specifically, we examined a sequence of interactions between two additive panels of genetic 

risk factors for AD (CLU + CR1 + PICALM) and accelerated cognitive decline (COMT + 

BDNF) as modified by APOE ε4 status. The sequence represents a network of genetic 

effects in cognitively normal older adults. To our knowledge, the present study is the first to 

examine a genetic network approach to examine (1) synergistic associations between 

clusters of AD (AD-GRS) and cognitive aging (CA-GRS) genes (2) as modified by APOE 
genotype (ε4− vs ε4+) (3) to predict EF trajectories (4) in non-demented older adults. We 

expect to observe that APOE ε4 carriers with interactive associations of higher CA-GRS and 

higher AD-GRS show poorer EF performance and steeper 9-year decline than their 

counterparts with lower CA-GRS and lower AD-GRS, and those who are in the APOE ε4− 

group.

Method

Participants

We used data from the Victoria Longitudinal Study (VLS), a large-scale, longitudinal 

sequential study examining biomedical, health, genetic, lifestyle, cognitive and other aspects 

of aging. General information on recruitment, methodological, and VLS characteristics are 

available elsewhere [64]. All volunteers in the VLS were cognitively normal (non-demented) 

and relatively healthy, with no reported brain-related serious conditions. They were enrolled 

through advertisements, and received a small honorarium for their participation. The VLS 

and all present data collection procedures are in full and certified compliance with prevailing 

human/institutional research ethics guidelines. Written informed consent was obtained from 

all participants. Approximately 99.2% of participants were White, not of Hispanic Origin. 

All had complete access to Canadian national health care. At baseline, all recruited VLS 

participants are cognitively normal (no dementia) and followed over time as they develop 

impairment or dementia. For the present study, we ensured a non-demented sample by 

applying a set of exclusionary criteria (including diagnosis of AD or neuropsychiatric 

disorder or Mini Mental State Exam (MMSE) score < 24). The present sample reflects the 

implementation of exclusionary criteria affecting individuals with (a) diagnosis of dementia, 

(b) anti-psychotic medication, (c) MMSE scores less than 24, (d) uncontrolled hypertension, 

(e) insulin-controlled diabetes, and (f) history of serious head injury (e.g., hospitalized). 

Accordingly, 634 participants (age range = 53–95 years, mean age = 70.58, SD = 8.65), 

including 423 females and 211 males with genetic data were included at baseline (Table 1). 

We followed an accelerated longitudinal design by assembling three partial samples (S; S1, 

S2, S3) from the VLS. The present Wave 1 (W1) and Wave 2 (W2) included participants 

from all three samples and Wave 3 (W3) included participants from S3. Specifically, 

throughout this report (a) W1 (n = 632) refers to S1W6, S2W4, and S3W1, (b) W2 (n = 517) 

refers to S1W7, S2W5, S3W2, and (c) W3 (n = 293) refers to S3W3. The average interval 
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was 4.4 years between W1 and W2, and 4.5 years between W2 and W3. The retention rates 

for each wave interval ranged between 74% and 88%.

DNA Extraction and Genotyping

Saliva was collected according to standard procedures from Oragene DNA Genotek and 

stored at room temperature in Oragene® disks until DNA extraction. DNA was manually 

extracted from 0.8 ml of saliva sample mix using the manufacturer’s protocol with adjusted 

reagent volumes. Genotyping was carried out by using a polymerase chain reaction-

restriction fragment length polymorphism strategy to analyze the allele status for CLU 
(rs11136000), CR1 (rs6656401), PICALM (rs3851179), BDNF (rs6265), COMT (rs4680), 

and APOE (rs7412, rs429358). Genotyping was successful for the targeted SNPs for all 

present participants. The genotype frequencies did not differ significantly from Hardy-

Weinberg equilibrium for: BDNF (χ2 = 0.868, p = 0.35), COMT (χ2 = 2.909, p = 0.08), 

APOE (χ2 = 0.189, p = 0.66), and CLU (χ2 = 0.710, p = 0.40). We note that the CR1 (χ2 = 

6.219, p = 0.01) and PICALM (χ2 = 36.955, p = 0.00) genotype frequencies were not in 

Hardy-Weinberg equilibrium.

Executive Function Measures

Two dimensions of EF (inhibition, shifting) were each measured by two standard and 

frequently used tests for cognitive, clinical, and neurobiological studies in older adults 

[14,49,65,66].

Hayling Sentence Completion (Inhibition)—This test [67] consists of two sections, 

each comprising 15 sentences. The standardized scores are based on errors from the second 

of two sections and the speed of each response from both sections, which are then combined 

to obtain the final score (1 = very low to 10 = very high).

Stroop (Inhibition)—This test [68] consists of the standard three parts (Parts A, B and C), 

with the measures based on latencies. The score is the standardized Stroop interference 

index ([Part C− Part A]/Part A), with a lower index reflecting better performance.

Brixton Spatial Anticipation (Shifting)—This test [67] consists of 10 different circles, 

one being blue, whereas the rest are colorless. Participants are asked to guess where the blue 

colored circle will appear on subsequent pages. The total number of incorrect guesses are 

measured and the final scores are calculated (1 = very low to 10 = very high).

Color Trails (Shifting)—This test [69] comprises two different sections in which 

participants connect different attributes, such as numbered and colored circles. Latency 

scores in the second of two sections were computed and used in the final analyses. Lower 

scores reflected better performance.

Statistical Analyses

Structural equation modeling (SEM) was used for all analyses with Mplus Version 7 [70]. 

All missing values for cognitive measures were assumed to be missing at random and 

estimated using maximum likelihood. Cases with missing predictor values were removed 
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using list-wise deletion in Mplus 7. Age was centered at 75 years because aging related 

changes in many cognitive domains are not visible until 75 years [71]. Only two participants 

with missing measures on all four EF tasks were lost due to list-wise deletion. Preliminary 

analyses were examined to obtain EF factor scores and the best latent growth model (see 

supplementary materials).

The APOE ε4− group was coded as 0 (lower risk) and APOE ε4+ group as 1 (higher risk). 

All ε2/ε4 carriers (n = 30) were deleted [10,11]. APOE ε4− and ε4+ groups were separated 

and examined for effect modification by APOE. The AD-GRS [53,54,72] was calculated in 

three steps. First, we dichotomized CLU (risk: C/C, C/T; no risk: T/T), CR1 (risk: A/A, 

A/G; no risk: G/G), and PICALM (risk: T/T, T/C; no risk: C/C) into no risk (0) and risk (1) 

groups. Second, we summed across CLU, CR1, and PICALM to obtain a score for each 

adult ranging from 0–3. Third, we performed a median split [53] for this score and grouped 

the CLU + CR1 + PICALM allelic risk score by low (0–1 risk allele) and high (2–3 risk 

allele) genetic risk. The CA-GRS was calculated using all three allelic combinations (A/A, 

A/G, and G/G) of COMT and BDNF. Both SNPs were coded from 1 to 3 (3 = highest risk) 

and summed across COMT and BDNF to obtain the CA-GRS ranging from 2–6.

EF was regressed on CA-GRS as moderated by low and high AD-GRS. This analysis was 

performed twice, for the APOE ε4− group and the APOE ε4+ group. We expected that sex 

differences may modify the effects of genetic risk on EF performance and decline [73]. 

Therefore, sex was included as a covariate in both group analyses. We accounted for 

variability associated with age by directly incorporating age as the metric of change in our 

analyses. For model fit statistics and significant results, we examined the regression estimate 

and p < .05, and −2 log likelihood (−2LL), Akaike information criteria (AIC), and Bayesian 

information criteria (BIC) values with lower values indicating better model fit (see Table 2).

Results

In our preliminary analyses and results (see supplementary materials) for the EF factor 

analysis and growth modeling, we established that the one-factor parsimonious model of EF 

provided the best fit to the data [74] and met partial scalar longitudinal invariance (see 

Supplementary Table 1). To obtain partial scalar invariance, we first need to meet configural 

invariance (all four indicators load on to the EF factor) and metric invariance 

(unstandardized EF factor loadings at all three waves are equal to each other). Partial scalar 

invariance is obtained when two out of the four EF indicator intercept were constrained to be 

equal across all three waves. The best latent growth model was obtained with the random 

intercept and random slope model (see Supplementary Table 2). This model shows that 

adults vary in their EF intercept (at age 75 years) and EF slope over time (9 years). In the 

present study, we extended our previous findings [11] and observed two novel genetic 

network associations with cognitive aging and AD genes. We observed that poorer EF 

performance at age 75 years with increasing CA-GRS in APOE ε4 carriers is (1) moderated 

by AD-GRS and (2) significant EF decline over 9 years is observed only when AD-GRS is 

included in this complex genetic network (Figure 1). Specifically, APOE ε4 carriers in the 

high AD-GRS group showed poorer EF performance at age 75 years (β = −0.396; SE = 

0.151; p = .009) and steeper 9-year decline (β = −0.015; SE = 0.007; p = .045) with 
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increasing CA-GRS (Figure 1B). Poorer EF performance at age 75 years or steeper 9-year 

decline was not observed in: (1) APOE ε4 carriers with low AD-GRS (Figure 1A); (2) the 

APOE ε4− group with high AD-GRS (Figure 1D); and (3) the APOE ε4− group with low 

AD-GRS (Figure 1C). We did not observe that sex (as a covariate) influenced the CA-GRS 

and AD-GRS interactive association on EF performance and change in either the APOE ε4− 

or APOE ε4+ group. CA-GRS effect on EF performance and change was selective and only 

present in APOE ε4 carriers with high AD-GRS.

Discussion

We examined a network approach to test AD and cognitive aging genetic effects on 

cognitive trajectories in preclinical aging. We tested interactive and effect modification of 

cognitive aging genetic risk factors [11] and clinically pertinent clusters of AD genetic risk 

factors [30] associated with lipid transport, inflammation, and endocytosis important in 

neuronal and synaptic changes in the brain. Specifically, whether an AD-GRS interacts with 

a CA-GRS as stratified by APOE risk status to differentially predict EF performance and 

change across a 40-year age band in non-demented older adults. We observed that the 

cumulative effect of high allelic risk in the AD-GRS magnifies the risk associated with 

increasing CA-GRS selectively for APOE ε4 carriers. This is the first study to show 

interactive effect of select AD and cognitive aging SNPs on EF trajectories as modified by 

APOE ε4 status. This finding advances the field on genetic and neurocognitive associations 

in preclinical aging by showing that network-related genetic associations may (1) lead to 

early detection of older adults most vulnerable or at high risk of cognitive impairment or 

dementia and (2) promote our understanding of the underlying genetic and molecular 

networks involved in preclinical cognitive impairment and potential risk of AD disease 

pathogenesis.

In a previous cognitive aging genetic risk panel study [11], we established a CA-GRS using 

COMT and BDNF. Both have been implicated in normal cognitive aging [46] and are 

thought to influence each other through basal ganglia-thalamocortical loops [75]. We 

observed poorer EF performance at centering age 75 and no significant 9-year change with 

increasing CA-GRS in APOE ε4 carriers. In the present study, we extended these results by 

identifying a complex interactive genetic network with AD-GRS and CA-GRS as modified 

by APOE ε4 genotype to predict EF performance and change. Our key finding is that the 

effect of APOE ε4 allelic risk on EF trajectories in non-demented aging is exacerbated via 

interactive effects of high AD-GRS and high CA-GRS. Specifically, APOE ε4 carriers in the 

high AD-GRS group had poorer EF performance at age 75 years and significantly steeper 9-

year decline with increasing CA-GRS (Figure 1B). Compared to the high AD-GRS group, 

APOE ε4 carriers with low AD-GRS had poorer EF performance and were declining overall 

irrespective of their CA-GRS (Figure 1A). Whereas APOE ε4− group with high or low AD-

GRS (Figure 1C–1D) did not show the same vulnerable pattern of poorer EF performance 

and steeper 9-year decline with increasing CA-GRS. Future studies focusing on the 

molecular underpinnings of cognitive decline and impairment should consider interactive 

effects of cognitive aging genes in conjunction with AD genes to detect subtle changes and 

intricate genetic networks effects in preclinical phenotypes.
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Recent studies are starting to combine omics data into multi-scale models to examine 

networks associated with AD-related risk factors [12]. A recent study applied a systems 

biology approach to examine common pathways and molecular networks among AD related 

genes. Three inter-connected pathway modules (neuronal and metabolic; cell growth/

survival and neuroendocrine; immunological cluster) were identified [50]. Identifying genes 

involved in the same pathways will contribute to our understanding of how select clusters of 

genes operate to influence neurocognitive phenotypes associated with cognitive impairment 

and AD. Although the molecular pathways underlying the genetic network in our study 

require detailed mechanistic studies, we propose a potential process through which the three 

genetic combinations (APOE, AD-GRS, CA-GRS) may work together to magnify cognitive 

decline in APOE ε4 carriers with the high AD-GRS and high CA-GRS. First, APOE ε4 

carriers may have decreased synaptic function, axonal growth, Aβ clearance, hippocampal 

dendrites, cholesterol metabolism, and mitochondrial function. They also may show greater 

medial temporal lobe atrophy, mostly around the hippocampus, accelerated loss in cortical 

thickness and hippocampal volume that is correlated with cognitive decline [17]. Second, 

increases in CA-GRS (COMT + BDNF allelic risk panel) are associated with lower 

dopamine levels in the prefrontal cortex [47] or lower neurotrophic factors [48] in the 

hippocampus that may influence each other through the basal ganglia thalamocortical loops 

[75]. This implies that higher CA-GRS may lead to poorer EF performance and steeper 

decline in non-demented aging [11] due to lower dopamine levels or lower neurotrophic 

factors.

Third, the additive effect of all three polymorphisms in the AD-GRS (CLU + CR1 + 

PICALM allelic risk panel) and their respective pathologies may lead to magnified risk for 

reductions in amyloid clearance and increases in brain atrophy, both of which are typically 

observed in older adults with cognitive impairment or dementia. Briefly, CLU is involved in 

cholesterol transport and binds to Aβ. The CR1 protein plays a role in inflammation 

especially in AD patients. PICALM influences neurotransmitter release at presynaptic 

terminals [30,76]. Furthermore, CLU protein levels are also higher in the frontal cortex and 

hippocampus of postmortem AD patients [77]. For example, older adults with low AD-GRS 

may be at a decreased risk of amyloid deposition, and lower dopamine levels (COMT risk 

allele in the CA-GRS) may not lead to poorer EF performance in the APOE ε4− group. 

Whereas, in the APOE ε4+ group, lower dopamine levels may result in steeper EF decline 

with risk intensification from high AD-GRS. Fourth, APOE and CLU show similar 

physiological and functional properties (e.g., molten globule structures and differences in 

CLU levels in the frontal cortex among APOE ε4 carriers versus non-carriers) [34] and this 

may partially explain the moderation observed among APOE ε4 carriers for low and high 

AD-GRS. In addition, reduced APOE levels in the hippocampus and frontal cortex and 

increased CLU levels are associated with increasing APOE ε4 allele dose [78].

In the present study, we observed a network-based interactive effect between two sets of 

genetic risk scores (CA-GRS and AD-GRS) on EF trajectories selectively for APOE ε4 

carriers. APOE isoforms have previously been associated with the timing, location, and 

amount of amyloid beta deposition and clearance in the brain parenchyma and vasculature 

which may trigger a chain of pathological events resulting in AD [79]. Overall, poor central 

nervous system functioning (for APOE ε4 carriers) as moderated by rate of amyloid 
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clearance, efficient synaptic transmission, and amount of brain atrophy (CLU + CR1+ 

PICALM), may change the influence of lower dopamine levels or neurotrophic factors 

(COMT + BDNF) on EF performance in non-demented aging. Future research may use this 

and similar network approaches (e.g., [12]) to (1) test other dementia and cognitive aging 

polymorphisms using varying combinations of interactive, additive, and effect modifications, 

(2) extend the networks to include other modalities of AD biomarkers (e.g., molecular, 

brain), and (3) replicate our findings to identify subpopulations of specific risk profiles that 

may be targeted for precision clinical interventions to delay cognitive impairment. In 

addition, this work suggests that some future AD clinical trials may benefit from including 

not only APOE [80], the most prominent AD genetic risk factor, but also a selected subset of 

other AD risk genes (such as CLU, CR1, and PICALM) to (1) improve precision in the 

determination of risk for cognitive decline and dementia and (2) promote efficient and 

effective evaluation of intervention outcomes.

We note several limitations of the present study. First, at present the VLS database does not 

include all SNPs linked with either AD or cognitive aging. Some recent and important ones 

are not available (e.g., Bridging Integrator 1, Triggering Receptor Expressed on Myeloid 
Cells 2). Future studies may benefit from genetic risk scores (AD-GRS and CA-GRS) that 

include contributions from additional SNPs. Second, the subset of VLS data we assembled 

did not feature full representation of three waves for all participants. Some were in data 

collection samples that have not been completed. However, we used maximum likelihood to 

estimate missing EF factor scores. Maximum likelihood uses all available data to identify 

and generate population parameter estimates that have the highest probability (log 

likelihood) [81]. In addition, some other features of the design were corresponding strengths, 

including the sample size (n = 634) and the coverage of a 40-year band of non-demented 

aging. Third, we focused on EF, to the exclusion of other important domains of cognition. 

Although this was reasonable, given the domain-specificity of many genetic-cognition 

associations in aging, future studies should validate this approach and these results with 

other cognitive domains (i.e., episodic memory, speed). Fourth, the present network 

approach is based on genetic markers, but could be extended to multi-modal biomarkers, 

such as cerebrospinal fluid-based and neuroimaging markers in similar designs. Fifth, 

although sex as covariate did not influence our models, future studies should consider 

examining sex differences for differential patterns in other complex multimodal network 

associations with preclinical phenotypes [82]. We note two additional strengths. First, the 

longitudinal design and analyses featured age as the metric of change. This allowed us to 

incorporate chronological age directly into our analyses [11] to account for EF variability 

associated with age. This approach is better than if age were included as a covariate and 

allowed us to examine EF change across a 40-year band of aging. Second, we used four 

standard neuropsychological tests that contributed to one EF latent variable. The latent 

modeling approach is representative of the overall EF construct and accounts for 

measurement error commonly present with single cognitive tests.

APOE ε4 carriers who were at additional AD risk (due to higher scores on the AD-GRS) 

and also had higher risk for cognitive decline (indicated by the CA-GRS) performed 

selectively worse on an EF latent variable at the intercept (age 75) and produced steeper 9-

year longitudinal decline. This result was interpreted as both biologically feasible and 
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selective, in that it did not appear for other tested networks of genetic risk. SNPs identified 

in AD GWAS studies may (1) work via select clusters of additive risk scores (AD-GRS), (2) 

in interaction with cognitive aging risk scores (CA-GRS), and (3) as stratified by APOE ε4 

status to alter preclinical cognitive aging. Future research should examine the underlying 

molecular pathways involved in this or similar complex genetic networks as they predict 

cognitive trajectories and outcomes in non-demented aging. Such network analyses may lead 

to precision approaches for early detection and individualized intervention programs to 

identify older adults at higher and lower risk for accelerated decline or dementia.
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Figure 1. 
Increasing risk associated with Cognitive Aging-Genetic Risk Score [CA-GRS: Catechol-O-
methyltransferase + Brain-derived neurotrophic factor] was magnified by high Alzheimer’s 

disease-Genetic Risk Score [AD-GRS: Clusterin + Complement receptor 1 + 

Phosphatidylinositol-binding clathrin assembly protein] selectively in Apolipoprotein E 
(APOE) ε4 carriers. (A) APOE ε4 risk carriers with low AD-GRS showed overall poorer EF 

performance and same rate of 9-year decline regardless of CA-GRS; (B) APOE ε4 risk 

carriers with high AD-GRS showed poorer EF performance at age 75 years and steeper 9-

year decline with increasing CA-GRS; (C) APOE ε4− group with low AD-GRS did not 

show poorer EF performance at age 75 years or steeper 9-year decline with higher CA-GRS; 

(D) APOE ε4− group with high AD-GRS showed similar EF performance at age 75 years 

and 9-year decline for all levels in the CA-GRS.
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