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1 Introduction

The use of the propensity score (i.e., the probability of being assigned to treatment given a 

set pre-treatment predictors) to balance treatment groups has rapidly gained popularity in 

many fields where observational studies are the norm (Rubin 2001, 2004). In turn, the 

popularity of propensity scores has given rise to great methodological interest on how best to 

estimate them. Methods considered have included parametric methods such as logistic 

regression with or without explicit controls for covariate balance, machine learning methods 

such as generalized boosted models (GBM), random forests (RF), Bayesian adaptive 

regression trees (BART), super learning, high dimensional propensity score (hd-PS) 

methodology, and entropy balancing (van der Laan 2014, Breiman 2001, Hill 2011, Imai and 

Ratkovic 2014, Liaw and Wiener 2002, McCaffrey, Ridgeway, and Morral 2004b, 

Pirracchio, Petersen, and van der Laan 2015, Hainmueller 2012).

In particular, the use of machine learning methods, like GBM or RF, have been growing in 

their popularity for propensity score estimation, especially in applications that use 

propensity scores for weighting. The popularity of such methods is due in part to their 

flexibly -- they require no a priori assumptions about the true underlying form of the model 

and they automatically conduct variable selection among covariates identified by analysts 

(McCaffrey, Ridgeway, and Morral, 20014). In addition, multiple studies showed such 

methods could outperform logistic regression for estimating propensity scores. They 

produce better covariate balance between treatment groups (Harder et al., 2010) and 

treatment effect estimators with smaller mean squared error (MSE; Lee, Lessler, and Stuart,. 

2010) when the propensity score model is not necessarily correctly specified.

Machine learning methods are also typically a core component of the super learner 

propensity score estimator. The super learner (SL), which uses a convex combination of 

propensity score algorithms from a user specified library is guaranteed by the oracle 

property to perform at least as well as the best candidate included in the library of 

algorithms and achieve the performance of correct model if it is included in the library 
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(Dudoit S and van der Laan 2005, van der Laan, Polley, and Hubbard 2007, van der Laan, 

Dudoit, and van der Vaart 2006, Sinisi et al. 2007). Because machine learning does not 

require parametric assumptions about the propensity scores, methods like GBM and RF are 

highly valued in the SL libraries and simulation studies have shown that SL with RF in the 

library of algorithms can yield more accurate treatment effect estimates than alternatives 

(Pirracchio et al., 2014).

The challenge to machine learning methods is that complexity of the model is controlled by 

a tuning parameter that must be chosen from the data to ensure a good fit. For GBM and RF, 

this tuning parameter controls both the selection of variables for the model and the 

complexity of the functional form of the selected variables. One common approach is to set 

the tuning parameter so that the resulting GBM and associated weights minimize covariate 

imbalance between treatment groups. Alternatively, the standard method for selecting the 

tuning parameter for application of GBM other than propensity score estimation has been to 

select the model which yields the “best fit” or smallest out-of-sample prediction error 

estimated using cross-validation or a holdout training sample. Currently, there is a lack of 

evidence on which of these two methods yields more accurate treatment effect estimates.

One of the most appealing features of machine learning for propensity score estimation is 

the ability of the algorithms to work with large numbers of predictors relative to parametric 

models so that the analyst does not need to pre-select variables related to treatment before 

attempting to fit a model. However, studies on parametric methods have shown that 

including covariates that are unrelated to the treatment variable when estimating propensity 

scores can lead to weights with greater variability and poorer balance for covariates 

correlated with the treatment indicator (Brookhart et al. 2006, Wyss et al. 2013). This, in 

turn, increases the bias and decreases the efficiency of the treatment effect estimate. In 

addition, controlling for such variables can exacerbate hidden bias due to omitted variables 

(Pearl 2000). Because machine learning methods like GBM can down weight uninformative 

covariates, it is unclear how the lessons of parametric modeling will apply. Nonetheless, 

trade-offs have to exist, particularly in regards to efficiency of the treatment effect estimates, 

sample size, and the number of included covariates. Here as well, there is a lack of guidance 

for analysts using machine learning to estimate propensity scores.

This paper addresses the following two research questions in order to provide analysts 

guidance on applying machine learners to propensity score estimation: 1) When utilizing 

machine learning methods to estimate propensity scores, which of the following criteria for 

tuning the model lead to more accurate estimates of the true treatment effect: pursuing 

covariate balance between the treatment groups or tuning the propensity score model on the 

basis of a model fit criterion? 2) How well can GBM handle the inclusion of irrelevant 

covariates (i.e., covariates unrelated to treatment, here referred to as “distractors”) in 

estimation of propensity score weights and subsequent treatment effect estimates?

We use a case study on GBM to answer these questions. We focus on GBM because its use 

in propensity score estimation is well-established, having been in the literature for over a 

decade (McCaffrey, Ridgeway, and Morral 2004a, Harder, Stuart, and Anthony 2010, Lee, 

Lessler, and Stuart 2010), and it popularity is continuing to grow.1 Thus, guidance on the 
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stand-alone use of GBM is likely to be valued by a growing number of analysts. Moreover, 

we expect the lessons learned from a study of GBM to be applicable to other methods, such 

as RF, since both methods combine multiple regression trees and perform similarly in 

simulations ((Lee, Lessler, and Stuart 2010). Lessons from the case study should also be 

relevant to methods like the SL or doubly robust (DR) estimation which combine GBM with 

either other propensity score estimation methods (SL) or models for the outcome (DR), 

since GBM must be tuned whether used in combination or stand-alone. Focusing on tuning 

GBM for stand-alone applications avoids complexity due to the function of other propensity 

score estimation methods in SL or the choice of the conditional mean model for the 

outcomes in DR and so provides clarity on how model tuning impacts covariate balance and 

the accuracy of treatment effect estimates.

2 Estimating propensity score weights using GBM

2.1 Brief review of propensity scores and propensity score weights

By definition, the propensity score is the probability of being assigned to treatment given a 

set of pretreatment covariates, i.e. p(x) = P(Z = 1| x) where Z is a binary indicator of 

treatment and x is a vector of observed covariates. Under the assumption of strong 

ignorability (e.g., that there are no unobserved confounders excluded from the propensity 

score model and 0 < p(x) < 1), the propensity score is all that is required to control for 

pretreatment differences between two treatment groups or a treatment and a control group. 

One can use the estimated propensity score, p̂(x), to estimate a number of causal treatment 

effect estimands that might be of interest in a study. The two causal estimands that are most 

popular in the literature are the average treatment effect on the population (ATE) and the 

average treatment effect on the treated (ATT; Wooldridge 2002). To obtain consistent 

estimates of these effects, propensity score weights can be utilized. For ATE, those weights 

equal 1/p̂(x), for individuals in the treatment group, and 1/(1 − p̂(x)) for individuals in the 

comparison group, where p̂(x) equals the estimated propensity score for an individual with 

covariates x. For ATT, the weights for treated individuals are set equal to one and individuals 

in the comparison group have weights equal to p̂(x)/(1 − p̂(x)).

2.2 Propensity score estimation using GBM

GBM predicts a binary treatment indicator by fitting a piecewise constant model, 

constructed as combination of simple regression trees (Burgette, McCaffrey, and Griffin in 

press, Ridgeway 1999, 2011, Burgette, McCaffrey, and Griffin 2015). To develop the 

propensity score model, GBM uses an iterative, “forward stagewise additive algorithm.” 

Such an algorithm starts by fitting a simple regression tree to the data to predict treatment 

from the covariates. Then, at each additional step of the algorithm, a new simple regression 

tree is added to the model from the previous iterations without changing any of the previous 

regression tree fits. The new tree is chosen to provide the best fit to the residuals of the 

model from the previous iteration. This chosen tree also provides the greatest increase to the 

log likelihood for the data. When combining trees, the predictions from each tree are 

1For example, the number of citations for the 2004 paper by McCaffrey et al. which proposed the use of GBM for propensity score 
estimation has increased from 30 in 2010 to over 70 in each of 2015 and 2016.
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shrunken by a scalar less than one to improve the smoothness of the resulting piecewise 

constant model and the overall fit.

The number of iterations that are performed by the algorithm or the number of trees in the 

model determines the model’s complexity. The users select the “final” model of the 

treatment indicator (and correspondingly, the propensity scores and propensity score weights 

needed for an analysis) by selecting a particular number of iterations considered “optimal.” 

With each additional iteration, a GBM becomes more complex, fitting more features of the 

data. With too few iterations, a GBM does not capture important features of the data. With 

too many iterations, it over-fits the data (Natekin and Knoll 2013). Hence, when choosing 

the number of iterations to yield the final model, the user must pick a value that balances 

between under and over-fitting the data.

2.3 Methods for selecting the optimal iteration of GBM

We evaluated three different ways to select the final GBM and its corresponding propensity 

score weights.

Best Model Fit—With GBM, there are a number of options for choosing the iteration that 

yields the best model fit to the data, including an “out-of-bag” estimate2, use of a validation 

dataset, or cross-validation (Ridgeway 2011). We utilized cross-validation in this study, 

selecting the iteration of GBM algorithm that minimized the ten-fold cross-validation 

prediction error to produce the propensity scores. We calculated prediction error as the 

inverse of the log-likelihood. For an observation with treatment status, Zi and covariates xi 

the log-likelihood for GBM model with the tuning parameter set to η, g(x; η), is l(Zi, xi; η) 

= Ti g(xi; η) − log(1 − exp[g(x; η)]). The tuning parameter is the number of iterations used 

in the GBM model, so for η = 1, ‥, 10000, we used cross-validation to calculate the out-of-

sample likelihood for g(x; η) and then selected the value of η that minimized the inverse of 

the likelihood.

Optimal Balance with respect to ATT—As an alternative to model fit, analysts can 

select the iteration that maximizes the balance or minimizes the imbalance between 

weighted covariate distributions from the two groups. Balance may depend on whether the 

resulting propensity scores are used to generate ATE or ATT weights. Hence, we explored 

tuning GBM to maximize the balance using ATT or ATE weighting. In practice, there are 

various metrics commonly used to assess covariate balance. Here, we focused on two: the 

absolute standardized mean difference (ASMD) and the Kolmogorov-Smirnov statistic (KS). 

These take on slightly different forms for ATT and ATE weighting. When interest lies in 

estimating ATT, the ASMD for each covariate equals the absolute value of the difference 

between the unweighted mean for treatment group and the weighted mean for the control 

group divided by the unweighted standard deviation of the treated group. More specifically, 

for ATT, for covariate k = 1, … , K,

2To improve prediction, the GBM fitting algorithm typically includes “bagging” where the model is estimated at each iteration using a 
random subsample of the data. The prediction error on the sample not used for estimation or the “out-of-bag” sample can be used to 
tune the model to obtain the out-of-bag estimate, see Ridgeway (2011) for details.
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(1)

where x̄kz is the unweighted or weighted mean of the covariate for treatment (Z = 1) or 

control (Z = 0) and sk1 is the standard deviation of the covariate for the treated sample. The 

KS statistic depends on the unweighted empirical distribution function for the treatment 

group and the weighted empirical distribution function for the control group and provides a 

way to compare the overall distributions of each covariate between the treatment and control 

groups (not just the means as with the ASMD (Conover 1999). The KS statistic for each 

covariate k is

(2)

where the empirical distribution function (EDF) is

(3)

for Z = 0 or 1, where I(zi = Z) equals 1 if this is true and 0 otherwise and similarly for I(xk,i 

≤ xk), xk,i denotes the value of xk for the i-th individual, and wi denotes the propensity score 

weight (1 for all individuals in the treatment group and p̂(xi)/(1 − p̂(xi)) for individuals in the 

control group).

Tuning GBM requires having a single summary statistic rather than the ASMD or KS for 

each covariate. Thus, in the simulation study, we used both the mean and the maximum of 

either ASMD or KS across the K covariates to give four possible overall balance metrics to 

be used in selecting the iteration of GBM. For each combination of a balance metric and 

summary statistics (referred to as stopping rules: mean ASMD, max ASMD, mean KS, and 

max KS), we selected the iteration of GBM that minimizes the overall summary statistic in 

question and use the estimated propensity scores from this optimal iteration in our analysis.

Optimal Balance with respect to ATE—Here, we again examined the same four 

stopping rules described above to select the iteration of the GBM algorithm that yielded 

optimal balance with respect to ATE. When interest lies in estimating ATE, the ASMD for 

each covariate, now equals the absolute value of the difference between the weighted mean 

for treatment group and the weighted mean for the control group divided by the unweighted 

standard deviation of the pooled sample. The KS formula remains the same as for ATT, 

though the weights used are now ATE weights, wi = 1/p̂(xi) for individuals in the treatment 

group and 1/(1 − p̂(xi)) for individuals in the control group. As with ATT, for each of the 

four stopping rules, we selected as optimal the iteration of GBM that minimized the overall 

summary statistic in question and used the estimated propensity scores from this optimal 

iteration in our analysis.
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We implemented all methods in R. We utilized the gbm() command when selecting the 

optimal iteration via best model fit and the twang package when using either ATT or ATE 

balance (Ridgeway 2007, Ridgeway et al. 2014).

3 Simulation experiments

We conducted two simulation experiments using different data generation models. For each, 

the data generation model was derived from data in a case study involving adolescent 

substance abusers. Both case studies were part of the Adolescent Outcomes Project (AOP; 

Morral, McCaffrey, and Ridgeway 2004). In brief, the AOP was an evaluation of the effects 

of a particular residential treatment program (the Phoenix Academy program) on teenage 

probationers’ drug use and a wide range of other developmental difficulties. The AOP used 

the Global Appraisal of Individual Needs (GAIN; Dennis 1999) to assess background 

variables and outcomes of participating clients. The GAIN is a comprehensive bio-

psychosocial standardized assessment tool used for treatment planning and outcome 

monitoring (Dennis, Chan, and Funk 2006). The AOP administered the GAIN at baseline 

and at several follow-ups visits over the course of 7 years.

Figure 1 provides more detail on the structure of our simulation studies. In our simulation 

study, we had two different case studies each used to define the data generating model for 

the “true” propensity score and the relationship between the pretreatment confounders and 

the outcome for one of the simulation studies. The two case studies represent two very 

different types of selection models. In the first case study, the selection bias is only moderate 

resulting in a healthy amount of overlap between youth in the treatment and comparison 

conditions. In the second case study, the treated group is a highly selected subsample of the 

population, meaning it is considerably more difficult to make the treated youth look like the 

overall population than it is to make the comparison group look like the treated group (e.g., 

balance on ATT weights is easier to obtain than balance on ATE weights). We used the AOP 

data from these case studies to develop nonparametric, nonlinear selection models and then 

used these selection models in the data generating models of our simulation study.

Case Study 1: Phoenix Academy (PA) youth versus non-PA youth

The AOP was not a randomized study and youth in the PA program were systematically 

different than youth in the non-PA program. In particular, youth in the PA program tended to 

have greater substance use and more problems related to substance use than the other youth 

in the study.

Case Study 2: Abstainers versus drug users

As might be expected, youth who abstained from drugs during one-year post intake in the 

AOP were significantly different from youth who used drugs during the same period. 

Nonetheless, it is of interest to understand whether abstaining during the first year post-

intake matters in the long-run. A study by Griffin et al. (2011) found that youth in the AOP 

who abstained during the first year post-intake had significantly better long-term economic 

and educational outcomes than youth who used drugs during that year, even after controlling 

for key differences between youth who abstain and those who did not.
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3.1 True Propensity Score Models

In order to have a simulation study that reflects characteristics of the AOP study, we used the 

AOP data to simulate non-parametric propensity scores similar to the ones observed in that 

study following the overarching structure shown in Figure 1. For each case study considered, 

we first generated the “true” model for the propensity score (i.e., the probability of being in 

the treatment group) by assuming that a nonparametric estimate of the model for the 

treatment indicator in a given case study (PA versus non-PA or abstainers versus drug users) 

represents the true underlying model. This “true” model was obtained by fitting a GBM to 

the binary indicator for treatment in each of our two case studies that conditions on either:

Model A—included only the four most influential pretreatment characteristics in the given 

case study of interest. For PA vs non-PA, the four covariates included in model A were self-

reported need for treatment (sum of 5 items), sum of number of problems paying attention, 

controlling their behavior or breaking rules, an indicator for needing treatment for marijuana 

use, and substance frequency scale (SFS). For abstainers versus drug users, the four 

covariate were SFS, the social risk scale (SRS), the internal mental distress scale (IMDS) 

and number of days in the past 90 the youth was drunk or high for most of the day.

Model B—included 47 pretreatment covariates for the PA versus non-PA study and or 90 

for abstainers versus drug users study. Variables were frequently used in analyses involving 

GAIN data and covered five domains: demographics (e.g., gender, race, current living 

situation), substance use (e.g., past month substance use frequency, past month and past year 

substance use problems, recognition of substance use as a problem, number of times 

received treatment in the past, primary substance under treatment, and tobacco dependence), 

mental health (e.g., emotional problems, problem orientation, internal mental distress, 

behavior complexity), criminal justice involvement (e.g., illegal activities, total arrests, crime 

violence, drug crimes, experiences in controlled environments, and institutionalization), and 

sexual risk (Schuler et al. 2014, Hunter et al. 2012, Ramchand et al. 2011).

After determining the “true” model for the propensity score, we took the following steps to 

generate data:

1. Selected an overall sample size of N = 1000.

2. Generated a vector of the 47 or 90 pretreatment covariates for each individual 

(denoted xi for i = 1… N) assuming the covariates have a multivariate normal 

distribution whose means, variances, and covariance are based on the observed 

data from the AOP study.

3. Computed the true propensity score function at the covariate value for each 

individual, defined as p(xi), using generated xi and Model A or B, depending on 

the situation being examined. The “true” propensity score model, p(xi), was 

obtained from fitting a GBM to the observed AOP data and using the optimal 

iteration based on model fit.

4. Generated treatment indicators, Zi, assuming a Bernoulli distribution where the 

P(Zi = 1 | xi) = p(xi) (i.e., the true propensity score for the i-th individual)

Griffin et al. Page 7

J Causal Inference. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Generated the outcome Yi assuming the following relationship

(5)

where p̄ is the mean of propensity scores across the data set, Zi is the treatment 

indicator generated in step (4), and εi is assumed to be independently distributed 

with mean 0. For abstainers versus drug users, the primary outcome of interest is 

total income in the past 90 days at the 87-month follow-up. In these simulations, 

we assumed εi was normally distributed with standard deviation set equal to 

$1,500 in order to ensure we generated values for income that excluded outlying 

(unrealistic) negative values. For the PA versus non-PA study, the primary 

outcome was the change in substance use from baseline to follow-up and we 

generated εi using a piece-wise constant transformation to the errors in order to 

have non-normally distributed errors in one of our simulations. In each case, to 

obtain the intercept function g(pi − p̄), we used a GBM to model the observed 

outcome as a function of the observed propensity scores from Step 3 using the 

AOP data. This resulted in a data generating model for the outcomes which was a 

nonlinear function of pi − p̄.

6. Performed ATT and ATE analysis using the simulated data. When the true model 

for the propensity scores is Model A, we utilized two different approaches to 

estimate the propensity score: (i) estimation using only the 4 covariates used to 

define model A (called the “no distractors” cases) and (ii) estimation using the 

all the available covariates for the case (47 or 90), even though only a subset 

actually contributed to the true propensity scores (called the “distractors” case 

since 43 and 86 of these covariates, respectively, are not predictive of the 

treatment indicator). When the true model for the propensity scores is Model B, 

we used all 47 or 90 covariates to estimate the propensity scores (called the “all 
important” case since all measures are predictive of both the propensity score 

and the outcome).

In all simulations, we set the true ATE equal to 0 and we set the true ATT (denoted by β in 

equation 5) equal to 0.25 times the observed standard deviation of the outcome in the 

original dataset that was used to generate the simulations (3,045 for abstainers and 38 for PA 

versus non-PA youth), representing a moderate effect size for the average difference between 

the treatment and control conditions when interest lies in ATT. Although the marginal 

distribution of the simulated covariates was multivariate normal, the conditional distributions 

given Z = 0 or Z = 1 were not and prior to weighting these distributions were not balanced.

3.2 Metrics for comparing the different implementations

We utilized a number of different metrics to evaluate the performance of the methods. We 

simulated 1000 datasets for each scenario being compared.

Metrics measuring balance—In order to assess the ability of each method to balance 

the pretreatment covariates of interest, we computed the ASMD for pretreatment covariates 
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in the true propensity score model (4 for Model A and 47 or 90 for Model B) using weights 

that come from the three methods for choosing the optimal number of iterations in the GBM 

model (Model Fit, Chasing ATT Balance, Chasing ATE Balance). For all cases, we first 

computed the maximum ASMDs for each of the four most influential covariates (those used 

in Model A) for each Monte Carlo iteration and then produce box plots which show the 

distribution of the maximum ASMDs as our primary metric of balance.

Metrics measuring performance of treatment effect estimation—In order to 

quantify the impact of the methods on the estimated treatment effects of interest, we 

computed the bias of the treatment effect, standard deviation of the estimated treatment 

effects, and the root mean squared error (RMSE) for both types of treatment effect estimates 

(ATE and ATT). To illustrate, let ATEb,method equal the estimated ATE using one of our 

three optimization methods (model fit, chasing balance on ATE, or chasing balance on ATT) 

for simulated dataset b=1, …, 1000, and let  equal the average of the 

ATEb,methods. The estimate of the bias equals  where ATEtrue denotes 

the true ATE. We estimate the standard deviation as the square root of the variance which is 

defined as

(6)

and the estimated MSE equals

(7)

We report standardized results in which we divided the bias, variance, and RMSE of the 

estimated treatment effect by the standard deviation (bias and RMSE) or the variance 

(variance) of the corresponding outcome variable. We estimated the variance of the 

outcomes using a simulated sample of outcomes under the control condition. We 

standardized to the measures to put the results from both case studies on a common standard 

deviation scale and to provide perspective on the magnitude of the bias, standard deviation, 

and RMSE. Similar formulas are used for the other estimators for when interest lies in ATT.

These measures describe the accuracy of the estimated treatment effects; however, accurate 

inferences are also important. Current practice when estimating the standard errors of the 

estimated treatment effects is to use sandwich standard errors that treat the weights as known 

(i.e., the standard errors from the survey package in R, PROC SURVEYMEAN is SAS or 

with aweights in Stata). The accuracy of this approximation to the standard error could be 

sensitive to the distribution of the weights and the choice for tuning the GBM. Hence, we 

also assess the accuracy of the sandwich standard errors and inferences about the treatment 

effect. We report the ratio of the Monte Carlo mean of the estimated standard error to the 

standard deviation across Monte Carlo samples of the estimated treatment effects. We also 

report the coverage rate equal to the proportion of simulated samples for which the point 

estimate +/− twice the estimated standard error includes the true value of the treatment 
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effect. For ATE, since the true treatment effect is zero, one minus the coverage rate equals 

the Type I error rate.

4 Results

4.1 Impact on balance

Figures 2 through 4 show box plots for the maximum ASMD for the four pretreatment 

covariates in propensity score Model A for the “no distractors”, “distractors”, and “all 

important” scenarios, respectively. For each scenario, we present results for both of our two 

different data generating models (PA and abstainers), and for each of the two possible 

estimands of interest ATT and ATE. For the chasing balance methods, results are shown for 

the stopping rule which yielded the smallest RMSE for that method (see appendix Tables A1 

and A2 for the RMSEs for all stopping rules by method and scenario).

Figures 2a and b present results for the two simulated case study settings, Case 1: PA vs. 

non-PA in 2a and Case 2: abstainers vs. users in 2b, for the “no distractors” scenario in 

which only 4 pretreatment variables matter and they are the only variables used in the 

propensity score estimation. Chasing balance on ATT or ATE performs well in terms of 

balance with maximum ASMDs generally well below 0.20, regardless of whether the 

estimated treatment is ATE or ATT. In all cases, using model fit to tune the GBM performs 

notably worse than either of the chasing balance approaches with a nearly 25% chance that 

the maximum ASMD would exceed 0.30 when estimating ATE for Case 2 (Figure 2b). 

Additionally, in both case studies chasing balance on ATT tends to slightly outperform 

chasing balance on ATE when interest lies in estimating ATTs and chasing balance on ATE 

achieves substantially better balance than chasing balance on ATT for the Case 2 when 

interest lies in ATE (See Figure 2b).

Figure 3 presents the results for the distractor scenario in which extraneous variables were 

used to estimate the propensity scores the same four pretreatment covariates as shown in 

Figures 2. Comparing the results from Figure 3 to those of Figure 2, shows that including 

distractors in the propensity score estimation results in larger values for the maximum 

ASMDs than modeling without them, regardless of the method used to tune the GBM 

model. The relative performances of the alternative methods for selecting the optimal GBM 

generally follow the patterns in Figure 2. In Case 1 (Figure 3a), chasing ATE balance or 

chasing ATT balance leads to similarly good balance, regardless of the estimand of interest. 

Model fit yields significantly worse balance in all cases expect in Case 2 (Figure 3b) when 

interest lies in ATT, in which case it performs about equally well as chasing balance. 

Moreover, for Case 2 when interest lies in ATE both model fit and chasing balance on ATT 

yield much worse balance in comparison to the method which chases ATE balance.

Figures 4 a and b present the maximum ASMD for the same four pretreatment covariates as 

shown in Figures 2 and 3, for the “all important” scenario in which all the variables were 

used for estimating and generating the true propensity scores as well as being related to the 

outcome. Note the four covariates from our no distractors and distractors cases remain the 

most influential, even though all covariates contribute to the true propensity scores. As 

shown in Figures 4a and b, when the true propensity score model contains 47 or 90 
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covariates the maximum ASMDs for the four most influential covariates increase relative to 

the “no distractors” case in which the propensity score models depend on only 4 covariates, 

but the results are generally similar to those shown in Figures 3a and 3b (the “distractors” 

case). That is, modeling the propensity score with more covariates increases the maximum 

ASMD, regardless of whether or not all the covariates truly belong in the model. The story 

for comparing methods for choosing the optimal iteration of the GBM fit again replicates the 

findings from the other two scenarios: Model fit continues to yield weights that perform 

poorly at balancing, except for Case 2 when the estimand is ATT, in which case the methods 

perform similarly. Also, the two chasing balance methods perform similarly in all cases 

except Case 2 when interest lies in ATE; in that setting, chasing balance on ATE 

significantly outperforms model fit and chasing balance on ATT (the estimand that is not of 

primary interest).

Impact on Treatment Effect Estimation

Table 1 shows the standardized bias of the treatment effect, standard deviation, and RMSE 

for our treatment effect estimates for all of the scenarios, methods, and estimands of interest. 

For the chasing balance methods, results are shown for the stopping rule that produced 

optimal performance of the method with regard to RMSE. Appendix Table A1 and A2 

shows the results for all stopping rules in detail and emphasizes how in any given setting the 

stopping rule that performed best varied.

In the no distractor scenario, all three methods perform very similarly to each other for Case 

1 when interest lies in either ATT or ATE. There is more separation between the methods for 

the Case 2. Here, when interest lies in ATT, we see that chasing balance on ATT slightly 

outperforms the other methods (RMSE equals 0.054 relative to 0.072 and 0.068 for chasing 

balance on ATE and model fit, respectively). Conversely, when interest lies in ATE, chasing 

balance on ATE clearly outperforms the alternatives (RMSE equals 0.226 relative to 0.327 

and 0.505 for chasing balance on ATT and model fit, respectively). Notably, all methods 

result in biased treatment effect estimates for ATE in Case 2 (standardized bias is above 0.22 

for all methods). This occurs because it is not feasible to obtain ATE weights to the match 

the covariate distribution for abstainers to those of the overall population. However, chasing 

balance on ATE achieves substantially better balance, smaller bias, smaller standard 

deviation, and smaller RMSE in the resulting treatment effects than the other methods. The 

results cannot be trusted for inferences about the treatment effect, but the case clearly 

demonstrates the strength of chasing balance with the targeted estimand to remove group 

differences.

In the distractors and all important cases, we generally see similar findings, although it is a 

little easier to delineate between model fit and the chasing balance methods in most cases 

than it was in the no distractor case. For Case 1, the two chasing balance methods both 

slightly outperform model fit and perform similarly to each other no matter whether one is 

interested in ATT or ATE. In contrast, chasing balance methods have more separation in 

Case 2. When interest lies in ATT, we see that chasing balance on ATT for Case 2 again 

yields the lowest bias and the smallest RMSE but chasing balance on ATE actually performs 

worse than model fit. Also, chasing balance on ATE when interest lies in ATE in Case 2 
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yields optimal performance. RMSE for chasing balance on ATE here is 0.291 (versus 0.390 

for chasing balance on ATT and 0.628 for model fit) in the “distractors” case and 0.291 

(versus 0.453 and 0.552, respectively) in the “all important” case. Again for the case of ATE 

when we use the abstainers data generation model, we continue to see poor performance 

overall given the lack of balance.

In almost all cases, controlling for more covariates via the propensity score models and 

weights has detrimental effects on the performance of the treatment effect estimates, 

regardless of whether or not selection into treatment depends on those variables. 

Standardized bias, standard deviation and RMSE are typically greater for all methods for the 

distractor and all important scenarios than for the no distractors scenario. For example, in the 

PA data generation case study, standardized bias changes from being less than 0.10 in the 

“no distractors case” to being over 0.20 in the “all important” case when interest lies in ATE. 

The degradation in performance is to be expected given the poorer performance in balance 

for the distractor and all important scenarios relative to no distractors shown in Figures 2 to 

4. Lack of balance results in confounding of the treatment effect estimate. Also, the balance 

varies more across realized samples which adds to variance in the estimated treatment effect: 

A sample with particularly bad balance will yield outlying treatment effect estimates. 

Notably, in both case studies, better balance and lower standardize bias is achieved when 

interest lies in ATT versus ATE for the “all important” case. Finally, we note that modeling 

with many covariates allows for spurious variability in the weights that does not improve 

balance but inflates the variability of weighted means.

A concern with any weighting is that highly variable weights, relative to their mean, can 

result in some observations being extremely influential and can potentially inflate the 

standard error of a weighted mean. We explored how the different criteria for tuning GBM 

affect the coefficient of variation (CV) of the weights (i.e., the ratio of the standard error of 

the weights to the mean) for the treatment and control group by calculating the average 

values across simulated samples for each simulation setting. Full results are in Appendix 

Table A3. The CV was largest for best model fit when interest lies in ATT and there are no 

distractors for both the PA and the abstainer cases (averages = 1.12 and 1.25, respectively). 

Notably, the mean CV was consistently smaller for ATE than for ATT estimands. For ATT, 

chasing balance yielded less variable weights with the average CV ranging from 2 to 24% 

smaller than for best model fit, except in the all important case for abstainers in which the 

average CV for chasing balance was 6% larger. For ATE, without distractors, the CV was 

generally about the same for the PA case study across all methods while for the abstainers 

case study, chasing balance on ATE yielded smaller average values for CV. With distractors, 

chasing balance, especially ATE balance, yielded more variable weights than best model fit. 

The same was true when all predictors were important for PA but not abstainers. Taken 

altogether with the results above, for ATT, chasing balance can achieve better balance and 

less bias, without increasing the variability in the weights. The same is true for ATE, when 

there are only four covariates, but with many covariates, chasing balance obtained better 

balance at the cost of more variable weights but not necessarily great standard errors for the 

estimated treatment effect.
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Table 2 presents the results for the impact on inferences for the different approaches to 

tuning GBM. For chasing balance the stopping rule which yielded the worst coverage rate is 

reported for each simulation setting (results for all methods are shown in Table A4 and A5). 

The estimated standard errors tend to be somewhat more accurate for best model fit than 

chasing balance. However, for both model fit and chasing balance, the sandwich standard 

errors are almost always notably too large for both approaches to tuning GBM. The bias in 

the sandwich standard errors tends to be largest for conditions in which the weights 

substantially reduced large differences between the treatment and the control group as they 

did for ATT and ATE using chasing ATE balance in the abstainer case. This result is 

consistent with fact that the sandwich standard error estimator estimates the standard error of 

the treatment effect as the square root of the variance of the weighted treatment mean plus 

the variance of the weighted control group mean and effectively ignores the correlation 

between these two weighted means. However, when the weights achieve balance they 

effectively create a positive correlation between the estimated treatment and control group 

means, so the standard error estimator tends to be too large, particularly in cases when the 

weights remove large differences between groups. Because chasing balance tends to achieve 

better balance than model fit, the sandwich standard errors tend to have greater bias for 

chasing balance than model fit.

Across all the simulation conditions, chasing balance tends to have better coverage than 

model fit. There are, however, several conditions where both methods have low coverage 

such as ATE for the abstainers, where the estimated treatment effects tend to have large bias 

and ATT for PA for the no-distractors and distractor cases. In these settings, although the 

bias is not large relative to the standard deviation of the outcome, it is large relative to the 

true standard error and the estimated standard errors are accurate for chasing balance. In 

other cases, such as ATT for the abstainers or ATE for PA with no distractors, both methods 

have very high coverage. This is the result of three factors: 1) the bias is relatively small; 2) 

achieving balance is difficult so the true standard errors are relatively large, so that bias is 

smaller relative to the standard error than in other cases such as ATT for PA; and 3) the 

estimated standard errors consistently have large positive bias which increase the confidence 

intervals widths and coverage rates.

5 Illustrative data analysis

5.1 PA vs non-PA

Table 3 shows the balance results and treatment effect estimates from applying our three 

methods for fine tuning GBM to the original PA versus non-PA example. Here, the 

propensity score models only included the four most influential pretreatment covariates that 

were used to generate Model A in our simulation studies (namely self-reported need for 

treatment (sum of 5 items), sum of number of problems paying attention, controlling their 

behavior or breaking rules, an indicator for needing treatment for marijuana use, and SFS). 

As expected, in both the ATT and ATE analyses, model fit does the worst at obtaining 

balance on the pretreatment covariates (max ASMD equals 0.21 in both cases). Here, both 

chasing balance methods perform similarly for ATT and ATE, yielding max ASMDs ranging 

from 0.13 to 0.15. In spite of these differences in balance for model fit and the other 
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methods, the treatment effect estimates for the three methods are highly similar: Among the 

population assigned to PA, the treatment appears to reduce substance use relative to the other 

alternative placements the probationers might have received, although confidence intervals 

include zero. PA does not appear effective for youth who would typically not be assigned to 

it as the ATE is close to zero regardless of the method used to tune GBM.

5.2 Abstainers vs drug users

Table 4 shows the balance results and treatment effect estimates from applying our three 

methods for fine-tuning GBM to the original abstainers versus drug users data. Here, the 

propensity score models only included the four most influential pretreatment covariates that 

were used to generate Model A in our simulation studies (namely SFS, SRS, IMDS and 

proportion of days in the past 90 the youth was drunk or high for most of the day) and we 

only utilized the maximum ASMD stopping rule. As expected given our simulation study, 

when interest lies in estimating ATE, the best balance is achieved by selecting the iteration 

of GBM that optimizes ATE balance while chasing balance on ATT and model fit do much 

worse (chasing balance on ATE has a maximum ASMD of 0.19 versus 0.36 and 0.26 for the 

other two methods, respectively). Similarly, when interest lies in estimating ATT, chasing 

balance on ATT clearly outperforms chasing balance on ATE and the model fit methods 

(max ASMD = 0.07, 0.14, 0.29, respectively). In spite of these differences in balance, the 

treatment effect estimates for the three methods are highly similar. For all three methods, the 

results of both the ATE and ATT analyses are also similar and suggest that abstaining from 

drugs for one year post-intake increases income 7-years later by 1.6 standard deviations. For 

ATT, the confidence intervals do not include zero, whereas for ATE confidence intervals 

include zero since the standard errors are larger because both groups are weighted and the 

weights are highly variable with the groups being highly disparate. The differential 

imbalance in the covariates across methods for tuning GBM does not affect the treatment 

effect estimates because the covariates are only weakly related to outcomes (multiple R-

squared is less than 0.01).

6 Discussion

In this paper, we examine two important issues regarding implementation of GBM to 

estimate propensity score weights: the criteria for tuning the GBM and impact of including 

irrelevant covariates (distractors) in the models. In terms of criteria of tuning the model, our 

findings regarding the performance of the best model fit approach versus chasing balance 

approaches relates to the theoretical result in the field that show modeling with estimated 

propensity scores yields more precise treatment effect estimates than modeling with the true 

propensity scores because the estimated propensity score adjust for the imbalances that are 

observed between the treatment groups being compared (Hirano, Imbens, and Ridder 2003). 

Thus, even though the best model fit approach produces estimated propensity scores that 

most closely line up with the “true” propensity score model (results available upon request), 

the estimated propensity scores that result from this type of optimization do not obtain the 

best balance between the treatment and control groups and hence in turn result in treatment 

effect estimates that have larger bias. We suspect overfitting helps to correct for small 

sample bias that prevents the GBM from fully recovering the true propensity score model. 
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By overfitting using balance to tune the model, GBM fit via chasing balance better balances 

the pretreatment covariates and reduces bias. These findings also reinforce the point made 

by others (Westreich et al. 2011) that obtaining best model fit for a propensity score model 

does not correspond with how well it actually performs in bias reduction.

As expected, we found that including distrators in the GBM modeling degraded the balance 

achieved by the resulting weights and increased the RMSE of the estimated treatment 

effects, in all simulations studied. This finding is consistent with what others in the field 

have found (Brookhart et al. 2006, Wyss et al. 2013, Setodji et al. Submitted , Setodji et al. 

conditional acceptance ). Given that we include such a large number of variables into the 

model, it is notable that all of the methods still perform reasonably well in all cases where 

distractor variables are added into the model (maximum mean ASMDs and standardized bias 

in the treatment effect estimate are all below 0.11), except the ATE case in the abstainers 

data generation case study. We would not expect such high performance from a parametric 

approach like the logistic regression model. Thus, while we do not recommended including 

so many variables in a propensity score estimation model if some can be eliminated on 

substantive grounds, it is clear that machine learning techniques can handle a large number 

of pretreatment covariates (e.g., between 47 and 90) where traditional parametric models are 

likely to fail. We found the modeling with many variables related to both treatment and 

outcomes also degrades performance relative to modeling with a small number of relevant 

variables, suggesting a limit to how far GBM can be pushed with a moderately large sample 

size of 1000. Even with the rise of machine learning techniques in propensity score 

estimation, analysts and researchers should still be careful when selecting the number of 

variables to include in the propensity score model in order to help ensure the best results are 

achieved. Future work could examine settings in which a variable selection step might be 

necessary prior to utilizing a machine learning approach for propensity score estimation.

The results for inferences are less clear than those for the accuracy of the treatment effect 

point estimate. No method of tuning GBM clearly provides better coverage than the others. 

Three factors contribute to this finding. First, bias in the treatment effect estimates reduces 

the probability of coverage. Second, large true standard errors increase the probability of 

coverage and, third, overestimating the standard error further increases the probability of 

coverage. Although chasing balance results in smaller bias, failure to balance the groups can 

increase the true standard errors so that model fit can have smaller bias relative to true 

standard errors, which makes coverage more likely even though the magnitude of the bias is 

greater. In addition, the sandwich standard error estimator that ignores the estimation of the 

weights overestimates the standard errors further distorting the coverage rates. The bias in 

the standard errors tends to be somewhat larger for chasing balance than best fit, precisely 

because chasing balance better balances covariates and reduces bias in the treatment effect. 

However, if bias in the treatment effect is small then even if intervals do not include the true 

value, they will be close to the truth. For example, if the effect is zero, and bias is small but 

the intervals do not include zero the inference would still be that the effect is small. On the 

other hand, large bias may be misinterpreted. For example, a large point value may be 

interpreted as a large effect, even if the interval is large and includes small values. Thus, 

even though the results on coverage do not favor any tuning method, chasing balance may 

still be preferable because it yields more accurate point estimates.

Griffin et al. Page 15

J Causal Inference. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The results of our simulation study clearly demonstrate the poor performance of the 

sandwich standard error estimator that does not account for estimating weights. However, in 

a limited simulation study using a subset of the PA no-distractor samples, bootstrap standard 

errors also substantially overestimated the standard error, sometimes by a greater amount 

than the sandwich. Additional work is needed to determine the cause of the bias in the 

bootstrap standard errors and for potential alternatives.

Findings from this work have important implications for the field. Various promising 

methods are now available to researchers interested in estimating causal treatment effects 

with propensity scores. For many of the available approaches, it may be possible to improve 

performance if more care is taken in how the methods are fine-tuned to select a solution. For 

example, use of the super learning method which simultaneously runs multiple machine 

learning methods (including GBM) to estimate propensity scores is currently fine-tuned to 

select as optimal the combination of machine learners that yields the best prediction (van der 

Laan 2014, Pirracchio, Petersen, and van der Laan 2015). It may be feasible to improve the 

already high performance of this method by fine-tuning it so it selects as optimal the 

combination of machine-learners that yields the best balance. Future work might examine 

whether there are gains to this type of fine-tuning for that methodology.

Additionally, findings from our work follow in line with much of where the field is headed 

when developing new methods for improving estimation of propensity scores. For example, 

Imai and Ratkovic (2014) specifically developed the Covariate Balance Propensity Score 

(CBPS) method to improve performance of the standard logistic regression model for 

estimating propensity scores by incorporating a balance penalty function into the way in 

which logistic regression models estimate the propensity score. In addition, Hainmuller 

(2012) and Graham et al. (2012) use entropy or exponential tilting weights that provide exact 

balance on the covariates. Moreover, the high-dimensional propensity score (hd-PS) 

algorithm which is an automated technique that examines thousands of covariates in the 

study population to select the most salient variables for use in the propensity score model 

uses a strategy for selecting the most salient variables that prioritizes for selection those 

variables that are associated with the outcome and most imbalanced between the treatment 

and control groups (Schneeweiss et al. 2009). Thus in general, our results here may extend 

beyond machine learning methods, to support our inference that propensity score estimation 

in general can be optimized through careful consideration of balance.
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Appendix

Table A1

Summary Statistics for Treatment Effect Estimates for all stopping rules and methods 

considered for the abstainers’ example

Abstainers (Treatment) vs. Drug Users (Control)

ATT ATE

Bias Std Dev RMSE Bias Std Dev RMSE

No Distractors

Best Model Fit 0.035 0.058 0.068 0.494 0.105 0.505

Chasing Balance on ATT

es.max −0.007 0.057 0.058 0.313 0.096 0.327

es.mean 0.001 0.054 0.054 0.344 0.084 0.354

ks.max −0.001 0.060 0.060 0.335 0.098 0.349

ks.mean 0.003 0.054 0.054 0.350 0.083 0.360

Chasing Balance on ATE

es.max −0.046 0.061 0.076 0.223 0.053 0.229

es.mean −0.048 0.060 0.077 0.220 0.052 0.226

ks.max −0.046 0.061 0.076 0.222 0.053 0.228

ks.mean −0.041 0.060 0.072 0.222 0.052 0.228

Distractors

Best Model Fit −0.046 0.067 0.081 0.618 0.114 0.628

Chasing Balance on ATT

es.max −0.045 0.068 0.081 0.604 0.198 0.636

es.mean −0.041 0.066 0.078 0.702 0.158 0.719

ks.max −0.049 0.063 0.080 0.376 0.101 0.390

ks.mean −0.042 0.066 0.078 0.647 0.143 0.662

Chasing Balance on ATE

es.max −0.067 0.063 0.092 0.299 0.061 0.305

es.mean −0.066 0.062 0.090 0.291 0.057 0.296

ks.max −0.073 0.062 0.096 0.285 0.059 0.291

ks.mean −0.064 0.063 0.090 0.294 0.055 0.299

All Important

Best Model Fit −0.086 0.088 0.124 0.538 0.123 0.552

Chasing Balance on ATT

es.max −0.086 0.093 0.127 0.656 0.210 0.689

es.mean −0.076 0.092 0.119 0.751 0.155 0.766

ks.max −0.089 0.090 0.126 0.434 0.132 0.453

ks.mean −0.076 0.091 0.119 0.677 0.144 0.692

Chasing Balance on ATE

es.max −0.121 0.086 0.149 0.306 0.064 0.312

es.mean −0.121 0.085 0.148 0.290 0.059 0.296

ks.max −0.131 0.086 0.156 0.285 0.059 0.291
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Abstainers (Treatment) vs. Drug Users (Control)

ATT ATE

Bias Std Dev RMSE Bias Std Dev RMSE

ks.mean −0.119 0.086 0.147 0.293 0.058 0.299

Table A2

Summary Statistics for Treatment Effect Estimates for all stopping rules and methods 

considered for the PA example

PA (Treatment) vs. non-PA (Control)

ATT ATE

Bias Std Dev RMSE Bias Std Dev RMSE

No Distractors

Best Model Fit 0.068 0.042 0.080 0.004 0.022 0.022

Chasing Balance on ATT

es.max 0.061 0.041 0.073 0.013 0.022 0.025

es.mean 0.061 0.041 0.074 0.013 0.022 0.025

ks.max 0.062 0.041 0.074 0.013 0.022 0.026

ks.mean 0.061 0.041 0.073 0.012 0.022 0.025

Chasing Balance on ATE

es.max 0.059 0.041 0.072 0.009 0.022 0.024

es.mean 0.059 0.042 0.072 0.009 0.022 0.024

ks.max 0.059 0.042 0.072 0.009 0.022 0.024

ks.mean 0.059 0.042 0.073 0.008 0.022 0.023

Distractors

Best Model Fit 0.103 0.037 0.110 0.058 0.025 0.063

Chasing Balance on ATT

es.max 0.086 0.037 0.094 0.033 0.022 0.039

es.mean 0.086 0.037 0.094 0.033 0.022 0.039

ks.max 0.087 0.037 0.094 0.033 0.022 0.039

ks.mean 0.086 0.037 0.094 0.033 0.022 0.039

Chasing Balance on ATE

es.max 0.087 0.037 0.095 0.032 0.022 0.039

es.mean 0.085 0.038 0.093 0.032 0.022 0.039

ks.max 0.088 0.037 0.095 0.032 0.022 0.039

ks.mean 0.085 0.038 0.093 0.032 0.022 0.039

All Important

Best Model Fit via cv.folds 0.055 0.064 0.084 0.347 0.070 0.353

Chasing Balance on ATT

es.max 0.052 0.063 0.081 0.205 0.045 0.209

es.mean 0.048 0.063 0.080 0.201 0.045 0.206
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PA (Treatment) vs. non-PA (Control)

ATT ATE

Bias Std Dev RMSE Bias Std Dev RMSE

ks.max 0.053 0.063 0.082 0.206 0.044 0.211

ks.mean 0.048 0.063 0.079 0.201 0.045 0.206

Chasing Balance on ATE

es.max 0.053 0.063 0.083 0.203 0.044 0.208

es.mean 0.048 0.063 0.079 0.198 0.045 0.203

ks.max 0.055 0.063 0.083 0.205 0.044 0.210

ks.mean 0.048 0.063 0.079 0.198 0.045 0.203

Table A3

The Average Coefficient of Variation (CV) of the Weights for All Cases and Methods.

Case 1. PA Case Study Case 2. Abstainers Case Study

ATT
ATE-

Control
ATE-

Treated ATT
ATE-

Control
ATE-

Treated

No Distractors

Best Model Fit 1.12 0.39 0.64 1.25 0.26 0.64

Chasing Balance on ATT

es.max 1.06 0.38 0.60 1.09 0.24 0.64

es.mean 1.05 0.38 0.59 1.12 0.24 0.64

ks.max 1.05 0.38 0.59 1.11 0.24 0.64

ks.mean 1.06 0.38 0.60 1.12 0.24 0.65

Chasing Balance on ATE

es.max 1.10 0.39 0.63 0.95 0.21 0.62

es.mean 1.11 0.39 0.63 0.94 0.21 0.62

ks.max 1.10 0.39 0.63 0.95 0.21 0.62

ks.mean 1.12 0.39 0.64 0.96 0.21 0.63

Distractors

Best Model Fit 0.96 0.22 0.47 0.95 0.13 0.46

Chasing Balance on ATT

es.max 0.87 0.29 0.50 0.94 0.12 0.43

es.mean 0.87 0.29 0.50 0.98 0.11 0.37

ks.max 0.86 0.29 0.50 0.84 0.16 0.55

ks.mean 0.88 0.29 0.51 0.96 0.12 0.42

Chasing Balance on ATE

es.max 0.85 0.29 0.50 0.76 0.15 0.54

es.mean 0.89 0.29 0.51 0.76 0.15 0.55

ks.max 0.84 0.29 0.49 0.74 0.15 0.54

ks.mean 0.90 0.29 0.52 0.77 0.16 0.55
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Case 1. PA Case Study Case 2. Abstainers Case Study

ATT
ATE-

Control
ATE-

Treated ATT
ATE-

Control
ATE-

Treated

All Important

Best Model Fit 0.98 0.19 0.42 0.79 0.12 0.44

Chasing Balance on ATT

es.max 0.87 0.29 0.50 0.84 0.10 0.34

es.mean 0.90 0.29 0.51 0.89 0.09 0.30

ks.max 0.86 0.28 0.49 0.74 0.13 0.45

ks.mean 0.90 0.29 0.51 0.86 0.11 0.36

Chasing Balance on ATE

es.max 0.85 0.28 0.49 0.62 0.13 0.44

es.mean 0.90 0.29 0.52 0.61 0.13 0.44

ks.max 0.84 0.28 0.49 0.59 0.12 0.43

ks.mean 0.90 0.29 0.52 0.62 0.13 0.44

Table A4

Relative Standard errors and coverage rates for all stopping rules and methods considered 

for the abstainers example

Abstainers (Treatment) vs. Drug Users (Control)

ATT ATE

Relative
Standard

Error
Coverage

Rate

Relative
Standard

Error
Coverage

Rate

No Distractors

Best Model Fit 2.04 1.00 1.33 0.02

Chasing Balance on ATT

es.max 2.12 1.00 1.47 0.39

es.mean 2.27 1.00 1.67 0.22

ks.max 2.03 1.00 1.44 0.31

ks.mean 2.23 1.00 1.70 0.19

Chasing Balance on ATE

es.max 1.99 1.00 2.67 0.84

es.mean 2.02 1.00 2.72 0.86

ks.max 1.98 1.00 2.68 0.84

ks.mean 2.02 1.00 2.70 0.85

Distractors

Best Model Fit 1.64 0.9 9 1.0 4 0.0 0

Chasing Balance on ATT

es.max 1.66 0.99 0.60 0.01

es.mean 1.70 1.00 0.73 0.00
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Abstainers (Treatment) vs. Drug Users (Control)

ATT ATE

Relative
Standard

Error
Coverage

Rate

Relative
Standard

Error
Coverage

Rate

ks.max 1.78 0.99 1.23 0.06

ks.mean 1.71 1.00 0.82 0.00

Chasing Balance on ATE

es.max 1.79 0.99 2.06 0.19

es.mean 1.81 0.99 2.23 0.23

ks.max 1.80 0.99 2.13 0.26

ks.mean 1.80 0.99 2.27 0.21

All Important

Best Model Fit 1.58 0.9 8 1.1 5 0.0 1

Chasing Balance on ATT

es.max 1.51 0.98 0.67 0.02

es.mean 1.54 0.98 0.90 0.00

ks.max 1.57 0.98 1.07 0.08

ks.mean 1.55 0.98 0.97 0.00

Chasing Balance on ATE

es.max 1.63 0.96 2.21 0.35

es.mean 1.65 0.97 2.42 0.44

ks.max 1.64 0.95 2.39 0.46

ks.mean 1.64 0.96 2.47 0.41

Table A5

Relative Standard errors and coverage rates for all stopping rules and methods considered 

for the PA example

ATT ATE

Relative
Standard

Error
Coverage

Rate

Relative
Standard

Error
Coverage

Rate

No Distractors

Best Model Fit 0.85 0.47 1.57 1.00

Chasing Balance on ATT

es.max 0.99 0.61 1.58 1.00

es.mean 0.99 0.60 1.58 1.00

ks.max 1.00 0.60 1.57 1.00

ks.mean 0.99 0.61 1.57 1.00

Chasing Balance on ATE

es.max 0.99 0.62 1.56 1.00

es.mean 0.99 0.62 1.56 1.00
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ATT ATE

Relative
Standard

Error
Coverage

Rate

Relative
Standard

Error
Coverage

Rate

ks.max 0.99 0.62 1.56 1.00

ks.mean 0.98 0.61 1.55 1.00

Distractors

Best Model Fit 0.9 7 0.1 9 1.3 8 0.6 8

Chasing Balance on ATT

es.max 1.03 0.37 1.58 0.95

es.mean 1.03 0.37 1.58 0.95

ks.max 1.04 0.36 1.58 0.95

ks.mean 1.04 0.37 1.58 0.95

Chasing Balance on ATE

es.max 1.04 0.36 1.59 0.95

es.mean 1.03 0.38 1.58 0.96

ks.max 1.04 0.35 1.59 0.95

ks.mean 1.03 0.38 1.58 0.95

All Important

Best Model Fit via cv.folds 1.1 9 0.9 3 1.2 1 0.0 0

Chasing Balance on ATT

es.max 1.20 0.94 1.85 0.18

es.mean 1.20 0.94 1.85 0.21

ks.max 1.20 0.93 1.86 0.17

ks.mean 1.20 0.94 1.86 0.20

Chasing Balance on ATE

es.max 1.20 0.93 1.87 0.18

es.mean 1.20 0.94 1.86 0.22

ks.max 1.21 0.93 1.85 0.17

ks.mean 1.20 0.95 1.86 0.22
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Figure 1. 
Overarching Structure for the Simulation Study
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Figure 2. 
Maximum mean ASMD for Model A data generation and four covariates used in propensity 

score estimation (no distractors case) for (a) the PA and (b) the abstainers data generation 

case studies.

Griffin et al. Page 27

J Causal Inference. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Griffin et al. Page 28

J Causal Inference. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Maximum mean ASMD for Model A data generation but with all covariates used in 

propensity score estimation (distractors case) for (a) the PA and (b) the abstainers data 

generation case studies
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Figure 4. 
Maximum mean ASMD for Model B data generation and Model B propensity score 

estimation (All important case) for 4 most influential covariates for (a) the PA and (b) the 

abstainers data generation case studies.
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