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Impaired type I interferon regulation in the
blood transcriptome of recurrent asthma
exacerbations
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Abstract

Background: Asthma exacerbations are an important cause of morbidity in asthma. Respiratory infections are often
involved in asthma exacerbations in both children and adults. Some individuals with asthma have increased susceptibility
to viral infections and as a result increased rates of asthma exacerbations. We sought to identify a transcriptomic signature
in the blood associated with asthma exacerbations triggered by respiratory infections (AETRI) and determine
its association with increased risk for asthma exacerbations.

Methods: We conducted a two-step study using publicly available, previously generated transcriptomic signatures in
peripheral blood mononuclear cells (PBMCs) from asthmatics to identify novel markers of increased risk for asthma
exacerbations. In the 1st step, we identified an in vitro PBMC signature in response to rhinovirus. In the 2nd step, we
used the in vitro signature to filter PBMC transcripts in response to asthma exacerbations in an independent in vivo
cohort. Three different subgroups were identified and studied in the in vivo cohort: 1. Single AETRI; 2. Multiple AETRIs;
and 3. Single non-infectious asthma exacerbations. We performed pathway and network analyses in all independent
comparisons. We also performed an immunologic gene set enrichment analysis (GSEA) of the comparison between
single AETRI and non-infectious asthma exacerbations.

Results: The in vitro signature identified 4354 differentially expressed genes (DEGs) with a fold change (FC) ≥ 1.2, false
discovery rate (FDR) < 0.05. Subsequent analyses filtered by this in vitro signature on an independent cohort of adult
asthma identified 238 DEGs (FC≥1.1, FDR < 0.1) in subjects with a single AETRI and no DEGs in single non-infectious
asthma exacerbations. A comparison between the response in subjects with single and multiple AETRIs identified two
discordant gene subsets. In the largest discordant subset (n = 63 genes) we identified an impaired type I interferon and
STAT1 response in multiple AETRIs during the acute phase of the exacerbation and an upregulated STAT1 response at
baseline. The STAT1 upregulation at baseline in subjects with multiple AETRIs was accompanied by upregulation
of pro-inflammatory molecules including IL-15, interferon-stimulated genes (ISGs), several toll-like receptors 2, − 4, − 5
and − 8 and a triggering receptor expressed on myeloid cells 1 (TREM1) network.

Conclusions: Subjects with asthma and multiple AETRIs display a pro-inflammatory signature at baseline, associated
with elevated STAT, IL-15 and ISGs, and an impaired STAT1 response during acute asthma exacerbations.
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Background
Asthma exacerbations are associated with increased emer-
gency visits and hospitalizations; in severe cases they can
lead to respiratory failure and death. The incidence of
asthma exacerbations has steadily risen over the last
decade. The Centers for Disease Control National Sur-
veillance of Asthma found that as of 2010, 13.9 million
people experienced an exacerbation in the previous year, a
2.9 million increase since 2003 [1]. Exacerbations can be
triggered by a variety of stimuli including respiratory in-
fections, cigarette smoke, allergens, exercise, occupational
exposures, and medications. Previous studies have shown
that a history of a severe exacerbation is a risk factor for
subsequent exacerbations [2]. However, the mechanisms
by which these triggers precipitate an exacerbation and
those that are associated with recurrence are incompletely
understood. Therefore, a unified approach to asthma ex-
acerbations based on biologic risk factors and clinical fea-
tures would improve our ability to stratify individuals at
risk for recurrent exacerbations and provide novel thera-
peutic targets.
Respiratory infections are a common specific trigger of

exacerbations with estimates in the 80% range for both
children and adults; rhinoviruses are the most frequently
isolated pathogen [3, 4]. Several studies have shown that
asthmatics have an impaired antiviral response that in-
creases their susceptibility to viral infections and makes
them prone to asthma exacerbations triggered by respira-
tory infection (AETRI). The mechanisms underlying this
increased susceptibility include a deficient production of
type I Interferons (IFNs), specifically IFN-α and IFN-β.
Type I IFNs are involved in the antiviral response through
activation of immune cells (natural killer and macro-
phages) and enhancement of antigen presentation through
increased expression of major histocompatibility complex
(MHC) and differentiation of virus-specific cytotoxic T
lymphocytes [5, 6]. In asthmatics, although epithelial ex-
pression of type I IFNs during inflammation may be low,
airway epithelial production of type I IFNs is impaired fol-
lowing exposure to rhinovirus [7]. This impairment is also
present in alveolar macrophages, dendritic cells (DCs) and
peripheral blood mononuclear cells (PBMCs) [5, 7, 8].
Consistent with these findings, PBMCs from asthmatics
have impaired expression of antiviral IFN responsive
genes, such as MxA and OAS1, in response to rhinovirus
[5]. Despite mounting evidence that asthmatics have in-
creased susceptibility to respiratory infections through im-
paired antiviral mechanisms, specific approaches to profile
these impairments and link them to increased susceptibil-
ity to AETRIs are not generally used. Such approaches
would facilitate grouping individuals according to their
immune defects and identify novel risk factors for AETRI.
Given the significant morbidity associated with asthma

exacerbations and the observation that some individuals

have increased susceptibility to AETRI, we sought to
characterize the transcriptomic response to single and
multiple AETRIs in PBMCs of subjects with asthma using
publicly available datasets. We hypothesized that subjects
with AETRI exhibit distinct transcriptomic abnormalities
in key pathways involved in the immune response to re-
spiratory infections. To test this hypothesis, we identified
a transcriptomic signature in PMBCs using an in vitro
model of rhinovirus exposure and subsequently used this
signature to characterize the transcriptomic response in
PBMCs to infection in a cohort of adults with single and
multiple AETRIs.

Methods
Datasets
We identified two asthma datasets in the NCBI Gene Ex-
pression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). The
first one was an in vitro dataset of virograms for prediction
of predisposition to asthma exacerbations, GSE68479
[9]. Briefly, this study collected PBMCs from 23 children
with asthma (ages 6–18) participating in the extension
studies following the TREXA and BADGER clinical trials
[10, 11]. Their PBMCs were used in an in vitro assay that
tested paired PBMCs samples in culture for 24 h with and
without human rhinovirus serotype 16. Gene expression
data were generated with the affymetrix Human Gene 1.0
ST microarray (Affymetrix, Santa Clara, CA). Additional
details on RNA collection and extraction methods are de-
scribed elsewhere [9].
The second dataset (in vivo) was a large, multicentric

study of asthma exacerbations in adults (age ≥ 18 years),
GSE19301 [12] .Briefly, PBMCs were collected from sub-
jects with asthma at baseline, during and following an
asthma exacerbation. Gene expression data were generated
with the affymetrix HG-U133A microarray (Affymetrix,
Santa Clara, CA). Additional details on RNA collection and
extraction methods are described elsewhere [12]. We di-
vided the in vivo dataset into 3 groups: 1) single AETRI; 2)
multiple AETRIs; and 3) single non-infectious asthma exac-
erbations. The rationale behind the stratification was first,
individuals with single and multiple AETRIs during the
study period differ in their susceptibility to develop respira-
tory infections; and second, individuals with single non-
infectious asthma exacerbations have different triggers and
are more likely to represent a heterogeneous population
than the single or multiple AETRIs. Based on the original
report by Bjornsdottir et al. the vast majority of AETRIs
were viral in origin and confirmed by a single researcher
[12]. The rationale to use children and adult PBMCs was
derived from our previous demonstration that a gene ex-
pression signature in the blood can help in the stratification
of asthma subgroups in both children and adults, support-
ing the presence of transcriptomic similarities in the blood
between these two age groups [13].
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Computational analyses
Figure 1 illustrates the workflow used in this study. All
microarray CEL files were downloaded for the three
datasets. Quality control checks on the microarrays
were conducted through removal of low quality sam-
ples. Analyses were performed with R software version
3.3.1 (R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing,
Vienna, Austria). Each dataset and subgroup was ana-
lyzed using R packages. Normalization was performed
with the robust multi-array (RMA) algorithm imple-
mentation in the Affy (version 1.52.0) and Oligo (ver-
sion 1.38.0) packages, and the ComBat function of the
sva package (version 3.22.0) was used for batch adjust-
ment [14–16]. Additional statistical and fold change
(FC) analyses were performed with Genespring version
12.6 (Agilent Technologies, Santa Clara, CA).
Differences in gene expression for the in vitro dataset,

comparing PBMCs from the same subjects cultured with
and without rhinovirus, were determined using a paired
t test, with a false discovery rate (FDR) adjusted p-value
of < 0.05 and FC ≥1.2. Differentially expressed genes
(DEGs) in this analysis were used subsequently to filter the
single AETRI and non-infectious asthma exacerbations
subgroup analyses. The single AETRI and non-infectious
asthma exacerbations analyses compared exacerbation to
baseline samples from the same subjects using unpaired t
tests, based on the difference between the number of base-
line samples and exacerbation samples. Significance for
these analyses was established at a FC ≥1.1 and FDR-
adjusted p-value of < 0.1. Pathway enrichment analyses
of the pairwise comparisons were performed with
MetaCore version 6.27 (Thomson Reuters, New York,
NY, USA), analyses with FDR-adjusted p-value < 0.05
are reported. Gene set enrichment analysis (GSEA) using
the C7 human immunological signatures collection were

performed with the GSEA v2.2.0 software using the mo-
lecular signatures database (MSigDB) v5.2 (Broad Institute,
Cambridge, MA) [17, 18]. The C7 collection includes gene
sets that represent cell states and perturbations within the
immune system and manually curated signatures of
published studies in human and mouse immunology
[19]. One thousand permutations based on phenotype
were used on the GSEA analyses of normalized matrices for
each dataset. Gene set enrichment was considered signifi-
cant at a qFDR < 0.05. Gender assignment in the in vivo
dataset was completed using Staedtler et al., robust and
tissue-independent gender-specific transcript biomarkers
[20]. Genes with opposite regulation between single and
multiple AETRIs (discordant) were identified by comparing
FCs in the exacerbation signature identified in single AETRI.
Following batch and cell count adjustment with ComBat,
baseline comparisons between subjects in the single and
multiple AETRIs were performed to identify transcriptomic
differences in PBMCs during non-exacerbation periods.

Results
Characterization of the transcriptomic response to
rhinovirus exposure in PBMCs of subjects with asthma
In order to characterize the transcriptomic profile of PBMC
in a model of acute viral infection, we analyzed an existing
dataset on gene expression changes in an in vitro model of
rhinovirus exposure in PBMCs of children with asthma.
PBMCs from 23 donors were used in an in vitro ex-
periment as part of the development of virograms for
prediction of predisposition to asthma exacerbations
(GEO GSE68479) by Gardeux et al. [9]. A total of 46
samples, representing matched PBMC samples ex-
posed to rhinovirus and culture medium were used. A
large number of genes (n = 4354; FC ≥ 1.2 and FDR-
adjusted p-value < 0.05) were identified using this ap-
proach (Fig. 1; Additional file 1: Table S1). CCL8 (MCP-2)

Fig. 1 Study design. Abbreviations: AETRI asthma exacerbation triggered by respiratory infection, GSEA Gene set enrichment analysis, FC Fold
change, AEs Asthma exacerbations

Gomez et al. BMC Medical Genomics  (2018) 11:21 Page 3 of 12



was the most abundant transcript in the rhinovirus-
exposed PBMCs with a 30-fold increase. CCL8 is an
IFN-inducible chemokine involved in chemotaxis of mono-
cytes, lymphocytes, basophils and eosinophils, and an
important component of the antiviral response. [21]
Consistent with this finding, several type I interferons
(IFNA -1,-4,-5,-7,-10,-13,-14,-16,-17 and − 21) and
interferon-stimulated genes (ISGs) IFIT − 1 and − 2,
and IFI27, were abundant above a 10-fold increase,
confirming the induction of an immune response to
rhinovirus (Additional file 1: Table S1). These findings
show that the transcriptional profile of PBMCs in a model
of rhinovirus exposure is characterized by a robust induc-
tion of an IFN-mediated response to rhinovirus. We used
this profile as a tool to focus gene expression analyses of
PBMC in response to respiratory infections during asthma
exacerbations in subsequent experiments.
To characterize the pathways and networks involved

in this PBMC-specific response to rhinovirus, we per-
formed pathway enrichment analysis of the differentially
expressed genes. The analysis showed a prominent acti-
vation of the IL-10 and IL-18 signaling pathways. The
IL-10 pathway has been associated with antiviral responses
in DCs and regulatory T cells, and found to be elevated in
rhinovirus-induced lower respiratory illness [22, 23]. Con-
sistent with the experimental design to test the response to
rhinovirus in PBMCs, the gene ontology, network, and
disease enrichment analyses showed activation of IFN
signaling, antigen presentation and response to infection,
respectively (Additional file 1: Table S2). These findings col-
lectively support the induction of the antiviral response to
rhinovirus at 24 h in PBMCs from children with asthma
and may assist in the identification of immune transcripts
involved in the PBMC response to AETRI.

The PBMC transcriptome in asthma exacerbations has
increased type-I IFN activation and discriminates single
AETRI from non-infectious asthma exacerbations
In order to validate our observations from the in vitro
experiment, we sought to identify similar gene expression
changes in PBMCs from subjects in an existing dataset of
asthma exacerbations [12]. We subdivided the study popu-
lation from the in vivo cohort in three groups: single
AETRI, multiple AETRIs, and non-infectious asthma exac-
erbations. Clinical characteristics of the three groups are
summarized in Table 1.
The single AETRI group consisted of 41 subjects with

asthma and a single exacerbation. A total of 41 exacer-
bation samples and 147 baseline samples (non-exacerba-
tion) that passed quality control checks were used for
this analysis. (Figure 1; Table 1) This group was predom-
inantly female (68%), white (88%), non-obese, with non-
severe asthma (61%) and the median FEV1 was within
normal limits (88% of predicted). Use of inhaled steroids

was 66% at the time of exacerbation, with the remaining
34% using systemic steroids.
The non-infectious asthma exacerbations group con-

tained 38 subjects; 38 exacerbation and 124 baseline sam-
ples. This group was predominantly female (58%), white
(87%), non-obese; with a non-significant higher rate of se-
vere asthma (53%) and similar FEV1 (78% of predicted)
compared to single AETRI. The rate of systemic steroid ex-
posure during non-infectious asthma exacerbations (50%)
was higher than in single AETRI (32%; p < 0.01).
Analyses to identify DEGs between single AETRI and

non-infectious asthma exacerbations were filtered by the
4354 genes identified in the in vitro cohort, as described
above. In each group we compared exacerbation samples
with baseline sample(s) from the same individuals. In
single AETRI, we identified 238 DEGs, the majority were
upregulated (86%) with modest fold changes (< 2-fold)
(Fig. 1; Table 1; Additional file 1: Table S3). A similar ana-
lysis in the non-infectious asthma exacerbations group
showed no DEGs (Fig. 1). These results indicate that a
transcriptomic signature in PBMCs discriminates single
AETRIs from non-infectious asthma exacerbations.
To characterize the pathways and networks in single

AETRI, we performed pathway enrichment analyses with
MetaCore in the 238 DEGs. Pathway analyses show up-
regulation of ISGs and networks involved in the IFN-
mediated response to airway infections, including STAT1
and JAK2 (Additional file 1: Tables S4 and S5). More-
over, the highest ranked network in single AETRI was
also a STAT1-dependent network (p < 0.001; Fig. 2).

The transcriptome of activated dendritic cells is enriched
in single AETRI
To characterize the immune response signature of single
AETRI and its cellular source, we conducted a GSEA
using the C7 human immunological signatures in the
MSigDB [19]. Using this computational approach, we
found significant enrichment for 387 gene signatures in
this collection. Figure 3a shows the distribution of cell
type enrichment using immunologic GSEA signatures
in the PBMC transcriptome of single AETRI. Of these
387 gene signatures, 17% were DC-associated signatures,
representing the largest contribution from all cell types.
This finding is notable since DCs represent only a small
fraction (2%) of the whole PBMC compartment [24]. To
characterize this observation further, we generated a cor-
relation heatmap of representative DC-associated genes
and pathways enriched in the immunologic GSEA analysis
(Fig. 3b shows genes present in > 15% of enriched path-
ways and pathways with > 15% of these genes in PBMCs
of single AETRI). We identified 52 DC-associated genes
involved in innate immune and antiviral responses. Im-
portantly, in this DC enrichment subset, the majority of
the upregulated transcripts were type I IFN activation and
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downstream ISGs during single AETRI (Fig. 3c). A similar
analysis in non-infectious asthma exacerbations did not
show such activation of IFN signaling or enrichment for
DC-associated transcripts (not shown). Among the corre-
lated DC datasets in Fig. 3b, GSE29618 showed enrich-
ment for 4 upregulated genes (OAS3, GBP1, GBP2 and
BASP1) in myeloid DCs (mDCs) vs. plasmacytoid DCs
(pDCs). Of these 4 genes, only OAS3 and GBP1 were
upregulated during AETRI. These findings suggest enrich-
ment for mDCs but given the limited number of DEGs, it
is not possible to discriminate the role of mDCs and pDCs
in AETRI. Taken together, these network enrichment
analyses and immunologic GSEA point to increased
type I IFN activation in single AETRI with a strong
DC-associated gene signal. This signature is specific to

single AETRI, based on the absence of a similar re-
sponse in non-infectious asthma exacerbations.

STAT1 signaling is decreased at the time of exacerbation
in multiple AETRIs compared to single AETRI
To identify gene expression changes that differentiate
single from multiple AETRIs and may identify predispos-
ition to increased susceptibility to asthma exacerbations, we
compared clinical and transcriptomic differences between
these groups. The multiple AETRIs group was almost
exclusively female (82%), white (91%), obese (BMI =
34.2 [27.9–38.7] kg/m2, p = 0.03), with high rates of
severe asthma (64%) and decreased FEV1 (62% of pre-
dicted), Table 1. Systemic steroid exposure was higher
during the acute exacerbation than single AETRI (91%

Table 1 Characteristics of subjects in the in vivo dataset

Single AETRI Non-infectious AEs Multiple AETRIs

(N = 41) (N = 38) (N = 11)

Exacerbation samples (n) 41 38 27

Baseline samples (n) 147 124 32

Female Gender 28 (68%) 22 (58%) 9 (82%)

White Race 36 (88%) 33 (87%) 10 (91%)

BMI, kg/m2 27.7 [24.5–31.3] 27.8 [24.7–32.0] 34.2 [27.9–38.7]

GERD 8 (20%) 13 (34%) 6 (55%)

Atopy Status

Atopic 27 (66%) 25 (66%) 8 (73%)

Non-Atopic 9 (22%) 8 (21%) 1 (9%)

Unknown 5 (12%) 5 (13%) 2 (18%)

Asthma Severity at the time of Exacerbation

Mild Persistent 5 (12%) 2 (5%) 0 (0%)

Moderate Persistent 20 (49%) 16 (42%) 4 (36%)

Severe Persistent 16 (39%) 20 (53%) 7 (64%)

FEV1 predicted (%) 88 [65–98] 78 [62–87] 62 [45–95]

IgE level, IU/ml 107 [46–224] 117 [53–198] 64 [47–65]

Inhaled CS use 13 (32%) 19 (50%) 10 (91%)

Systemic CS use 15 (37%) 12 (32%) 4 (36%)

Leukotriene receptor antagonist use 15 (37%) 12 (32%) 4 (36%)

Maximum steroid exposure during an exacerbation

Systemic 13 (32%) 19 (50%) 10 (91%)

Inhaled 27 (66%) 19 (50%) 1 (9%)

Other 1 (2%) 0 (0%) 0 (0%)

Bactin-GAPDH 5′ 3′ ratio exacerbation 0.86 [0.77–0.96] 0.84 [0.78–0.95] 0.86 [0.69–0.93]

Bactin-GAPDH 5′ 3′ ratio baseline 0.85 [0.70–0.93] 0.84 [0.73–0.92] 0.85 [0.73–0.92]

Ratio of M:L whole blood exacerbation 0.19 [0.15–0.32] 0.26 [0.15–0.31] 0.24 [0.20–0.33]

Ratio of M:L whole blood baseline 0.17 [0.13–0.22] 0.20 [0.15–0.26] 0.23 [0.21–0.26]

Data are n (%) or median [25–75 interquartile range] unless otherwise specified
Definition of Abbreviations: AETRI asthma exacerbation triggered by respiratory infection, AEs asthma exacerbations, BMI body mass index, GERD gastroesophageal
reflux disease, FEV1 forced expiratory volume in 1 s, IgE immunoglobulin E, CS corticosteroids, GAPDH glyceraldehyde-3-phosphate dehydrogenase, M:L monocytes
to lymphocytes
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vs. 32%; p < 0.01). A higher value in the monocyte-to-
lymphocyte ratio was seen in multiple AETRIs com-
pared to single AETRI during the acute exacerbation
period (0.24 vs. 0.19; p = 0.04). To compare the gene
expression differences in the AETRI signature (238
DEG), we compared FC differences between single and
multiple AETRIs groups (Additional file 1: Table S6).
We found an overall positive correlation between FCs
in both groups (r2 = 0.44; p < 0.01). However, two gene
subsets showed prominent differences between single
and multiple AETRIs during exacerbations (Fig. 4a;
Additional file 1: Table S6). The largest subset consisted
of 63 genes that were upregulated in single AETRI but
downregulated in multiple AETRIs. The second subset
included 4 genes that were upregulated in multiple
AETRIs but downregulated in single AETRI (FBXO16,
DYRK2, ID3, PIK3R1; Additional file 1: Table S6). Given
the larger size and potential biologic association with
multiple AETRIs we focused on the 63-gene discordant
signature. Pathway enrichment analysis showed that the
top ranked pathway was the SLE genetic marker-specific
pathway in antigen-presenting cells (p = 0.01), this pathway
includes important elements of IFN signaling (STAT1, and
IFN-induced with helicase C domain 1-IFIH1 [MDA-5])
(Additional file 1: Table S7). Further analyses demonstrate
that several STAT1 transcription factor networks were
enriched in the discordant genes (p < 0.001; Additional
file 1: Table S8). A network depicting the relationships
between STAT1, CD36, CAPZ beta, NMI, CCR2 is pre-
sented in Fig. 4b. This figure provides a better under-
standing of the direct relation between STAT1 and other

genes in the discordant signature including thrombospon-
din (CD36), the N-myc, STAT interactor (NMI) [25, 26].
Collectively, these observations identify a type I IFN-
associated acute phase signature in subjects with multiple
AETRIs that differs from single AETRI. This transcrip-
tional signature is characterized by blunted upregulation
of STAT1 and downstream ISG responses during AETRI,
and may underlie the increased susceptibility to multiple
AETRIs.

Multiple AETRIs are associated with increased baseline
expression of type I interferons and STAT1 in PBMCs
Due to the observed differences during the acute exacer-
bation response between subjects with single and multiple
AETRIs, we hypothesized that similar differences could
also be present at baseline, identifying a group predisposed
to multiple exacerbations. We compared baseline PBMC
samples of individuals with single and multiple AETRIs.
The difference in the monocyte-to-lymphocyte ratio seen
during the asthma exacerbations was maintained at base-
line (0.23 vs 0.17; p < 0.01). Accordingly, we adjusted our
analysis by the monocyte-to-lymphocyte ratio, in addition
to batch adjustment. We identified 830 DEGs between
these two groups at baseline (Additional file 1: Table S9).
STAT1 was upregulated at baseline in subjects with mul-
tiple AETRIs vs. single AETRI (FC = 1.2), contrasting with
STAT1 downregulation seen in the same group during the
acute exacerbation period (Fig. 5a). Similarly, several ISGs
and IL-15 were present among the upregulated transcripts
at baseline in subjects with multiple AETRIs. The upregu-
lation of IL-15 at baseline in multiple AETRIs is similar to

Fig. 2 Top network enriched in single AETRI. Several upregulated genes are part of this network including STAT1, JAK2, several interferon induced
proteins, CCL2 and CCR2
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a b

c

Fig. 3 a Immunologic gene set enrichment analysis by cell type in single AETRI. This enrichment analysis found a large enrichment (17%) for
activated dendritic cells. b Dendritic cell-specific enrichment in immunologic gene set enrichment analysis of single AETRI. Characterization of the
cell-specific enrichment for dendritic cells was based on upregulation of several interferon-induced genes and IL-15. * This computational method
identifies immunologic GSEA pathways of experiments that have similar gene expression characteristics to the experiment being analyzed. The
names of those experiments are in the titles of the pathway and as a result they include some description of how they were generated. For
example: “DC vs MAC M Tuberculosis up” is telling us that the gene expression profile in our experiment is correlated with upregulated genes in
an existing gene expression study that compared DCs vs. macrophages in response to Mycobacterium Tuberculosis. c Top network enriched in
the dendritic cell-specific enrichment in single AETRI. MyD88, IL-15, IP-10 and several interferon-induced genes are upregulated in the top network
of genes enriched in the dendritic cell-specific enrichment
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a b

Fig. 4 a Gene expression profiles in single AETRI vs. multiple AETRIs. This graph represents the fold change relation between single and multiple
AETRIs and identifies two discordant subsets of genes (left upper quadrant and right lower quadrant). The large right lower quadrant includes
STAT1. b STAT1 is enriched in the largest discordant set of genes in multiple AETRIs vs. single AETRI. This STAT1 network derived from genes in the
right lower quadrant of Fig. 4a represents genes that failed to respond in individuals with multiple AETRIs when compared with single AETRI

a b

Fig. 5 a STAT1 expression in single and multiple AETRIs at baseline and during exacerbation. b A TREM1 network is activated at baseline in subjects
with multiple AETRIs. This network demonstrates a pro-inflammatory profile at baseline in subjects with multiple AETRIs. Several TLRs, MyD88 and other
molecules associated with this TREM1 network are proinflammatory and may underlie the increased susceptibility to multiple AETRIs

Gomez et al. BMC Medical Genomics  (2018) 11:21 Page 8 of 12



the IL-15 upregulation seen in the DC signature during
the acute exacerbation period in single AETRI. Enrich-
ment analyses of these DEGs identified that the top two
process networks were neutrophil activation and TREM1
signaling (Additional file 1: Table S10). Figure 5b illus-
trates changes in the TREM1 network. TREM1 is a surface
marker of neutrophils and monocytes that is activated
during viral infections [27, 28] and a recent report identi-
fied that upregulation of TREM1 in peripheral blood is as-
sociated with decreased asthma control [29]. Collectively,
these findings indicate the presence of a pro-inflammatory
transcriptional pattern at baseline in subjects with mul-
tiple AETRIs. Specifically, increased expression of STAT1,
ISGs, IL-15 and a TREM1 network.

Discussion
This study shows that subjects with asthma and multiple
AETRIs exhibit a pro-inflammatory PBMC transcriptome
at baseline characterized by abnormalities in STAT1 and
IL-15 and a dysregulated transcriptional profile during
asthma exacerbations. These profiles were identified by
contrasting PBMC profiles in three groups of asthmatics
with single and multiple AETRIs, and non-infectious
asthma exacerbations. Analysis of the PBMC transcrip-
tome was motivated by the non-invasive nature of this
technique and availability of a large validation dataset [12].
Our approach used an in vitro model of viral infection to
identify relevant transcripts followed by the identification
of a specific, single AETRI transcriptional signature,
helped separate these exacerbations from non-infectious
ones. The single AETRI signature was characterized by ac-
tivation of type I interferon pathways and genes involved
in the immune response to bacterial infections in the
airway. In contrast with the single AETRI group, subjects
with multiple AETRIs demonstrated a blunted STAT1-
dependent network and ISG response at the time of an ex-
acerbation despite a higher STAT1 expression at baseline.
The transcriptional signature in PBMCs during single

AETRI was specific as it was absent in subjects with non-
infectious asthma exacerbations. We used the DEGs identi-
fied in an in vitro model of viral infection to discriminate
infectious exacerbations from non-infectious asthma exac-
erbations, given the significant heterogeneity in the latter
and our interest in evaluating elements of the antiviral re-
sponse in asthma (Fig. 1). The single AETRI signature was
enriched for activated DCs, suggesting that DCs contribute
substantially to the complex transcriptional response to
AETRIs despite accounting for a small fraction of cells in
the PBMC compartment. Our study was not able to deter-
mine from this data what subtypes of DCs are responsible
for this transcriptional enrichment. Further characterization
of these DC subsets may yield additional insights into their
role in AETRIs. A limitation of our findings was the lack of
information on the criteria used to determine AETRIs in

the original study [12]. We were not able to obtain add-
itional information regarding these criteria. Based on our
two-step study design and available information, the best
description of the identified transcriptomic signature in the
acute response to AETRIs is biased towards viruses. The
ability of this signature to distinguish between infectious
and non-infectious triggers of asthma exacerbations needs
to be validated prospectively, as it is potentially relevant for
clinical practice.
We identified dysfunctional gene expression in the

acute exacerbation in subjects with multiple AETRIs.
Further enrichment analysis found interferon and STAT1
signaling impairment. This finding is consistent with
previous observations of defective antiviral responses in
subjects with asthma [5, 30]. Chen et al. found that in
subjects with asthma STAT1 phosphorylation was influ-
enced by IL-4 [31, 32]. We did not find differences in
IL4 expression in PBMCs between the single and mul-
tiple AETRIs groups at baseline (not shown), however,
STAT1 expression was higher at baseline in subjects with
multiple AETRIs than single AETRI. Accordingly, IL4-
independent factors may be responsible for the differ-
ences seen in STAT1 gene expression.
In addition to the increased expression of STAT1 at

baseline, we found upregulation of several cell adhesion
molecules, TLRs − 2, − 4, − 5 and − 8, and a TREM1 net-
work at baseline in subjects with multiple AETRIs. This
suggests the presence of an activated, pro-inflammatory
state that may lead to increased susceptibility to respiratory
infections through defective immune cell signaling or skew-
ing of the response to infections. The pro-inflammatory sig-
nature at baseline was associated with decreased induction
of antiviral genes during multiple AETRIs, although abso-
lute gene expression changes were similar to single AETRI.
A recent study identified an association between TREM1 in
a blood signature and asthma control, suggesting that
this gene may be a potential marker of disease activity,
it is unknown how TREM1 expression, asthma control
and asthma exacerbations are related to each other [29].
IL-15 was upregulated in the acute exacerbation response

in single AETRI and at baseline in multiple AETRIs. TLR
signaling through MYD88 has been shown to induce IL-15
upregulation and STAT1 is required for IL-15 induction
[33, 34] The differences in subjects with multiple AETRIs
at baseline were not maintained during the acute exacerba-
tion period characterized by IL-15 induction in single
AETRI (FC = 1.21), but no significant IL-15 upregulation in
multiple AETRIs (FC = 1.03). IL-15 deficiency in asthma
exacerbations has been previously identified in bronchoal-
veolar lavage macrophages [35]. In asthma, IL-15 has been
associated with regulation of eosinophil viability [36]. Based
on these previous observations and our novel finding in
multiple AETRIs, the role of IL-15 in asthma appears to be
context specific with different roles at baseline and during
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respiratory infections. We speculate that the increased IL-
15 expression at baseline may be associated with increased
eosinophil survival and the decreased IL-15 response dur-
ing the acute exacerbation period may reflect inhibition of
IL-15 production due to constant stimulation of IL-15 pro-
ducing cells at baseline or exhaustion of these cells. These
findings of STAT1 and IL-15 expression in the PBMC tran-
scriptome at baseline in subjects with multiple AETRIs sup-
port the presence of a pro-inflammatory state characterized
by upregulation of genes involved in monocyte activation
and eosinophil survival, leading to increased susceptibility
to infectious exacerbations.
Potential mechanisms of increased basal activation of

type I interferons, STAT1, and IL-15 may reflect chronic
antigenic, including chronic viral infections (HIV, Hepatitis
B and C); decreased T-cell inhibitory activity; sustained
inflammatory activity leading to T cell exhaustion [37]; and
autoimmune diseases where IFN activation is essential for
pathogenesis [38]. Plasmacytoid DC contribute to immuno-
pathogenesis through local and systemic effects via release
of immune mediators [38]. To exemplify this, pathway
enrichment of discordant genes in our analysis identi-
fied “antigen-presenting cells in lupus” as the top pathway
including (STAT1 and MDA5). Future studies should focus
on IFN subclass and mechanisms of immune activation
driving AETRI in this cohort.
Several questions remain; do activated monocytes or

DCs lead to this phenotype? Or do they mediate their
effect through increased activation of other cell types in-
cluding neutrophils, eosinophils and lymphocytes. It is
known that IL-15 functions in a contact-dependent man-
ner and promotes TH1 cell-mediated immunity leading to
tissue destruction mediated through co-stimulation of
effector cytotoxic T cells [39]. An additional question is,
do these activated cells localize to the lung, leading to in-
creased susceptibility to multiple AETRIs? we speculate
that some of the cell activation differences seen in the
PBMC compartment may translate into the lung and may
be responsible for the multiple AETRIs phenotype.
The use of a pre-existing gene expression dataset led to

certain limitations in our study design and data analysis. The
use of a transcriptome-based signature does not take into ac-
count protein function and post-translational modifications
that play a role on cellular function. Our study is also unable
to answer if these transcriptomic responses result from spe-
cific genetic variation, comorbidities, pharmacotherapy, or
virus-specific effects. The limited virus detection data in the
in vivo cohort is of particular importance, as RV, Influenza,
Parainfluenza, and other viruses may seasonally overlap, yet
have distinct immune responses that condition future im-
mune activation to allergens and infection.
We worked to overcome some of these methodological

limitations by using a stringent quality control pipeline,
including batch adjustment to decrease the influence of

batch and cell differential effects. Assessments of gene
expression enrichment in specific cell types would be
informative, yet this was not possible in our study as
differential cell count information was not available. We
also used a rational filtering approach to enhance our
ability to identify transcriptional elements involved in
the response to infection by using an in vitro experiment
of the response to rhinovirus in the same cellular com-
partment (PBMCs) from subjects with asthma. However,
we did not have access to data on specific viruses identi-
fied at the time of exacerbation, limiting our ability to
discriminate antiviral response patterns associated with
distinct viral pathogens. There is a potential for overlap
between aeroallergens and respiratory pathogens in asthma
exacerbations that could be a confounder for our findings.
We lack comprehensive information on TH2 profiles or
surrogate markers of TH2 inflammation in these individuals
and are unable to use that adjustment to inform our con-
clusions. The larger exposure to systemic steroids may have
affected the AE response in some individuals; however, the
presence of transcriptional differences at baseline suggests
that the findings in the acute period are preceded by tran-
scriptional abnormalities at baseline. Finally, each group
comparison was assembled so patient samples at baseline
served as control to their exacerbation samples. Despite
these strategies to decrease the impact of the inherent limi-
tations in this study, we believe that prospective validation
of the findings is necessary.
We propose that future characterization of asthma

exacerbations requires a more refined approach that in-
cludes a better identification of respiratory pathogens
leading to AETRIs and a comprehensive search for non-
infectious triggers. Transcriptomic profiling at the time of
exacerbation and at baseline has the potential to uncover
immune response defects to respiratory infections and
identify molecular features associated with increased sus-
ceptibility to infectious exacerbations. Our work provides
evidence of impaired antiviral immunity in asthma and
signal a potential mechanism for immune dysregulation at
baseline and during exacerbations in patient subsets. The
non-invasive nature of the PBMC transcriptome increases
the likelihood to obtain a sample and may offer important
clues to identify distinct pro-inflammatory states respon-
sible for increased susceptibility to asthma exacerbations.

Conclusion
Subjects with multiple AETRIs can be differentiated at
baseline through non-invasive profiling of circulating
PBMCs demonstrating a pro-inflammatory state at base-
line, characterized by elevated STAT1, ISGs and IL-15 ex-
pression, as well as enrichment of an upregulated TREM1
network. This pro-inflammatory profile may underlie the
increased frequency of asthma exacerbations triggered by
respiratory infections.
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