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Key points

� An increase in the excitability of GABAergic cells has typically been assumed to decrease
network activity, potentially producing overall anti-epileptic effects. Recent data suggest that
inhibitory networks may actually play a role in initiating epileptiform activity.

� We show that activation of GABAergic interneurons can elicit synchronous long-lasting
network activity.

� Specific interneuron subpopulations differentially contributed to GABA network synchrony,
indicating cell type-specific contributions of interneurons to cortical network activity.

� Interneurons may critically contribute to the generation of aberrant network activity
characteristic of epilepsy, warranting further investigation into the contribution of distinct
cortical interneuron subpopulations to the propagation and rhythmicity of epileptiform
activity.

Abstract In the presence of the A-type K+ channel blocker 4-aminopyrdine, spontaneous
synchronous network activity develops in the neocortex of mice of either sex. This aberrant
synchrony persists in the presence of excitatory amino acid receptor antagonists (EAA blockers)
and is considered to arise from synchronous firing of cortical interneurons (INs). Although
much attention has been given to the mechanisms underlying this GABAergic synchrony,
the contribution of specific IN subtypes to the generation of these long-lasting discharges
(LLDs) is incompletely understood. We employed genetically-encoded channelrhodopsin and
archaerhodopsin opsins to investigate the sufficiency and necessity, respectively, of activation of
parvalbumin (PV), somatostatin (SST) and vasointestinal peptide (VIP)-expressing INs for the
generation of synchronous neocortical GABAergic discharges. We found light-induced activation
of PV or SST INs to be equally sufficient for the generation of LLDs, whereas activation of VIP INs
was not. By contrast, light-induced inhibition of PV INs strongly reduced LLD initiation, whereas
suppression of SST or VIP IN activity only partially attenuated LLD magnitude. These results
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suggest neocortical INs perform cell type-specific roles in the generation of aberrant GABAergic
cortical network activity.

(Resubmitted 22 September 2017; accepted after revision 13 December 2017; first published online 23 December 2017)
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Introduction

Synchronous epileptiform activity, in the form of long-
lasting discharges (LLDs), occurs spontaneously and
propagates through the neocortex in the presence of
the A-type K+ channel blocker 4-aminopyridine (4-AP)
(Avoli & Perreault, 1987; Avoli et al. 1988). Optogenetic
studies in the entorhinal cortex indicate that stimulation
of somatostatin- (SST) or parvalbumin (PV) INs evokes
epileptiform events similar to spontaneous 4-AP induced
LLDs (Shiri et al. 2015; Yekhlef et al. 2015). LLDs
persist when excitatory glutamatergic neurotransmission
is blocked with 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX) and D-(–)-2-amino-5-phosphonopentanoic acid
(D-APV) (EAA blockers) and they are suppressed by
the GABAA antagonist bicuculline (Aram et al. 1991;
Michelson & Wong, 1991; Avoli et al. 1994). This
suggests that the events arise from synchronous activity of
inhibitory interneurons (INs) and represent propagating
GABA-mediated excitation (Perreault & Avoli, 1992;
Lamsa & Kaila, 1997; Williams & Hablitz, 2015). Much of
the work carried out aiming to identify and characterize
the mechanism underlying this GABAergic network
synchrony suggests an accumulation of extracellular K+
produces a shift in the Cl− equilibrium as a result of
hypofunction of the K+-Cl- cotransporter KCC2, causing
activation of GABAA receptors to produce excitatory
currents at more hyperpolarized membrane potentials
than normal. (Morris et al. 1996; Louvel et al. 2001; Hamidi
et al. 2015). In the neonatal hippocampus, spontaneous
LLDs as a result of GABAergic network activity occur
without pharmacological manipulations (Khazipov et al.
1997). In the present study, we used the 4-AP plus
EAA blockers model to investigate the role of specific
IN classes in generating and regulating LLDs in the
neocortex.

The cortical GABAergic IN population is composed
of distinct subgroups that are often identified by the
expression of specific cell markers (Hendry et al. 1989;
Somogyi & Klausberger, 2005; Yuste, 2005). The most
abundant subpopulations (i.e. those expressing PV or SST)
each account for 30–50% of the cortical IN population
(Lee et al. 2010; Miyoshi et al. 2010; Xu et al. 2010).
These cell types have been shown to exhibit distinct
physiological and morphological characteristics, as well
as unique synaptic connectivity patterns, allowing them
to differentially contribute to network activity (Kubota

et al. 1994; Toledo-Rodriguez et al. 2004, 2005; Miyoshi
et al. 2007; Uematsu et al. 2008; Rudy et al. 2011). We
have recently shown that 4-AP alters the action potential
(AP) and repetitive firing properties of Martinotti cells
and fast-spiking basket cells in neocortex, the most
common SST- and PV-expressing cells, respectively,
making these cells prime candidates for involvement in
LLD initiation (Williams & Hablitz, 2015). Vasointestinal
peptide (VIP)-expressing INs also comprise a substantial
portion of the cortical IN population (Vucurovic et al.
2010; Rudy et al. 2011; Zeisel et al. 2015). A unique
property of VIP cells is their ability to inhibit other
INs, particularly SST-expressing cells, thereby facilitating
network disinhibition (von Engelhardt et al. 2007; Lee
et al. 2013; Pfeffer et al. 2013; Pi et al. 2013). We
therefore characterized LLD responses in these three IN
classes and, using genetically encoded opsins driven by IN
specific promoters, assessed the effect of their activation
and silencing on LLDs. We found PV-expressing cells to
be both necessary and sufficient for the generation of
LLDs, whereas SST and VIP were found to only partially
contribute to LLD generation, with VIP cells showing
the least involvement. These results demonstrate the cell
type-specific contribution of cortical INs to network
activity and support a role for INs in the generation of
aberrant neuronal synchrony.

Methods

Ethical approval

All of the experiments were performed in accordance with
the National Institutes of Health Guide for the Care and
Use of Laboratory Animals with protocols approved by the
University of Alabama at Birmingham Institutional Care
and Use Committee. Animals had ad libitum access to food
and water. All available measures were taken to minimize
pain or discomfort for research subjects.

Animals

Experiments were performed on mouse lines with
IN subtype-specific expression of genetically encoded
opsins, achieved using the cre-lox system. All mouse
strains were obtained from the Jackson Laboratory
(Bar Harbor, ME, USA). Homozygous SST-IRES-Cre
(Ssttm2.1(cre)Zjh/J; stock no: 013044), PV-Cre (B6;
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129P2-Pvalbtm1(cre)Arbr/J; stock no: 008069) or Vip-
IRES-Cre (Viptm1(cre)Zjh/J; stock no: 010908) mice were
crossed with homozygous Ai32 (B6;129S-Gt(ROSA)
26Sortm32(CAG-COP4∗H134R/EYFP)HZE/J; stock no: 012569) or
Ai35D (B6;129S-Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze/J;
stock no: 012735) mice to produce animals with cell
type-specific expression of channelrhodopsin (ChR) or
archaerhodopsin (Arch), respectively.

Slice preparation

Acute cortical slices containing the sensorimotor cortex
were prepared from 6–10-week-old mice of either sex
from each strain. Data from neurons from males and
females were combined because no sex differences were
observed. Animals were anaesthetized with isoflurane
and decapitated. The brain was quickly removed and
immediately placed in ice-cold oxygenated (95% O2/5%
CO2, pH 7.4) cutting solution consisting of (in mM):
135 N-methyl-D-glucamine, 23 NaHCO3, 1.5 KH2PO4,
0.4 ascorbic acid, 1.5 KCl, 0.5 CaCl2, 3.5 MgCl2 and
10 D-glucose (Tanaka et al. 2008). Coronal brain slices
(300 μm thick) were made using a Microm HM 650
vibratome (Microm, Walldorf, Germany). Slices were
stored in artificial CSF (aCSF) containing (in mM)
125 NaCl, 26 NaHCO3, 1.25 NaH2PO4, 3.5 KCl, 2.0 CaCl2,
2.0 MgCl2 and 10 D-glucose at 37°C for 45 min, and then
kept at room temperature until recording for a minimum
of 1 h.

Whole-cell recording

Individual slices were transferred to a submerged
recording chamber mounted on the stage of a Zeiss Axio
Examiner D1 microscope (Carl Zeiss Inc., Thornwood,
NY, USA), equipped with Dodt contrast optics, a 40×
water immersion lens and infrared illumination to
view neurons in the slices. The recording chamber was
continuously perfused with oxygenated aCSF (3 mL min−1

at 30°C). Borosilicate patch electrodes controlled by
a Sutter MP-225 motorized micromanipulator (Sutter
Instruments, Novato, CA, USA) that had an open tip
resistance of 3–6 M� when filled with an intracellular
solution containing (in mM): 125 K-gluconate, 10 KCl,
10 Hepes, 10 creatine-PO4, 2 Mg-ATP, 0.2 Na-GTP and
0.5 EGTA, which had an adjusted pH and osmolarity of
7.3 and 290 mosmol, respectively. Tight seals of 1 G�

or greater were obtained under visual guidance before
breaking into whole-cell mode. Neurons in layer (L)
2/3 were located by their proximity to the pial surface.
Using responses to depolarizing and hyperpolarizing
pulses, cell types were readily discriminated based on
AP half-width, input resistance and repetitive firing
properties.

Data acquisition and analysis

Whole-cell recordings were obtained using an ELC-03XS
npi bridge balance amplifier (npi Electronic GmbH,
Tamm, Germany). Signals were acquired using Clampex
software with a Digidata 1322A interface (Molecular
Devices LLC, Sunnyvale, CA, USA). Evoked responses
were digitized at 10 kHz, filtered at 2 kHz, and analysed
using Clampfit, version 9.0 (Molecular Devices).
Spontaneous LLDs were identified using the event
detection feature of Clampfit. The minimum duration
for event detection was set at 250 ms and the minimum
amplitude was set at 3–5 times the root mean square
amplitude of baseline noise. The amplitude, duration
and area under the curve (AUC) of spontaneous and
evoked activity were assessed. Amplitude was measured
as the maximum peak of the response relative to
baseline, duration was defined as the period from the
onset of stimulation until return to resting membrane
potential, and the AUC was calculated over the response
duration. Direct current injection was used to hold cells
at their resting potential for comparison of evoked and
spontaneous events. Cells were held at −60, −70, −80
and −90 mV for characterization of LLDs, with analysis
being performed at −90 mV unless otherwise noted.
For evoked responses that did not return to baseline
before the onset of activity induced by light offset in Arch
expressing animals, duration and area were calculated
over the period before light offset.

Light stimulation

Light-activation of opsins was achieved through full-field
illumination of the tissue via fluorescent light (Xcite
120Q; Excelitas Technologies, Waltham, MA, USA) passed
through the microscope objective. Light was passed
through a YFP filter (YFP-2427B-000, Semrock Inc.,
Rochester, NY, USA; excitation: 500/24-25, emmission:
542/27-25) for activation of ChR, or through a mCherry
filter (mCherry-C-000; Semrock Inc.; excitation 562/40,
emmission: 641/75) for activation of Arch. Unless
otherwise noted, a 10 ms light pulse was used for
activation of ChR. Arch was activated for 1100 ms,
beginning 100 ms before electrical stimulation. Light
exposure was regulated using a VS25 optical shutter
(Vincent Associates, Rochester, NY, USA) controlled by
a Uniblitz VCM-D1 shutter driver (Vincent Associates).
The timing of light pulses was governed by an isolated
pulse stimulator (Model 2100; A-M Systems, Sequim,
WA, USA) as triggered by Clampex software. Electrically
evoked synaptic responses were stimulated using a bipolar
electrode consisting of Formvar insulated 25μm nichrome
wires positioned in L2/3, �100 μm from the recording
electrode. A DS3 constant current stimulus isolator
(Digitimer, Welwyn Garden City, UK) was used to generate
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current pulses of 30–150 μA with a duration of 100 μs.
The intensity and frequency of stimulation were adjusted
to match the amplitude and frequency of spontaneous
epileptiform activity in each slice.

Drugs and drug application

After recording control responses in drug-free aCSF,
4-aminopyridine (100 μM) (4AP; Sigma, St Louis, MO,
USA), CNQX (10 μM) (Abcam, Cambridge, MA, USA)
and D-APV (20 μM) (Abcam) were washed in for at
least 10 min to allow spontaneous epileptiform activity
to develop and stabilize (Aram et al. 1991; Avoli et al.
1994). In some experiments, bicuculline methiodide
(10 μM) (Abcam), picrotoxin (100 μM) (Sigma) or
SR95531-hydrobromide (10 μM) (Tocris, Ellisville, MO,
USA) was used to block GABAA mediated synaptic
transmission. SCH50911 (2 μM) (Tocris) was used to
block GABAB mediated transmission. All drugs were
bath applied, with each neuron serving as its own
control.

Experimental design and statistical analysis

Statistical and power analyses were performed using
Prism, version 6 (GraphPad, La Jolla, CA, USA) and
G∗Power (Faul et al. 2007), respectively. Data are expressed
as either dots representing each individual data point or
as the mean ± SEM. Average traces shown are calculated
from a minimum of three sweeps. Sample size (n) is the
number of cells used for each experiment, with a minimum
of three animals used per group. Comparisons were made
between forms of LLD initiation and manipulation or
between animal lines as described in the text. A statistical
comparison of responses was performed using a one-
or two-tailed Student’s t test or one-way ANOVA with
Tukey’s multiple comparisons test. Paired t tests were used
to compare different conditions within the same cell. For
all tests, P < 0.05 was considered significant. Statistical
power was calculated using compromise power analysis.
All significant tests had a power (1 – β) of 0.85 or greater
unless specifically stated otherwise.

Results

4-AP + EAA blockers induces synchronized GABAergic
network activity in PYR cells

In the present study, to isolate the contribution of IN
subtypes to inhibitory network activity, the AMPA and
NMDA receptor antagonists CNQX and APV (EAA
blockers) were bath applied in combination with the
A-type K+ channel blocker, 4-AP, to induce synchronous
activity. Before examining the role of different IN
populations in the generation of synchronized GABAergic

network responses (termed LLDs), we characterized the
activity induced by application of 4-AP + EAA blockers
in our mice. For all recordings, cells were initially patched
in drug-free aCSF. 4-AP + EAA blockers were then bath
applied following the recording of baseline intrinsic
properties and responses to electrical stimulation.
Spontaneous LLDs emerged in L 2/3 pyramidal cells
(PYR) and INs several minutes following application
of 4-AP + EAA blockers and progressively developed
over the next 20–30 min (Fig. 1A). The amplitude
and frequency of spontaneous activity stabilized and
remained relatively consistent for the remaining duration
of the experiment. As shown in the PYR specimen
records in Fig. 1B, following LLD stabilization, electrical
stimulation was capable of evoking a response similar to
spontaneous LLDs. Evoked responses were significantly
smaller in duration and area (Amplitude – Spontaneous:
6.63 + 0.47 mV, Evoked: 5.78 + 0.56 mV; n = 58,
P = 0.1324, paired t test; Duration – Spontaneous:
2513 + 142 ms, Evoked: 2135 + 166 ms; n = 58, P = 0.002,
paired t test; Area – Spontaneous: 7856 + 726 mV∗ms,
Evoked: 4147 + 382 mV∗ms; n = 58, P < 0.0001,
paired t test). This suggests that LLDs represent network
activity and not the intrinsic firing of the recorded cell.
Spontaneous, electrically evoked and light evoked LLDs
were blocked by bath application of GABA receptor
antagonists (Fig. 1C) in both PYRs (n = 5) and INs
(n = 3) and had an experimental reversal potential near
the chloride equilibrium in all cells (n = 52) (Fig. 1D).
This is consistent with previous data showing this activity
to be GABA mediated (Aram et al. 1991; Michelson &
Wong, 1991; Avoli et al. 1994).

Cell type-specific properties of spontaneous LLDs

We also aimed to characterize spontaneous LLDs on a
cell type-specific basis. Specimen records of spontaneous
LLDs recorded from each cell type are shown in Fig. 2A
(left), with individual events shown on an expanded
timescale in Fig. 2A (right). Note that activity recorded
from VIP INs was hyperpolarizing because the RMP
of those cells was depolarized relative to the reversal
potential for LLDs. LLDs produced a significantly greater
number of APs in PV INs compared to all other cell types
(PYR: 0.28 ± 0.10, n = 64; PV: 21.13 ± 5.03, n = 31; SST:
8.27 ± 3.95, n = 15; VIP: 0.11 ± 0.11, n = 9; P < 0.0001,
one-way ANOVA with Tukey’s post hoc test) (Fig. 2B).
However, the frequency of LLDs was the same regardless
of the cell type from which activity was recorded (PYR:
39.48 ± 2.28 s, n = 56; PV: 38.00 ± 3.15 s, n = 28;
SST: 39.59 ± 4.93 s, n = 15; VIP: 25.89 ± 4.06 s, n = 9;
P = 0.1673, one-way ANOVA) (Fig. 2C). Drug application
caused a significant depolarization of all cell types, with
a significantly larger depolarization being observed in PV
cells compared to PYRs and SST INs (PYR: 1.47 ± 0.59 mV,
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n = 46; PV: 5.74 ± 0.76 mV, n = 36; SST: 1.98 ± 1.03 mV,
n = 12; VIP: 2.16 ± 1.14 mV, n = 8; P = 0.0001, one-way
ANOVA with Tukey’s post hoc test) (Fig. 2D) and produced
rhythmic spontaneous firing in PV cells (Fig. 2A).

Aside from the number of LLD-induced APs, the
magnitude of LLDs did not differ between IN subtypes;
therefore, all INs were combined for further analysis
and comparison with PYRs. As shown in Fig. 2E,
LLDs recorded from INs displayed a significantly larger
amplitude compared to PYRs (PYRs: 4.18 ± 0.35 mV,
n = 30; INs: 6.46 ± 0.62 mV, n = 23; P = 0.0014,
two-tailed t test) (Fig. 2E, left), whereas the duration of
LLDs in INs was shorter than those recorded from PYRs
(PYRs: 3569 ± 214 ms, n = 30; INs: 1628 ± 123 ms,
n = 23; P < 0.0001, two-tailed t test) (Fig. 2E, middle).
As a result of these off-setting differences, the total area

(AUC) of LLDs did not significantly differ between INs
and PYRs (PYRs: 7296 ± 912 mV∗ms, n = 30; INs:
6534 ± 1016 mV∗ms, n = 23; P = 0.5805, two-tailed
t test) (Fig. 2E, right). Together, these results suggest
LLDs are network generated events that manifest kinetics
varying based on the intrinsic excitability of the cell from
which they are recorded. As such, activity recorded from
INs and PYRs was analysed separately to clearly identify
the role of IN subtypes in LLD generation.

Activation and inhibition of SST INs

The experiments described above demonstrated the
similarity between spontaneous and evoked LLDs.
However, electrical stimulation excites numerous cellular
elements and the exact contribution of specific cell types

5mV

30s

PYR

Spontaneous

Electrically Evoked

4AP+ EAA Blockers

+ GABA Antagonists  

B

A

C

2mV

50ms

2mV

50ms

A
m

p
lit

u
d

e
 (

p
A

) *

D
u

ra
ti
o

n
 (

m
s
)

A
re

a
 (

p
A

*m
s
)

*

−100 −90 −80 −70 −60 −50

−15

−10

−5

0

5

10

15

RMP (mV)

D
−60mV

−90mV

25

20

15

10

5

0

6000

4000

2000

0

30000

20000

10000

0

L
L
D

 A
m

p
litu

d
e
 (m

V
)

Figure 1. Application of 4AP + EAA blockers induces GABA-mediated synchronous network activity
A, bath application of 4AP + EAA induces spontaneous synchronized network activity in PYRs. An arrow indicates
the start of drug wash-on. B, upper: representative traces showing spontaneous and electrically evoked LLDs in
a PYR. Electrical stimulation evokes activity of similar amplitude to spontaneous LLDs but smaller in duration and
AUC. An arrow indicates the time of stimulation. Lower: quantitative comparison of electrically evoked versus
spontaneously occurring LLDs. Mean ± SEM are shown, as well as the results from individual cells. C, example
traces of evoked LLDs in presence of 4AP + EAA blockers with and without GABA receptor antagonists. An arrow
indicates the timing of stimulation. D, calculation of LLD reversal potential. ∗P < 0.05, paired t test. Each shape
represents an individual cell. Error bars are the mean ± SEM. [Colour figure can be viewed at wileyonlinelibrary.com]
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is unclear. Having characterized LLDs in these mice,
we aimed to determine the sufficiency of SST cells
to initiate synchronous network activity. Accordingly,
mice expressing ChR restricted to SST-positive cells were
generated by crossing mice expressing a cre-dependent

ChR gene with SST:cre mice. The functional pre-
sence of ChR in SST cells was confirmed through
whole-cell, patch clamp recordings. SST INs were physio-
logically identified by their intrinsic membrane properties,
namely, strongly accommodating firing patterns, and
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Figure 2. Cell type-specific properties of spontaneous LLDs
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the presence of a voltage ‘sag’ upon membrane hyper-
polarization, indicative of Ih that is characteristically seen
in SST-expressing cells (Maccaferri & McBain, 1996; Zhu
et al. 1999; Vervaeke et al. 2012; Williams & Hablitz,
2015) (Fig. 3A, left). Additionally, opsin-expressing cells
co-expressed YFP, allowing for visual identification of SST
INs. In cortical slices from SST:ChR mice, whole field
illumination of the tissue induced depolarization and AP
firing in physiologically identified SST cells (Fig. 3A, right).
Light stimulation did not depolarize PYRs or PV INs in
drug-free aCSF at rest (Fig. 3B, left). Control responses
to a 10 ms light pulse at various membrane potentials
for a PYR and PV IN are shown in Fig. 3B (left, upper
and lower, respectively). After application of 4AP + EAA
blockers, enhanced responses were seen in both cell types
(Fig. 3B, right). Responses in all INs were associated
with significant AP firing. As quantified in Fig. 3C, the
amplitude of light-evoked responses was equivalent to

spontaneous LLDs in both PYRs and INs (PYR Spon:
3.75 + 0.47 mV, PYR Light: 3.48 + 1.03 mV, n = 12;
IN Spon: 6.36 + 1.23 mV, IN Light: 6.27 + 1.42 mV,
n = 7; P = 0.0925, one-way ANOVA), duration (PYR
Spon: 3694 + 417 ms, PYR Light: 3345 + 391 ms, n = 12;
IN Spon: 1383 + 201 ms, IN Light: 1258 + 173 ms, n = 7;
P < 0.0001, one-way ANOVA with Tukey’s post hoc test)
and AUC (PYR Spon: 6321 + 863 mV∗ms, PYR Light:
5026+947 mV∗ms, n=12; IN Spon: 6161+1193 mV∗ms,
IN Light: 5507 + 1823 mV∗ms, n = 7; P = 0.8103, one-way
ANOVA).

The above results indicate that selective activation of
SST:ChR INs is sufficient to evoke LLDs. We next aimed
to determine the necessity of SST IN activation for LLD
initiation using mice with genetically encoded expression
of the proton pump Arch restricted to SST-positive
cells. Restriction of Arch expression to SST cells was
achieved using the cre-lox system, as with ChR. In
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Figure 3. Activation of SST INs is sufficient to initiate LLDs
A, example traces of SST IN firing properties elicited by current injection (left) or light activation (right). Arrow
indicates Ih sag typical of SST cells. B, representative traces displaying activity evoked by a 10 ms light pulse in
drug-free aCSF (left) and after 4AP + EAA blockers wash-on (right). Activity recorded in PYRs (top) and INs (bottom)
was similar, although spontaneous APs were more frequently observed in INs. C, quantitative analysis comparing
amplitude, duration and AUC of light-evoked events with those occurring spontaneously. Bars indicate the timing
and duration of light pulses. Each symbol represents an individual cell. Error bars are the mean ± SEM. [Colour
figure can be viewed at wileyonlinelibrary.com]
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whole-cell recordings from physiologically identified
SST cells, light activation of Arch produced a membrane
hyperpolarization (Fig. 4A, left) sufficient to block AP
generation (Fig. 4A, right). Light-activation did not
significantly affect evoked synaptic responses in PYRs
or PV INs in drug-free aCSF (Fig. 4B, left). Specimen
records of LLDs evoked by electrical stimulation in the
presence or absence of whole-field illumination are shown
in Fig. 4B (right). Responses were reduced during Arch
activation. Events recorded with or without concurrent
SST inactivation are quantified in Fig. 4C, revealing
that light-mediated inhibition of SST INs caused a
significant reduction of LLD amplitude in INs (Light Off:
10.98 + 1.08 mV, Light On: 7.63 + 0.90 mV; n = 18,

P < 0.05, one-way ANOVA with Tukey’s post hoc test)
but not PYRs (Light Off: 5.94 + 0.71 mV, Light On:
4.31 + 0.59 mV; n = 18, P > 0.05, one-way ANOVA
with Tukey’s post hoc test). Conversely, LLD duration was
significantly reduced in PYRs (Light Off: 1268 + 128 ms,
Light On: 832 + 805 ms; n = 18, P < 0.05, one-way
ANOVA with Tukey’s post hoc test) but not INs (Light
Off: 861 + 65 ms, Light On: 6075 + 55 ms; n = 18,
P > 0.05, one-way ANOVA with Tukey’s post hoc
test). LLD AUC was reduced in all cell types recorded
(PYR Light Off: 3186 + 392 mV∗ms, PYR Light On:
1610 + 255 mV∗ms; IN Light Off: 5095 + 532 mV∗ms,
IN Light On: 2668 + 332 mV∗ms; P < 0.0001, one-way
ANOVA with Tukey’s post hoc test).
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Figure 4. Suppression of SST IN activity reduces evoked LLD magnitude
A, example traces of membrane hyperpolarization induced by light activation of Arch (left) and superimposed
traces showing SST cell responses to a depolarizing current injection with and without light activation (right). The
SST IN was hyperpolarized by illumination and AP initiation blocked. B, superimposed traces of electrically evoked
activity recorded from a PYR (top) and IN (bottom) with or without concurrent slice illumination in control aCSF
(left) and after 4AP + EAA blockers wash-on (right). Arrows indicate the time of stimulation. C, light inactivation
of SST INs significantly reduced the amplitude, duration and AUC of evoked LLDs. ∗P < 0.05, Tukey’s post hoc
test. Bars indicate the timing and duration of light pulses. Each shape represents an individual cell. Error bars are
the mean ± SEM. [Colour figure can be viewed at wileyonlinelibrary.com]
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Role of PV INs in LLDs

We next assessed the contribution of PV INs to
the generation of cortical GABAergic synchrony. As
performed with SST INs, restricted expression of ChR to
PV cells was employed to evaluate the sufficiency of PV INs
to generate LLDs. As shown in Fig. 5A, cell type-specific
expression of ChR in PV-positive neurons was functionally
confirmed by the induction of light-induced membrane
depolarizations and consequent AP firing in PV cells
(Fig. 5A, bottom) but not PYRs (Fig. 5B, top trace) or
SST INs. PV INs were differentiated from SST cells by
their hallmark fast-spiking firing properties and lower
input resistance, and were visually identified by their
expression of YFP. Figure 5B shows specimen records
of light-induced responses in a PYR (top) and a PV
IN (bottom) in the presence of 4AP + EAA blockers.

Light-activation of PV INs was sufficient to produce LLDs
with amplitudes equivalent to spontaneous events in all
cell types (Fig. 5C) (PYR Spon: 5.69 + 0.92 mV, PYR
Light: 3.28 + 0.56 mV, n = 8; IN Spon: 6.13 + 0.67 mV,
IN Light: 4.82 + 1.06 mV, n = 6; P = 0.0831, one-way
ANOVA), durations (PYR Spon: 4032 + 300 ms, PYR
Light: 3985 + 188 ms, n = 8; IN Spon: 2152 + 187 ms,
IN Light: 1921 + 289 ms, n = 6; P < 0.0001, one-way
ANOVA with Tukey’s post hoc test) and AUCs (PYR Spon:
13034 + 1921 mV∗ms, PYR Light: 7414 + 1113 mV∗ms,
n = 8; IN Spon: 12268 + 2085 mV∗ms, IN Light:
11221 + 3190 mV∗ms, n = 6; P = 0.2076, one-way
ANOVA). Of note, and as shown in Fig. 5B, kinetics of
the light-induced depolarization of opsin-expressing cells
could be readily discriminated from the slower onset LLD
because a return towards baseline can be observed after
light offset before the LLD peak amplitude.
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Figure 5. PV IN activation is sufficient to initiate LLDs
A, example traces of PV IN firing properties elicited by current injection (upper) or light activation (lower). B,
representative traces displaying activity evoked, at arrow, by a 10 ms light pulse after 4AP + EAA blockers
wash-on. Activity recorded in PYRs (upper) and INs (lower) was comparable. C, quantitative comparison of the
amplitude, duration and AUC of light-evoked and spontaneously occurring LLDs. Bars indicate the timing and
duration of light pulses. Each symbol represents an individual cell. Error bars are the mean ± SEM. [Colour figure
can be viewed at wileyonlinelibrary.com]
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Experiments were subsequently performed in slices
from animals with Arch expression driven by the PV
promoter to determine the necessity of PV INs for
the generation of LLDs. Under whole-cell recording
conditions, slice illumination induced a membrane hyper-
polarization in PV cells (Fig. 6A, left) but not PYRs or SST
INs (Fig. 6B, left). Light activation was sufficient to block
AP firing (Fig. 6A, right). Specimen records of evoked
synaptic potentials in a PYR at two membrane potentials
under control conditions are shown in Fig. 6B (top left).
Responses with light on and off are shown superimposed.
No significant difference was observed. Similar results were
seen in recordings from SST INs (Fig. 6B, bottom left).

In the presence of 4AP + EAA blockers, comparison of
electrically evoked events with or without simultaneous
light-induced PV IN inactivation revealed that LLDs are
almost abolished when PV INs are silenced during event
generation in all cell types (Fig. 6C) (Amplitude – PYR
Light Off: 6.84 + 0.55 mV, PYR Light On: 2.48 + 0.31 mV,
n = 14; IN Light Off: 11.04 + 0.89 mV, IN Light On:
4.45 + 1.25 mV, n = 6; P < 0.0001, one-way ANOVA
with Tukey’s post hoc test; Duration – PYR Light Off:
3536 + 197 ms, PYR Light On: 951 + 19 ms, n = 14;
IN Light Off: 1846 + 379 ms, IN Light On: 710 + 109 ms,
n = 6; P < 0.0001, one-way ANOVA with Tukey’s post hoc
test; AUC – PYR Light Off: 8753 + 1108 mV∗ms, PYR
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Figure 6. Inactivation of PV INs prevents LLD initiation
A, example traces of membrane hyperpolarization induced by light activation of Arch (left) and superimposed
traces showing PV cell response to a depolarizing stimuli with and without concurrent tissue illumination (right).
Arch activation hyperpolarized the PV IN and blocked AP generation. B, representative traces of electrically evoked
activity recorded from a PYR (top) and IN (bottom) with and without concurrent slice illumination in control aCSF
(left) and after 4AP + EAA blockers wash-on (right). C, light inactivation of PV INs significantly reduced the
amplitude, duration and AUC of evoked activity. ∗P < 0.05, Tukey’s post hoc test. Bars indicate the timing and
duration of light pulses. Arrows indicate time of electrical stimulation. Each shape represents an individual cell.
Error bars are the mean ± SEM. [Colour figure can be viewed at wileyonlinelibrary.com]
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Light On: 940 + 148 mV∗ms, n = 14; IN Light Off:
7463 + 1371 mV∗ms, IN Light On: 1447 + 584 mV∗ms,
n = 6; P < 0.0001, one-way ANOVA with Tukey’s post hoc
test).

Effects of altering activity in VIP INs

SST and PV cells provide robust inhibition of PYRs,
whereas VIP-expressing cells tend to facilitate dis-
inhibition of PYRs via synaptic targeting of other INs,
particularly SST-positive cells (von Engelhardt et al.
2007; Lee et al. 2013; Pfeffer et al. 2013; Pi et al.
2013). As such, optogenetic manipulation of VIP-positive
cells was employed to determine the effect of this
potential disinhibition on LLD generation. Cre-dependent
expression of ChR in VIP-positive cells was confirmed
via whole-cell recordings from VIP INs (Fig. 7A). As
described above for PV and SST neurons, light activation
of ChR in VIP INs produced a membrane depolarization

with superimposed APs. Specimen records of LLDs in
response to electrical stimulation or light activation of
VIP:ChR are shown superimposed in Fig. 7B. By contrast
to SST and PV cells, activation of VIP INs alone was not
sufficient to generate an LLD (Amplitude – PYR Spon:
3.49 + 0.28 mV, PYR Light: 0.77 + 0.15 mV, n = 10;
IN Spon: 6.74 + 1.13 mV, IN Light: 0.93 + 0.21 mV,
n = 10; P < 0.0001, one-way ANOVA with Tukey’s post hoc
test; Duration – PYR Spon: 3049 + 283 ms, PYR Light:
450 + 68 ms, n = 10; IN Spon: 1486 + 170 ms, IN
Light: 623 + 110 ms, n = 10; P < 0.0001, one-way
ANOVA with Tukey’s post hoc test; AUC – PYR Spon:
3877 + 552 mV∗ms, PYR Light: 153 + 41 mV∗ms, n = 10;
IN Spon: 3355 + 600 mV∗ms, IN Light: 217 + 74 mV∗ms,
n = 10; P < 0.0001, one-way ANOVA with Tukey’s post hoc
test) (Fig. 7C).

Figure 8A illustrates the slice illumination-induced
membrane hyperpolarization in VIP cells expressing
Arch. The light activated hyperpolarization was sufficient
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Figure 7. VIP IN activation is not sufficient for the initiation of LLDs
A, example traces of VIP IN firing properties elicited by current injection (top) or light activation (bottom). B,
representative traces comparing electrically evoked activity with activity evoked, at arrow, by a 10 ms light pulse
after 4AP + EAA blockers wash-on in a PYR. Black arrow indicates the time of stimulation. C, the amplitude,
duration and AUC of activity evoked by VIP IN activation were significantly smaller than spontaneous LLDs. Blue
bars indicate the timing and duration of light pulses. ∗P < 0.05, Tukey’s post hoc test. Each shape represents an
individual cell. Error bars are the mean ± SEM. [Colour figure can be viewed at wileyonlinelibrary.com]
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to block AP firing (Fig. 8A, lower). As shown in Fig. 8C,
inhibition of VIP INs via light activation of Arch did not
significantly attenuate LLD amplitude (PYR Light Off:
5.72 + 0.73 mV, PYR Light On: 4.39 + 0.76 mV, n = 11; IN
Light Off: 7.87 + 1.89 mV, IN Light On: 5.90 + 1.44 mV,
n = 6; P = 0.2034, one-way ANOVA) or duration (PYR
Light Off: 3257 + 306 ms, PYR Light On: 2519 + 284 ms,
n = 11; IN Light Off: 1046 + 191 ms, IN Light On:
651 + 88 ms, n = 6; P < 0.0001, one-way ANOVA with
Tukey’s post hoc test) in either PYRs or INs, but resulted in
a significant reduction of the AUC in PYRs (PYR Light Off:
6869 + 912 mV∗ms, PYR Light On: 3439 + 673 mV∗ms,
n = 11; IN Light Off: 2873 + 637 mV∗ms, IN Light On:
1576 + 344 mV∗ms, n = 6; P = 0.0003, one-way ANOVA
with Tukey’s post hoc test).

LLDs evoked at offset of Arch-induced
hyperpolarizations

Figure 9A shows examples of evoked LLDs with and
without Arch activation. In both SST:Arch (Fig. 9A, upper)
and PV:Arch (Fig. 9A, lower) animals, light offset triggered
a LLD in all cell types, presumably as a result of rebound
excitation following release from light-induced inhibition.
These rebound LLDs were consistently activated with
a latency less than 100 ms following light offset and
had similar magnitude to spontaneous LLDs in both
groups. However, the amplitude and AUC of responses
to light offset were significantly larger in PV:Arch
animals compared to SST:Arch animals (Amplitude – SST:
80 + 8%, n = 42, PV: 132 + 14%, n = 19; P = 0.0014,
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Figure 8. Suppression of VIP IN activity minimally alters evoked LLD magnitude
A, example traces of membrane hyperpolarization induced by light activation of Arch (top) and superimposed
traces showing VIP cell response to a depolarizing current pulse with and without Arch activation (bottom). Light
activation hyperpolarized the VIP IN and blocked AP generation. B, superimposed traces from a PYR cell comparing
electrically evoked activity recorded with and without concurrent light illumination in the presence of 4AP + EAA
blockers. Arrow indicates the time of stimulation. C, light inactivation of VIP INs significantly reduced only the AUC
of evoked LLDs in PYRs. ∗P < 0.05, Tukey’s post hoc test test. Blue bars indicate the timing and duration of light
pulses. Each shape represents an individual cell. Error bars are the mean ± SEM. [Colour figure can be viewed at
wileyonlinelibrary.com]
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two-tailed t test; Duration – SST: 149 + 18%, n = 42,
PV: 123 + 28%, n = 19; P = 0.4167, two-tailed t test;
AUC – SST: 106 + 16%, n = 42, PV: 193 + 37%, n = 19;
P = 0.0157, two-tailed t test, 1 – β = 0.82) (Fig. 9B).
As shown in Fig. 9C, rebound LLDs were also triggered
at light offset without concurrent electrical stimulation,
suggesting that rebound responses are light-driven and
not an artefact of prior tissue stimulation. Rebound LLDs
in cells from VIP-Arch animals (n = 16) were smaller
than those in cells from PV:Arch and SST:Arch animals
and even absent in some cases (quantified in Fig. 10C),
presumably as a result of the lack of an initial Arch effect
on evoked network activity.

Comparison of cell type-specific effects

To directly compare the observed effects of SST, PV and
VIP INs, the amplitude, duration and AUC of light-driven

responses were assessed relative to the properties of
spontaneous LLDs recorded in each cell type (Fig. 10).
As shown in Fig. 10A, VIP INs were significantly less
effective than both SST and PV cells in initiating LLDs
(Amplitude – SST: 71 + 8%, n = 19; PV: 97 + 12%, n = 14;
VIP: 21 + 4%, n = 20; P < 0.0001, one-way ANOVA with
Tukey’s post hoc test; Duration – SST: 96 + 5%, n = 19;
PV: 96 + 9%, n = 14; VIP: 29 + 4%, n = 20; P < 0.0001,
one-way ANOVA with Tukey’s post hoc test; AUC – SST:
76 + 9%, n = 19; PV: 83 + 13%, n = 14; VIP: 7 + 2%,
n = 20; P < 0.0001, one-way ANOVA with Tukey’s post hoc
test). Silencing of SST-expressing and VIP-expressing
cells produced a significantly smaller attenuation of
LLDs compared to PV INs (Amplitude – SST: 72 + 3%,
n = 36; PV: 37 + 4%, n = 20; VIP: 75 + 5%, n = 17;
P < 0.0001, one-way ANOVA with Tukey’s post hoc
test; Duration – SST: 69 + 3%, n = 36; PV: 33 + 3%,
n = 20; VIP: 72 + 3%, n = 17; P < 0.0001, one-way
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Figure 9. Light offset in Arch expressing INs is associated with triggering of LLDs
A, representative traces from SST-Arch (top) and PV-Arch (bottom) animals showing the generation of LLDs upon
light offset. Upper traces show responses from a PV IN in a slice from a SST-Arch animals, whereas lower traces
show responses from a SST IN in a slice from a PV-Arch animal. B, comparison of rebound LLDs induced by
release of INs from light-driven hyperpolarization. The amplitude and AUC of rebound LLDs evoked by PV IN
synchronization were larger than those of SST IN induced activity. C, LLDs were evoked upon light offset in trials
with and without electrical stimulation. ∗P < 0.05, two-tailed t test. Each shape represents an individual cell. Error
bars are the mean ± SEM. [Colour figure can be viewed at wileyonlinelibrary.com]
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ANOVA with Tukey’s post hoc test; AUC – SST: 48 + 3%,
n = 36; PV: 14 + 2%, n = 20; VIP: 52 + 5%, n = 17;
P < 0.0001, one-way ANOVA with Tukey’s post hoc test).
VIP silencing produced an effect comparable to that
of SST IN inactivation (Amplitude: P > 0.05, one-way
ANOVA with Tukey’s post hoc test; Duration: P > 0.05,
one-way ANOVA with Tukey’s post hoc test; AUC:
P > 0.05, one-way ANOVA with Tukey’s post hoc test). In
addition, as shown in Fig. 10C, the amplitude of rebound
activity triggered by light offset in VIP:Arch animals
was significantly smaller than that of both SST:Arch and
PV:Arch animals (VIP: 11 + 2%; n = 16, P < 0.0001,
one-way ANOVA with Tukey’s post hoc test), duration
(VIP: 19 + 3%; n = 16, P = 0.0003, one-way ANOVA
with Tukey’s post hoc test) and AUC (VIP: 5 + 1%; n = 16,
P < 0.0001, one-way ANOVA with Tukey’s post hoc test).

Discussion

We employed genetically encoded opsins to investigate the
contribution of distinct IN classes to the generation of
synchronous cortical GABAergic network activity. Using
cell type-specific activation of INs via ChR, we have shown
that synchronized activation of either the cortical SST or
PV IN population is sufficient to generate LLDs, whereas
activation of VIP-expressing INs is not. Cell type-specific
hyperpolarization of INs mediated by light activation
of genetically encoded Arch showed that inactivation of
SST or VIP INs resulted in �40% attenuation of LLDs,
whereas inhibition of PV cells essentially blocked initiation
of LLDs. Moreover, the synchronized depolarization of
IN populations at Arch offset produced an LLD in
SST:Arch and PV:Arch animals but not VIP:Arch animals.
In conjunction with the data from VIP:ChR animals, this
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Figure 10. Distinct contribution of IN subtypes to LLD initiation
A, activation of VIP INs elicited activity of significantly smaller amplitude, duration and AUC compared to both SST
and PV INs. B, suppression of VIP INs produced attenuation of the amplitude, duration and AUC of evoked activity
comparable to SST INs but significantly smaller than PV INs. C, quantification of rebound activity evoked by Arch
offset revealed that VIP IN synchronization produced activity of significantly smaller amplitude, duration and AUC
than both SST and PV INs. ∗P < 0.05, Tukey’s post hoc test. Each shape represents an individual cell. Error bars are
the mean ± SEM.
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suggests that activation of VIP-positive cells is insufficient
to drive synchronous GABAergic network activity.

Within the cortex, INs have been shown to play a critical
role in controlling PYR spike timing, generating cortical
rhythms and synchronizing network activity (Pouille
& Scanziani, 2001; Weher & Zadar, 2003; Haider &
McCormick, 2009). A precise balance of excitation and
inhibition (E:I balance) is required to permit information
transfer at the same time as preventing unbridled
excitation (McBain & Fisahn, 2001; Sun et al. 2006; Yizhar
et al. 2011). As such, changes in neuronal excitability (as
modelled in the present study by application of 4-AP)
that disrupt this E:I balance are assumed to underlie the
development of epileptiform activity (Cossart et al. 2001;
Noebels, 2003; Cobos et al. 2005; Trevelyan et al. 2006;
Ascoli et al. 2008).

Aberrant cortical activity may arise from a shift in
the E:I balance to favour either excitation or inhibition.
A reduction in GABAergic IN output and subsequent
inhibition of PYRs shifts the cortical E:I balance to
favour excitation, resulting in an increase in PYR
output (Bradford, 1995; Olsen & Avoli, 1997). This
paradigm of unimpeded excitation is the most commonly
considered source of epileptiform activity, generating
much investigation into mechanisms underlying PYR
excitability and disinhibition. Conversely, however, as seen
in the 4-AP + EAA blockers model used in the present
study, an increase in IN excitability, which shifts the E:I
balance to favour inhibition, can also produce aberrant
cortical synchrony facilitated by the synaptic, and possibly
ephaptic, coupling of IN networks. Pharmacological iso-
lation of GABAergic networks was used in the pre-
sent study to determine the contribution of distinct IN
classes to cortical network activity and to clarify potential
mechanisms underlying the generation of synchronous
GABAergic activity.

Differences in the contribution of IN subclasses

Given that independent activation of SST or PV INs
elicited similar LLDs, the finding that inactivation of PV
cells has a greater effect on the generation of synchronous
network activity is intriguing. One possible explanation
for this discrepancy could be a relatively weaker silencing of
SST INs expressing Arch. Light-evoked hyperpolarizations
were smaller in SST than PV INs, probably as a result of
differences in input resistance. However, no correlation
between the amplitude of light-induced hyperpolarization
and the degree of LLD attenuation was observed in either
cell type. Moreover, VIP INs displayed considerably larger
voltage deflections upon Arch activation compared to both
PV and SST INs but were no more effective than SST
INs at inhibiting the generation of LLDs. Together, these
findings suggest thatg channel expression or conductance
is probably not the defining factor. PV INs have been

reported to be slightly more abundant than SST INs in
the cortex (Lee et al. 2010; Miyoshi et al. 2010; Xu et al.
2010), making it possible that differences between cell
types are partly a result of the number of cells activated.
Cell abundance may partially contribute to the observed
effects, although it would be expected that activation of
VIP INs, which account for �25% of layer II/III INs
(Vucurovic et al. 2010; Rudy et al. 2011; Zeisel et al. 2015),
would produce a more robust response than that observed
if simply the number of cells activated was a significant
factor in determining the contribution of IN populations
to LLD generation.

A third, and perhaps most convincing, explanation
for the reported differences is the distinct synaptic
connectivity characteristics of each cell type (Fig. 11).
Fast-spiking basket cells, which account for a vast majority
of the PV-positive cell population, densely innervate
the soma and perisomatic regions of their postsynaptic
target neurons (Kawaguchi & Kubota, 1993; Conde et al.
1994), allowing them to tightly regulate spike initiation
(Pinto et al. 2000; Miller et al. 2001; Pouille & Scanziani,
2001; Lawrence & McBain, 2003; Gabernet et al. 2005;

VIP

SST

PV

Figure 11. Schematic representation of synaptic connectivity
of cortical layer II/III interneurons
Simplified diagram illustrating the synaptic connectivity patterns of
PV, SST and VIP INs in layer II/III of the neocortex. Black lines indicate
neuronal efferents with open circles representing synaptic terminals.
The weight of black lines represents the relative prevalence of the
indicated connection, with larger lines representing more prevalent
connections. Dashed lines indicate output to INs of the same class.
Note that PV efferents are somatic targeting, whereas SST and VIP
INs typically synapse onto the dendrites of their postsynaptic targets.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Cruikshank et al. 2007). By contrast, SST-expressing cells
generally form synapses on the dendrites of postsynaptic
cells (Wang et al. 2004; Chiu et al. 2013; Hioki et al. 2013),
which serves to regulate the somatopetal propagation of
dendritic signals (Chen et al. 2015; Urban-Ciecko et al.
2016). Moreover, a majority of PV IN efferents target other
PV INs in addition to PYRs (Pfeffer et al. 2013; Jiang et al.
2015; Walker et al. 2016), whereas SST-expressing cells
predominantly innervate PYRs and dissimilar IN subtypes
rather than other SST INs (Cottam et al. 2013; Pfeffer et al.
2013; Jiang et al. 2015; Walker et al. 2016). These factors
establish PV INs as a prime candidate for driving cortical
network activity.

In the 4AP + EAA blockers model, the Cl−
equilibrium potential is assumed to be shifted, resulting
in GABA-activated currents being depolarizing (Aram
et al. 1991; Morris et al. 1996; Lamsa & Kaila, 1997;
Hamidi et al. 2015). Although the LLD reversal potential
reported in the present study (Fig. 1D) is near the normal
GABA reversal, it should be noted those measurements
were calculated from cells in which the intracellular ion
concentrations were externally determined by the inter-
nal pipette solution used to dialyse the cells. Experiments
using the perforated patch method, which does not disrupt
intracellular ion concentrations, could be employed to
more accurately assess LLD reversal. In an environment
where GABA is depolarizing, the somatic targeting of PV
cells would make them uniquely positioned to activate
their postsynaptic targets, thereby recruiting those cells
for the initiation of LLDs. Feed-forward activation of PV
cells by other PV Ins, as well as SST Ins, would further
facilitate widespread network activity. With respect to the
data reported in the present study, it is possible that the
sufficiency of SST INs to generate LLDs when driven by
light activation of ChR could be a result of feed-forward
activation of PV INs. In that case, inactivation of SST INs
via Arch would not be expected to abolish LLDs because
PV INs are still activated. The partial attenuation of LLDs
by SST inhibition could then be attributed to a reduction
in feed-forward activation of SST INs by PV cells.

The failure of VIP IN activation to evoke an LLD further
suggests that the diverse synaptic characteristics of IN
populations underlie distinct contributions to network
activity. Of the IN classes investigated in the present
study, VIP INs are generally assumed to be the most
excitable (Cauli et al. 2000; Lee et al. 2010; Miyoshi
et al. 2010). This is supported by VIP INs displaying
the highest input resistance in our recordings (SST:
177.5 ± 9.8 m�, n = 18; PV: 119.6 ± 7.4 m�, n = 42;
VIP: 392.4 ± 19.9 m�, n = 17) and is also reflected
in our observation that VIP INs displayed the largest
voltage deflections upon activation of opsins (Fig. 8A).
Together with the aforementioned abundance of VIP INs,
this suggests that the cell type-specific contributions of INs
are determined by a property other than their prevalence

or excitability. With the exception of a small population
of VIP-positive (and PV-negative) basket cells, VIP INs
typically synapse onto the dendrites of their postsynaptic
targets (Kawaguchi & Kubota, 1996; Kawaguchi & Kubota,
1997). VIP INs most often target SST-expressing cells,
with a much lower innervation of PV-expressing cells
being observed (von Engelhardt et al. 2007; Lee et al.
2013; Pfeffer et al. 2013; Pi et al. 2013). Accordingly,
activation of VIP INs would be expected to produce
less feed-forward activation of PV cells compared to SST
INs, accounting for the insufficiency of light-driven VIP
activation to generate LLDs. Marginal innervation of VIP
INs by PV cells has been reported (Jiang et al. 2015;
Walker et al. 2016); thus, the partial reduction in LLD
magnitude upon VIP IN inhibition could be a result of
reduced feed-forward activation mediated by PV INs as
proposed for SST cells. Future experiments in which the
activity of multiple IN populations can be simultaneously
modulated (e.g. activation of SST INs with concurrent
PV IN silencing) are necessary to confirm this PV-driven
di-synaptic paradigm of LLD generation.

INs in epilepsy

An increase in the excitability of GABAergic cells has
historically been considered to decrease network activity,
producing an anti-epileptic effect. However, the data
reported in the present study, along with other recent
work characterizing the contribution of INs to seizure
activity (Ellender et al. 2014; Sessolo et al. 2015; Yekhlef
et al. 2015; Khoshkhoo et al. 2017; Shiri et al. 2017),
suggest that the role of inhibitory networks is complex.
INs are known to facilitate the generation of rhythmic
activity within and between brain regions (McBain &
Fisahn, 2001; Whittington & Traub, 2003; Traub et al.
2004; Bartos et al. 2007; Haider & McCormick, 2009).
Synchronous GABAergic activity has been temporally
linked to the onset of epileptiform activity (Ziburkus
et al. 2006; Toyoda et al. 2015; Levesque et al. 2016), and
also has been proposed as a potential mechanism under-
lying the generation of synchronous network discharges
characteristic of epilepsy (de Curtis & Avoli, 2016). More
work is necessary to fully characterize the role of GABA
networks in epilepsy. Specifically, the interaction between
GABA and glutamate-driven activity must be dissected
to identify the role of specific IN populations in the
propagation and rhythmicity of synchronous network
activity.
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