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Abstract Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly
managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary
tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV) channel
family have been identified, which induce either painful neuropathies, an insensitivity to pain, or
alterations in smooth muscle function. The identification of these disorders, in addition to the
recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed
new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues
within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical
evidence to reveal how the nine NaV channel family members (NaV1.1–NaV1.9) contribute to
abdominal visceral function in normal and disease states.

(Received 29 August 2017; accepted after revision 2 January 2018; first published online 9 January 2018)
Corresponding author S. M. Brierley: Visceral Pain Research Group, Flinders University, Level 7, South
Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia.
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Abstract figure legend Expression of voltage-gated sodium (NaV) channels in neuronal cells relevant to visceral
sensation.

Introduction

Chronic visceral pain, altered intestinal motility and
bladder dysfunction remain poorly managed symptoms
of functional and inflammatory disorders of the gastro-
intestinal and urinary tracts. A lack of suitable treatments
for these disorders is a major contributing factor to their
debilitating nature and the large socio-economic cost
accrued by patients, their families and society (NIH, 2009;
Gaskin & Richard, 2012; Enck et al. 2016). Conventional
analgesics, such as opioids and non-steroidal anti-
inflammatory drugs (NSAIDs), are unsuitable for treating
chronic pain originating in the gastrointestinal and lower
urinary tract, as they are associated with severe side effects.
This includes tolerance, a lack of efficacy and importantly
for some inflammatory gastrointestinal disorders the
potential to exacerbate the disease (Sikandar & Dickenson,
2012; Farrell et al. 2014). The colon, rectum and bladder
are innervated by specialised sensory afferents travelling
via the splanchnic and pelvic nerves that terminate within
the dorsal horn of the thoracolumbar and lumbosacral
spinal cord, respectively (Brierley et al. 2004; Harrington
et al. 2012; Brierley & Linden, 2014). These neurons
detect both non-noxious physiological stimuli, including
muscle stretch during organ distension, and noxious
mechanical and chemical stimuli such as bloating, intense
distension/contraction, or the presence of inflammatory
mediators (Brierley & Linden, 2014; Brierley, 2016). To
encode for such wide-ranging stimuli, visceral organs
rely on an array of stimuli-activated primary ‘sentinel’
transducers, including transient receptor potential (TRP)
channels, acid-sensing ion channels (ASIC), mechano-
sensitive two-pore domain K (K2P) channels and Piezo
channels (Grundy, 2002; Brierley, 2010; Christianson &
Davis, 2010; La & Gebhart, 2011; Brierley, 2016; Alcaino
et al. 2017). Furthermore, primary transducers and ion

channels involved in sensory signalling can be modulated
and controlled by G-protein coupled receptors (GPCRs)
and regulators of GPCR signalling proteins, in response
to endogenous mediators (Geppetti et al. 2015; Salaga
et al. 2016).

Voltage-gated sodium (NaV) channels are secondary in
the neuronal response to non-noxious or noxious stimuli.
They perform the crucial role of regulating neuronal
excitability and the key function of amplifying cation
influx generated by the primary transducers to generate
and propagate action potentials (Catterall, 2012; King
& Vetter, 2014). Voltage-gated potassium (KV) channels
repolarise the membrane potential following Na+ influx
and modulate firing frequency, and have been reported
to contribute to visceral hypersensitivity in peripheral
neurons in animal models (Hirano et al. 2007; Qian et al.
2009; Luo et al. 2011; Du & Gamper, 2013); however, this
family of ion channels is not covered within the scope of
this review.

The NaV channel family contains nine isoforms
(NaV1.1–NaV1.9), which are encoded by nine SCN genes
(SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN8A,
SCN9A, SCN10A, SCN11A). Functionally, these channels
are historically categorised as either tetrodotoxin-sensitive
(TTX-S: NaV1.1-NaV1.4, NaV1.6 and NaV1.7), or
tetrodotoxin-resistant (TTX-R: NaV1.5, NaV1.8 and
NaV1.9). Anatomically, these channels display wide and
diverse expression patterns across neuronal and smooth
muscle cells throughout the body (Table 1), as well
as cells of the immune system (including macrophages
and mast cells) where they are involved in migration
and phagocytosis (Bradding et al. 2003; Roselli et al.
2006; Carrithers et al. 2011; Black & Waxman, 2013).
NaV1.1, NaV1.2, NaV1.3 and NaV1.6 are traditionally
considered to be the predominant isoforms expressed
in the brain and spinal cord, whilst NaV1.7, NaV1.8
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and NaV1.9 are preferentially expressed in the peripheral
nervous system (PNS). NaV1.4 is found predominantly
within skeletal muscle and NaV1.5 is the major isoform
in cardiac myocytes (Catterall et al. 2005). Furthermore,
NaV channels are regulated by a range of enzymes
and structural proteins, including auxiliary β-subunits
(β1, β1B, β2, β3, β4) (Qin et al. 2003; Tseng et al.
2007), kinases and ubiquitin-protein ligases (Feng et al.
2012; Savio-Galimberti et al. 2012; Laedermann et al.
2015), which collectively regulate NaV channel biophysical
properties and expression.

Recently, numerous studies have reported NaV isoform
channelopathies, including for NaV1.7 (SCN9A), NaV1.8
(SCN10A) and NaV1.9 (SCN11A) as the primary cause
of increased pain or loss of pain phenotypes in humans
(Yang et al. 2004; Cox et al. 2006; Fertleman et al. 2006;
Klein et al. 2013; Leipold et al. 2013; Huang et al. 2014,
2017; Waxman et al. 2014; Dib-Hajj et al. 2015; Han
et al. 2015). Pharmacological modulation of NaV channels
supports these genetic observations, including the finding
that activation of all NaV channels by Pacific ciguatoxin 1
(P-CTX-1) or veratridine due to accidental consumption
manifests as acute and severe gastrointestinal disturbances
associated with abdominal pain in humans (Schep et al.
2006; Stewart et al. 2010). Intracolonic administration
of purified P-CTX-1 also causes pain behaviour in mice
(Inserra et al. 2017). On the other hand, TTX (which
blocks NaV1.1–NaV1.4, NaV1.6 and NaV1.7) poisoning in
humans is associated with paralysis rather than pain (Lago
et al. 2015). Whilst potentially fatal upon consumption,
administration of NaV-selective agents such as TTX and
neosaxitoxin has been shown to decrease pain responses
in a range of pain modalities including visceral pain in
humans (Hagen et al. 2011, 2017; Manriquez et al. 2015)
and rodents (Marcil et al. 2006; Gonzalez-Cano et al.
2017). Similarly, intrarectal administration of lidocaine
(lignocaine) in irritable bowel syndrome (IBS) patients
reduces rectal sensitivity and abdominal pain, suggesting
NaV channels and activation of peripheral afferent endings
in the colon play key roles in the pathogenesis of chronic
visceral pain in IBS patients (Verne et al. 2005).

Human genetic studies have triggered widespread
investigation into the therapeutic potential of NaV

channels in the treatment of acute and chronic pain
and also prompted studies to identify the wider roles of
these channels throughout the body. It is also clear from
most studies utilising inflammatory, nematode or bacterial
models that gut- and bladder-innervating neurons become
hyperexcitable after the initial insult, which involves
changes in TTX-R and TTX-S NaV currents, amongst
others. This is apparent in neurons innervating the
stomach (Gebhart et al. 2002; Bielefeldt et al. 2002a, b;
Dang et al. 2004), small intestine (Moore et al. 2002;
Stewart et al. 2003; Hillsley et al. 2006; Keating et al. 2008),
the colon (Beyak et al. 2004; Ibeakanma et al. 2009; King

et al. 2009) and the bladder (Yoshimura & deGroat, 1997).
This review presents recent evidence on the specific roles of
NaV1.1–NaV1.9 in transmitting sensation and nociception
from the distal gut and bladder in healthy and pathological
states.

NaV1.1

NaV1.1 is predominantly expressed in cell bodies, axon
initial segments and at the nodes of Ranvier in the central
nervous system (CNS) (Westenbroek et al. 1989; Duflocq
et al. 2008; Carithers et al. 2015; Uhlen et al. 2015;
GTEx Consortium et al. 2017). It is also expressed in
human, rat and mouse PNS (Fukuoka et al. 2008; Wang
et al. 2011; Osteen et al. 2016; Chang et al. 2018), and
in human, but not guinea pig, myenteric plexus (Sage
et al. 2007; Hetz et al. 2014) (Table 1). In thoracolumbar
(T10–L1) and lumbar (L5) dorsal root ganglia (DRG)
neurons, which contain the cell bodies of sensory neurons
innervating the colon, rectum, bladder and skin, NaV1.1
is expressed in 15–35% of all neurons. Expression is
predominantly in Tropomyosin-related kinase C (TrkC)-
and Tropomyosin-related kinase A (TrkA)-expressing
myelinated A-fibres of medium to large diameter
and nearly absent in C-fibre small diameter neurons
innervating the skin (Fukuoka et al. 2008; Wang et al.
2011; Osteen et al. 2016). However, NaV1.1 mRNA trans-
cript is detected in approximately half of thoracolumbar
(T10–L1) and lumbosacral (L5–S1) mouse DRG neurons
innervating the colon (Osteen et al. 2016; Hockley
et al. 2017). As colonic afferents are predominantly
peptidergic C-fibres, there are clearly key differences in
the populations of afferent neurons expressing NaV1.1
when comparing between the colon and the skin. In
colon-innervating DRG neurons, NaV1.1 is frequently
co-localised with NaV1.2, NaV1.3, NaV1.6, NaV1.7,
NaV1.8 and NaV1.9 (Osteen et al. 2016; Hockley et al.
2017). Functional studies of colonic afferents reveal that
NaV1.1 plays a crucial role in the signalling of mechanical
pain from the colon (Osteen et al. 2016). Application
of the selective NaV1.1 agonist, δ-theraphotoxin-Hm1a
(Hm1a), enhances mechanically evoked firing in a
subpopulation of high-threshold colonic nociceptors.
Notably, the mechanical hypersensitivity evoked by Hm1a
was blocked by incubation with the NaV1.1/NaV1.3
antagonist ICA-121431 (Table 2) (Osteen et al. 2016).
Furthermore, Hm1a also induces hyperexcitability of
isolated colon-innervating DRG neurons from healthy
control mice (Osteen et al. 2016). Notably, the percentage
of colon-innervating afferents/neurons affected by Hm1a
is similar to the percentage of colon-innervating DRG
neurons expressing NaV1.1, as determined by single
cell PCR (Osteen et al. 2016; Hockley et al. 2017).
Importantly, colon-innervating DRG neurons isolated
from mice with chronic visceral hypersensitivity (CVH)
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show significantly enhanced responsiveness to Hm1a
compared to healthy control mice, suggesting that NaV1.1
may be essential for the development and maintenance of
chronic visceral pain conditions (Osteen et al. 2016). As
such, antagonism of NaV1.1 may be a future target for the
treatment of disorders accompanied by chronic visceral
pain originating from the colon. There are currently no
reports on the expression profile or function of NaV1.1 in
the bladder or bladder-innervating sensory neurons.

NaV1.2

NaV1.2 is extensively expressed in the CNS (Jarnot &
Corbett, 2006) but has also been detected at low levels
in small-diameter DRG neurons (Black et al. 1996;
Fukuoka et al. 2008; Chang et al. 2018). Conversely, in
colon-innervating DRG neurons of the mouse, NaV1.2
mRNA transcript is present in 69% of thoracolumbar
(T10–L1) neurons and at a similar level in lumbosacral
(L5–S1) neurons (Hockley et al. 2017) (Table 1). Despite
this mRNA expression, there is currently no functional
data to support a role for NaV1.2 in colonic sensory
signalling or pain. Similarly, there are currently no reports
on the expression profile or function of NaV1.2 in the
bladder or bladder-innervating sensory neurons.

NaV1.3

NaV1.3 is highly expressed in sensory neurons during
embryogenesis in rats, but its expression traditionally
subsides in fully developed neurons (Beckh et al. 1989).
The major body of NaV1.3 research in nociception
focuses on its role in neuropathic pain, as NaV1.3
is re-expressed following neuropathic injury in large
diameter, myelinated A-fibre neurons where it may
contribute to ectopic discharge and painful neuropathy
(Waxman et al. 1994; Zang et al. 2010). However, due
to the limited expression of this channel in adult tissues
and lack of channelopathy-associated pain syndromes,
studies investigating the role of NaV1.3 in other pain
pathways are few. In relation to the viscera, NaV1.3 mRNA
is detected in adult guinea-pig enteric nervous system
(ENS) neurons (Sage et al. 2007), but its functional role
has yet to be determined. Initial experiments indicate that
NaV1.3 expression is low in rat lumbar (L5) DRG neurons
(Fukuoka et al. 2008). However, NaV1.3 mRNA transcripts
are detected in approximately half of the colon-innervating
thoracolumbar (T10–L1) and lumbosacral (L5–S1) DRG
neurons in the mouse (Hockley et al. 2017) (Table 1).

More recent studies show a key role for NaV1.3
in non-neuronal tissues, specifically within enterochro-
maffin cells located within the epithelium from the small
and large intestine of humans and mice (Bellono et al.
2017; Strege et al. 2017a,b). Voltage-gated sodium currents
generated by NaV1.3 likely allow enterochromaffin cells

to respond to the detection of mechanical and chemical
stimuli within the lumen of the intestine (Bellono et al.
2017; Strege et al. 2017b). In contrast, expression of the
other eight NaV isoforms is very low, or indeed lacking
from both intestinal enterochromaffin cells and the wider
population of intestinal epithelial cells (Bellono et al.
2017). There are currently no reports on the role of NaV1.3
in the bladder or bladder-innervating sensory neurons.

NaV1.4

NaV1.4 is the predominant NaV isoform in skeletal muscle
(Trimmer et al. 1990) but is also found in human
oesophageal smooth muscle tissue (Deshpande et al.
2002). In peripheral neurons, NaV1.4 transcripts are
nearly absent in rat lumbar (L5) DRG (Fukuoka et al.
2008) and in colon-innervating mouse DRG neurons
(Hockley et al. 2017) (Table 1). In agreement with tissue
distribution, NaV1.4 channelopathies appear to exclusively
involve deficits in skeletal muscle function, and to date no
involvement in colon or bladder function has been shown.

NaV1.5

NaV1.5 channels have been identified in circular smooth
muscle of the jejunum of human, dog, rat and mouse but
are absent in pig and guinea pig. NaV1.5 is also absent from
human and mouse jejunal longitudinal smooth muscle
(Holm et al. 2002; Ou et al. 2002; Strege et al. 2007; Beyder
et al. 2016). NaV1.5 has been found in colonic circular
smooth muscle of human and rat (Strege et al. 2003), in
jejunal interstitial cells of Cajal in human (Strege et al.
2003), and in myenteric plexuses of human and mouse
(Hetz et al. 2014; Osorio et al. 2014).

NaV1.5 in circular smooth muscle may contribute
to normal intestinal motility through modulation of
slow-wave activity and muscle contractility (Ou et al. 2002;
Strege et al. 2007). These findings are supported by data
showing that ranolazine, a treatment for chronic angina, is
able to inhibit NaV1.5 currents in human colonic smooth
muscle cells (Neshatian et al. 2015), which is likely to be
responsible for the constipation seen during long-term
ranolazine treatment (Nash & Nash, 2008). These data
strongly point towards a primary role for NaV1.5 channels
in mediating gastrointestinal motility and transit (Beyder
& Farrugia, 2016). Similarly, several loss-of-function
mutations in SCN5A, the gene encoding NaV1.5 channels,
are associated with IBS and abdominal pain (Saito et al.
2009; Beyder et al. 2014; Strege et al. 2017c). Whether this
is purely a consequence of reduced gastrointestinal contra-
ctility or whether NaV1.5 channels also play a direct role in
visceral sensation remains unclear, as NaV1.5 mRNA trans-
cripts are expressed in 18% of thoracolumbar and 51%
of lumbosacral colon-innervating DRG neurons (Hockley
et al. 2017) (Table 1). Whether this translates into channel
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expression and a functional role remains to be determined.
There are currently no reports on the expression profile or
function of NaV1.5 in the bladder or bladder-innervating
sensory neurons.

NaV1.6

NaV1.6 is extensively expressed within the CNS and PNS
(Whitaker et al. 1999; Tzoumaka et al. 2000; Catterall
et al. 2005; Catterall, 2012; Chang et al. 2018), commonly
located in clusters at the nodes of Ranvier (Duflocq et al.
2008), indicating that NaV1.6 may have a primary role in
transmitting rather than initiating action potentials. In rat
lumbar (L5) DRG neurons, NaV1.6 transcripts are detected
in a third of all neurons and selectively expressed in TrkC-
and TrkA-expressing myelinated A-fibre nociceptors
(Fukuoka et al. 2008). In colon-innervating mouse DRG
neurons, NaV1.6 mRNA transcript is present in 63–87%
of thoracolumbar (T10–L1) neurons, and in 51% of
lumbosacral (L5–S1) neurons (Hockley et al. 2017; Inserra
et al. 2017). Immunohistochemical and western blot
analysis show that NaV1.6 protein is present in the cell
bodies of sensory neurons and on sensory afferent nerve
endings innervating the distal colon and rectum in mice
(Feng et al. 2015) (Table 1). Antagonism of NaV1.6 reduces
action potential firing of stretch-sensitive colorectal
afferents in vitro (Feng et al. 2015) (Table 2). Whether
these effects are altered in animal models of inflammatory
or chronic visceral pain remains to be investigated. It has,
however, been reported that there is no change in NaV1.6
expression in colon-innervating DRG neurons (T9–T13)
during the acute inflammatory phase of the mouse model
of trinitrobenzenesulphonic acid (TNBS)-induced colitis
(King et al. 2009). This corresponds with the phase when
colorectal afferent hypersensitivity also occurs (Hughes
et al. 2009). Activation of low-threshold stretch-sensitive
afferents is essential for normal physiological function of
the colon (Brierley et al. 2004; Kyloh et al. 2011) and
NaV1.6 appears to play a key integrative role in this process.
Whether NaV1.6 contributes to aberrant colonic afferent
sensory signalling during chronic visceral hypersensitivity
remains to be determined. There are currently no reports
on the expression profile or function of NaV1.6 in the
bladder or bladder-innervating sensory neurons.

NaV1.7

NaV1.7 has become a key target of interest as several
human mutations in the SCN9A gene, which encodes
NaV1.7, lead to either a loss of pain or increased pain
perception (Bennett & Woods, 2014). For example,
a loss-of-function mutation of SCN9A results in a
congenital insensitivity to pain (CIP) (Cox et al. 2006;
Goldberg et al. 2007), whereas gain-of-function mutations
produce distinct pain syndromes, such as erythromelalgia,

small-fibre neuropathy and paroxysmal extreme pain
disorder (Fertleman et al. 2006). NaV1.7 is extensively
expressed in sensory and sympathetic neurons of the PNS,
as well as ENS neurons, and is highly restricted in the CNS
(Klugbauer et al. 1995; Catterall et al. 2005; Morinville
et al. 2007; Sage et al. 2007; Branco et al. 2016; Chang et al.
2018). In rat lumbar (L5) DRG neurons, NaV1.7 trans-
cripts are preferentially expressed in TrkA-expressing
C-fibre neurons, and in a subset of A-fibre neurons
(Fukuoka et al. 2008). Robust immunolabelling of NaV1.7
is present within the peripheral endings of sensory nerves
in the skin (Black et al. 2012).

From mouse knock-out studies, it appears that
NaV1.7 in NaV1.8-expressing cells (NaV1.7Nav1.8) does
not contribute in the development of neuropathic pain,
nor noxious cold or heat detection (Nassar et al.
2004, 2005; Minett et al. 2012, 2014; Hockley et al.
2017). However, NaV1.7Nav1.8 mice have significantly
reduced behavioural responses to inflammatory mediators
(formalin, complete Freund’s adjuvant, carrageenan and
nerve growth factor) when injected into the sole of the
hind paw (Nassar et al. 2004) and impaired somatic
noxious mechanosensation (Minett et al. 2012, 2014).
Thus far, only the deletion of NaV1.7 in sympathetic
and sensory (Wnt1-expressing) neurons and the global
NaV1.7 knock-out have been able to significantly reduce
pain responses to a range of stimuli and recapitulate the
human SCN9A-associated CIP phenotype (Gingras et al.
2014; Minett et al. 2014). Recent studies also show that
endogenous opioids contribute to pain insensitivity in
both humans and mice lacking NaV1.7, as the opioid
antagonist naloxone reverses analgesia associated with the
loss of NaV1.7 expression (Minett et al. 2015). This suggests
that NaV1.7 channel blockers alone may not replicate the
analgesic phenotypes of NaV1.7 null mutants, but may
be potentiated with exogenous opioids. NaV1.7-selective
inhibitors are currently in clinical trial for different types
of pain (Pennington et al. 2017; Yekkirala et al. 2017).

In relation to visceral sensation, NaV1.7 is highly
abundant in human lumbar DRG, and is expressed
in 100% of mouse colon-innervating thoracolumbar
(T10–L1) DRG neurons, and in most colon-innervating
lumbosacral (L5–S1) DRG neurons (Chang et al. 2018;
Hockley et al. 2017; Inserra et al. 2017) (Table 1).
Accordingly, NaV1.7 constitutes the most prevalent TTX-S
isoform within colon-innervating DRG neurons. It is of
interest to note that ‘paroxysmal extreme pain disorder’,
caused by the human gain of function SCN9A mutation,
was originally called ‘familial rectal pain syndrome’. As the
name implies, this disorder is characterised by excruciating
rectal and abdominal pain commonly associated with
defecation (Fertleman et al. 2006), suggesting a key role
for NaV1.7 in visceral pain. Moreover, pain perception
in a subset of patients with interstitial cystitis/bladder
pain syndrome (IC/BPS) is shown to correlate with a
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polymorphism in SCN9A (Reeder et al. 2013). IC/BPS
patients treated with a bladder infiltration of neosaxitoxin,
a blocker of TTX-S NaV channels, resulted in significant
analgesia and reduced bladder overactivity for 90 days
after the treatment (Manriquez et al. 2015). Normal
physiological function of the bladder, however, appears
to be independent of NaV1.7, as SCN9A-associated CIP
individuals have normal bladder control, and no increased
incidence of urinary infections, incontinence, or retention
(Cox et al. 2006).

Despite these studies, the initial promise of NaV1.7’s
contribution to visceral pain is somewhat tempered
by experimental studies showing that NaV1.7Nav1.8 mice
exhibit normal nocifensive responses to intracolonic
administration of capsaicin (TRPV1 agonist) and mustard
oil (TRPA1 agonist), indicating that NaV1.7 is not
crucial for acute visceral pain signalling (Hockley et al.
2017). Low-threshold stretch-sensitive pelvic afferents are
unaffected by the NaV1.7 antagonist ProTX-II (Feng et al.
2015) (Table 2). Similarly, ex vivo extracellular recordings
of mesenteric afferents from resected human appendices
show that peak firing before and after exposure to a novel
NaV1.7-selective antagonist, PF-5198007, is unchanged
during repeat noxious ramp distensions (Hockley et al.
2017). Afferent responses in mouse ex vivo colorectal
recordings are attenuated by application of TTX (Feng
et al. 2015), indicating that TTX-S channels other than
NaV1.7 may be important in responding to innocuous
and noxious mechanical stimuli. Accordingly, intra-
colonic co-administration of TTX and P-CTX-1 did not
significantly alter the pain response induced by P-CTX-1
(Inserra et al. 2017).

Ex vivo extracellular recordings of splanchnic nerve
activity from the distal colon of NaV1.7Nav1.8 mice show
no difference in peak firing between NaV1.7Nav1.8 and
littermate control afferents in the physiological and supra-
physiological pressure range (0–80 mmHg) (Hockley et al.
2017). However, significantly less action potential firing
in afferents from NaV1.7Nav1.8 mice at distension pressures
in the supramaximal range (80–145 mmHg) is observed,
suggesting that NaV1.7 in NaV1.8-positive colonic afferent
neurons may be involved in transducing non-physiological
extremes of pressure. This may be important and more
relevant to chronic visceral pain states, when splanchnic
afferents show mechanical hypersensitivity and decreased
activation thresholds to mechanical stimuli (Hughes et al.
2009; Castro et al. 2013, 2017; de Araujo et al. 2014;
Osteen et al. 2016). In the bladder, NaV1.7Nav1.8 mice have
comparable levels of referred hyperalgesia in an acute
cyclophosphamide-induced cystitis model compared to
littermates (Hockley et al. 2017). Overall, these findings
suggest that NaV1.7 has a role in mediating acute
inflammatory pain in somatic but not visceral pathways.
While studies on visceral nociception using NaV1.7Nav1.8

mice have provided valuable insight, replication of these

studies in mice with sensory neuron-specific deletion of
NaV1.7 (e.g. NaV1.7Advill) will be beneficial to strengthen
conclusions concerning NaV1.7 in visceral pain signalling.

Diseases that have a significant visceral pain component
are commonly chronic and have unmet needs in terms of
clinical treatment. Therefore, further investigations into
the role of NaV1.7 in long term and chronic visceral pain
models, which are more clinically relevant to pathological
chronic visceral pain states, are critical. For example,
significant up-regulation of NaV1.7 mRNA occurs 4 weeks
after induction of colitis in colon-innervating DRG
(L6–S1) neurons (Campaniello et al. 2016). Similarly,
rats with streptozotocin-induced diabetes show hyper-
sensitivity to colonic distension, which corresponds with
the up-regulation of NaV1.7 protein in thoracolumbar
(T13–L2) DRG neurons 4 weeks post-induction (Hu
et al. 2016). In support of these findings, rat
neonatal colitis-induced visceral hypersensitivity induces
up-regulation of NaV1.7 protein levels in DRG from higher
spinal levels (T13–L2), but not lower spinal levels (L4–L5)
at 6 weeks post-colitis compared to control animals (Qu
et al. 2013). Taken together, these findings suggest that
NaV1.7 may have an acquired role during chronic visceral
pain states. It is well documented that inflammation,
tissue damage and healing of visceral organs can induce
structural, synaptic or intrinsic neuroplasticity, altering
neuronal and gastrointestinal function in the long term
(Brierley & Linden, 2014). For example, rectal samples
from patients with physiologically characterised rectal
hypersensitivity show significantly increased numbers of
NaV1.7-immunoreactive nerve fibres in the mucosal, sub-
mucosal and muscle layers compared to control tissues
(Yiangou et al. 2007). In addition to these findings, changes
in the ratios of NaV1.7 to a pan-neuronal structural
marker, PGP9.5, indicate that increased NaV1.7 expression
and nerve sprouting occurs in rectal mucosa, which
may contribute to enhanced sensitivity in these patients
(Yiangou et al. 2007).

Overall, the role of NaV1.7 in pain sensation is
complicated, and species differences in expression,
assumed translatability of isoform-compound inter-
action, and effects of NaV knock-out on other genes may
confound overall conclusions. Furthermore, few studies
using human tissue have been completed, and healthy
tissue is often obtained from patients with colonic or
rectal carcinoma (Yiangou et al. 2007; Hetz et al. 2014;
Hockley et al. 2017). In addition to species-dependent
differences in tissue distributions (Table 1), there are
also differences in relative isoform distributions, for
example, NaV1.7 is the most abundant isoform in human
lumbar DRG, whereas NaV1.8 is more abundant in mouse
(Chang et al. 2018). NaV1.7 isoforms from different
species can also have different compound selectivity in
heterologous expression systems that should be carefully
considered during experimental design. For example,
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human, monkey, dog and mouse NaV1.7 isoforms were
found to be largely insensitive to a small molecule inhibitor
of NaV1.1/NaV1.3 (ICA-121431) and potently inhibited
by a small molecule inhibitor of NaV1.7 (PF-04856264),
whereas rat NaV1.7 was potently inhibited by ICA-121431,
but largely insensitive to PF-04856264 (McCormack et al.
2013). A ProTxII analogue, JNJ63955918, on the other
hand was equipotent at human and rat NaV1.7 (Flinspach
et al. 2017). Single cell studies have shown that NaV

channel expression is heterologous across cells, and there
is high co-localisation of NaV1.7 with NaV1.6, NaV1.8
and NaV1.9 in colon-innervating thoracolumbar and
lumbosacral neurons in mice (Hockley et al. 2017).
However, functional relationships of co-expression and
investigations of redundancy between NaV channels are
unclear. In knock-out models, deletion of one NaV gene
can lead to a change in expression levels of over 190
genes (Minett et al. 2015). Studies investigating NaV

channel contribution to pain signalling using knock-out
models or pharmacological modification may benefit
from collecting data on regulation of other NaV family
genes and auxiliary β-subunits in parallel, and other key
genes where possible. Furthermore, inducible knock-out
models offer the advantage of normal development and
being able to compare NaV channel contribution pre-
and post-induction of visceral hypersensitivity in the
adult, thereby increasing therapeutic potential of these
findings.

NaV1.8

NaV1.8 mediates slowly inactivating TTX-R Na+ currents
and carries the majority of the current underlying the
upstroke of the action potential in nociceptive neurons.
Hence, they are considered to play an important role
in action potential electrogenesis (Renganathan et al.
2001). NaV1.8-null mice display reduced sensitivity to
noxious mechanical stimuli (tail pressure) and noxious
thermal stimuli (radiant heat), but normal sensitivity
to acute noxious colonic distension by isotonic saline
and intraperitoneal acetylcholine (Akopian et al. 1999;
Laird et al. 2002). NaV1.8 is the most abundant iso-
form expressed in mouse lumbar DRG (Chang et al.
2018), and is prevalently expressed in thoracolumbar
(96%) and lumbosacral (91%) colonic sensory DRG
neurons, with almost complete co-expression with NaV1.7
(Hockley et al. 2017). Consistent with this, knock-down
of NaV1.8 in DRG neurons results in action potentials
with reduced peak amplitude and slower rise times, but
similar baseline excitability (Renganathan et al. 2001;
Hillsley et al. 2006). Similarly, A-803467, a selective NaV1.8
antagonist, does not significantly affect the frequency
of action potential firing from low-threshold mechano-
sensitive colonic afferent nerve endings (Feng et al. 2015).
Together, these data seem to suggest that NaV1.8 channels

do play a major role in mediating visceral sensations and
pain under physiological conditions.

NaV1.8 channels also have a major role in visceral
signalling under pathophysiological conditions. Several
studies support increased expression of NaV1.8 protein
in colon-innervating sensory DRG neurons in murine
models of visceral hypersensitivity (Beyak et al. 2004;
Hillsley et al. 2006; King et al. 2009; Qu et al. 2013;
Hu et al. 2013a,b; Inserra et al. 2017; Lin et al. 2017)
(Table 2). In most studies, increased channel expression
correlates with enhanced TTX-R Na+ current density in
colon-innervating DRG neurons in vitro, and with visceral
hypersensitivity in vivo, as the visceromotor response
to noxious colonic distension in rats is significantly
reduced following intraperitoneal administration of
the NaV1.8-specific antagonist A-803467 (Jarvis et al.
2007). Similarly, colonic co-administration of A-803467
with P-CTX-1 significantly reduces P-CTX-1-induced
nocifensive behaviours in mice (Inserra et al. 2017).
These findings are consistent with studies in NaV1.8-null
mice, which do not develop visceral hypersensitivity after
intracolonic administration of sensitising agents such
as capsaicin (TRPV1 agonist) and mustard oil (TRPA1
agonist). Furthermore, unlike their wild-type littermates,
DRG neurons from NaV1.8-null mice do not display
enhanced neuronal hyperexcitability following intestinal
infection with Nippostrongylus brasiliensis (Laird et al.
2002; Hillsley et al. 2006).

Inflammatory mediators acting via GPCRs are powerful
modulators of NaV1.8 currents, and are believed to under-
lie increased excitability of nociceptive DRG neurons
and associated hyperalgesia (Beyak et al. 2004). In this
regard, colon-innervating DRG neurons incubated with
supernatant from colonic biopsies from patients with
active ulcerative colitis (a chronic inflammatory bowel
disease) show increased action potential discharge and
enhanced NaV1.8 currents (Ibeakanma & Vanner, 2010).
These effects were replicated by incubation with tumour
necrosis factor α (TNFα), whose levels are enhanced
in the ulcerative colitis supernatant. Similar sensitising
effects have been reported for prostaglandin E2 (PGE2),
adenosine, serotonin (5-HT), ATP, as well as nerve growth
factor (NGF), which may persist during and possibly after
the inflammation as a result of increased expression of
NaV1.8 channels (Gold, 1999; Gold et al. 2002; Beyak et al.
2004). Recent data, however, indicate that these effects are
not limited to inflammatory conditions, but may extend
to non-inflammatory chronic pain states. Partial colonic
obstruction is associated with an increase in NaV1.8 mRNA
expression, as well as enhanced TTX-R Na+ currents and
referred in vivo hyperalgesia, effects that were abolished
by anti-NGF treatment (King et al. 2009; Ibeakanma &
Vanner, 2010).

Decreased TTX-R currents occur in bladder-
innervating DRG neurons from T8 spinal transected
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rats (Yoshimura & deGroat, 1997), which has since been
attributed to a down-regulation of NaV1.8 (Black et al.
2003). This change is only seen in bladder-innervating
DRG neurons, and is accompanied by an up-regulation
of TTX-S current, which may also enhance the
excitability of these afferent neurons. Knock-down of
NaV1.8 in rats at spinal levels L6–S1, known to
contain the majority of bladder sensory terminals,
does not have an effect on intercontraction inter-
vals following cystometry with saline; however, intra-
vesical acetic acid-induced hyper-reflexia is attenuated in
knock-down rats (Yoshimura et al. 2001). NaV1.8-null
mice develop normal pain and inflammatory responses
during cyclophosphamide-induced cystitis compared to
littermates (Laird et al. 2002), and pain behaviours are

sustained in rats with cyclophosphamide-induced cystitis
following intraperitoneal administration of A-803467
(Jarvis et al. 2007).

Cross-organ sensitisation of the gastrointestinal and
lower urinary tract is evident clinically and in animal
models (Malykhina et al. 2004, 2012; Lei & Malykhina,
2012), highlighting the importance of understanding
the mechanisms of viscero-visceral crosstalk. Several
studies report increases in TTX-resistant Na+ current
in bladder-innervating DRG neurons following colitis,
implicating some involvement of TTX-R channels in
bladder pain as a consequence of gastrointestinal tract
inflammation. C-fibre bladder-innervating DRG neurons,
involved in the transduction of noxious stimuli signalling
(Fowler et al. 2008), in the majority express TTX-R

Colonic smooth muscle cells

Nav1.5

Nav1.8

Nav1.1

Nav1.6

Nav1.8

Nav1.9

Nav1.3

Enterochromaffin cells

Splanchic nerves

Pelvic nervesColon

Colon innervating extrinsic
sensory afferent nerve terminal

Bladder innervating extrinsic
sensory afferent nerve terminal

Bladder

Spinal cord

Figure 1. Current understanding of how specific voltage-gated sodium channels (NaV) contribute to
the functioning of neurons and non-neuronal cells within visceral organs
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currents (Yoshimura & deGroat, 1997). Collectively,
experimental findings to date indicate that NaV1.8 is
not crucial for visceral pain signalling from the bladder
in response to several noxious stimuli, but it may have
an important role during referred hyperalgesia and in
response to certain irritants.

NaV1.9

Several human NaV1.9 channelopathies are associated
with congenital episodic pain syndromes, painful neuro-
pathy, and an insensitivity to pain (Huang et al. 2014,
2017). NaV1.9 channels are preferentially expressed in
small-diameter nociceptors (Dib-Hajj et al. 1998; Tate
et al. 1998), and mediate ultraslow or persistent TTX-R
Na+ currents. Due to their kinetic properties, NaV1.9
channels are unlikely to contribute to action potential
generation, but instead regulate neuronal excitability by
setting the resting membrane potential closer to threshold
(Dib-Hajj et al. 1998, 2002; Tate et al. 1998). In colonic
afferents, action potential firing in response to colonic
ramp distension is reduced in NaV1.9−/− mice, and
accompanied by a run-down of responses to repeated
phasic distension (Hockley et al. 2014). Similar to NaV1.8
channels, several studies indicate that NaV1.9 currents can
be enhanced via GPCRs (Maingret et al. 2008; Ostman
et al. 2008; Vanoye et al. 2013; Hockley et al. 2016b).
Colonic afferent excitatory responses to the application of
multiple inflammatory mediators (applied at once, either
in the form of supernatants from chronically inflamed
human bowel or as an experimental inflammatory
soup containing ATP, PGE2, bradykinin, histamine and
5-HT) are significantly reduced in visceral afferents from
NaV1.9−/− mice (Hockley et al. 2014, 2016a) (Table 2).

NaV1.9−/− mice have similar baseline visceromotor
responses to colonic distension to wild-type littermates,
but reduced visceral hypersensitivity in vivo after
colonic inflammation induced by activation of toll-like
receptor 7 (Martinez & Melgar, 2008). Neuronal
hyperexcitability following Nippostrongylus bransiliensis
infection is unchanged in NaV1.9−/− mice compared to
wild-type littermates, reporting similar action potential
characteristics and excitability of colon-innervating DRG
neurons (Hillsley et al. 2006). Likewise, others do not see
changes in NaV1.9 protein expression in colon-innervating
DRG neurons, nor differences in either the numbers of
neurons expressing persistent TTX-R (NaV1.9) currents
or the magnitude of these currents in acute TNBS-induced
colitis (Beyak et al. 2004; King et al. 2009). It is unclear
whether these discrepancies in the contribution of NaV1.9
to neuronal (hyper)excitability relates to differences in
knock-out constructs and mice strains, or to differences
in the inflammatory insult studied. The latter may be of
considerable importance as inflammatory mediators such
as bradykinin, ATP, histamine, PGE2 and noradrenaline

(norepinephrine), potentiate NaV1.9 channel activity
when applied conjointly, but fail to modulate NaV1.9
currents when applied separately (Maingret et al. 2008).

NaV1.9 channels are also present in myenteric plexus
neurons in human, mouse, rat and guinea-pig (Rugiero
et al. 2003; Padilla et al. 2007; Copel et al. 2009;
Osorio et al. 2014) pointing towards an additional
role in intestinal motor function. In line with this,
colonic migrating motor complex patterns are altered in
NaV1.9−/− mice (Copel et al. 2013). Moreover, expression
of NaV1.9 channels is decreased in submucosal and
myenteric plexus neurons (most likely intrinsic primary
afferent neurons) in Hirschsprung’s disease (O’Donnell
et al. 2016). Interestingly, these findings apply not only
to aganglionic bowel sections, but in some patients
extend to those sections containing normal ganglia
numbers, which could explain some of the post-surgery
bowel dysmotility issues frequently encountered by
these patients (O’Donnell et al. 2016). Conversely,
a gain-of-function mutation (L811P) in the NaV1.9
gene, SCN11A, identified in three unrelated individuals
with congenital insensitivity to pain, is associated with
severe gastrointestinal dysmotility, including alternating
episodes of diarrhoea and constipation (Leipold et al. 2013;
Woods et al. 2015). In contrast, other gain-of-function
mutations are predominantly linked to chronic pain
syndromes such as autosomal-dominant episodic pain and
small fibre neuropathy (Zhang et al. 2013; Huang et al.
2014; Han et al. 2015).

No difference is observed in basal urodynamics
between wild-type and NaV1.9−/− mice; however, the
change of urodynamic parameters associated with
cyclophosphamide-induced cystitis is absent in NaV1.9−/−
mice, as well as attenuation of PGE2-induced afferent
excitability during bladder distension (Ritter et al. 2009).
It remains to be investigated whether this involvement
of NaV1.9 in bladder nociception is due to functional
up-regulation of NaV1.9 in bladder afferents, or whether
NaV1.9 has a role in central processing of bladder
nociceptive pathways.

Conclusion

Recent findings highlight the diversity in expression
patterns of NaV isoforms in abdominal visceral organs.
This diversity extends across neurons (enteric, extrinsic
sensory DRG innervating the intestine or bladder) and
non-neuronal cells (intestinal enterochromaffin cells,
intestinal smooth muscle cells, and interstitial cells
of Cajal). NaV channels have a range of functions
in health and disease and we are only now, with
the development of novel pharmacological and genetic
tools, beginning to unpick their complex physiological
and pathophysiological interactions. NaV1.1, NaV1.6,
NaV1.8 and NaV1.9, contribute to visceral hypersensitivity,
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particularly within colonic pathways, and respond to
inflammatory mediators in pathophysiological models
(Fig. 1).

Whilst NaV1.3 contributes to enterochromaffin cell
function and NaV1.5 contributes to intestinal smooth
muscle cells and interstitial cells of Cajal function, there
is currently no determined function in visceral afferents
for NaV1.2, NaV1.3, NaV1.4 or NaV1.5, despite significant
mRNA expression of NaV1.2 and NaV1.5 in visceral
afferent pathways. NaV1.7 is one of the most extensively
expressed and studied NaV channels, but a role in visceral
pain, like that attributed to NaV1.7 in somatic pain studies
is currently unclear. Although many of these NaV channels
have been investigated under physiological conditions or
in models of acute pain, chronic visceral pain models
are necessary for the determination of a precise role
in long term pathological visceral pain. Future studies
would benefit from the further development of novel,
specific agonists and antagonists, as we have seen with
recent advances in the role of NaV1.1 in mechanical pain.
Likewise, selective NaV modulators with low systemic
uptake for in vivo studies will advance our understanding
of NaV channels in visceral pain signalling and the
suitability of targeting NaV channels in the treatment of
pain originating in the distal gut and bladder.

References

Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J,
Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC,
Dickenson AH & Wood JN (1999). The
tetrodotoxin-resistant sodium channel SNS has a specialized
function in pain pathways. Nat Neurosci 2, 541–548.

Alcaino C, Farrugia G & Beyder A (2017). Mechanosensitive
piezo channels in the gastrointestinal tract. Curr Top Membr
79, 219–244.
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