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To the editor

Biomedical data are being produced at an unprecedented rate owing to the falling cost of
experiments and wider access to genomics, transcriptomics, proteomics and metabolomics
platforms?2. As a result, public deposition of omics data is on the increase. This presents
new challenges, including finding ways to store, organize and access different types of
biomedical data present on different platforms. We present the Omics Discovery Index
(OmicsDI - http://www.omicsdi.org), an open source platform that enables access, discovery
and dissemination of omics datasets.

In 2016, a group of researchers, publishers and research funders published the first
guidelines to make data Findable, Accessible, Interoperable and Re-usable (FAIR - https://
www.forcel1.org/group/fairgroup/fairprinciples)3. The FAIR principles put specific
emphasis on enhancing the ability of machines to automatically find and use the data, in
addition to supporting its reuse. Challenges facing combined analyses of different datasets
include achieving a common representation for datasets and their associated metadata, and
the lack of protocols and tools that enable data exchange across multiple repositories. With
respect to the first principle (‘Findable”), most of the available resources for the scientific
community nowadays are either field specific, that is genomics, proteomics or metabolomics
experimental datasets; or organism-specific, but including datasets from different omics
technologies, e.g. the “Saccharomyces Genome Database” (SGD). Finding a dataset can be
frustrated by the need to search individual repositories and read numerous publications. The
development of consortia integrating resources e.g. ProteomeXchange and
MetabolomeXchange has helped to improve findability. Nature! and Nature Biotechnology”
have highlighted the need for dataset integration frameworks to increase findability of data.
And, in the context of the European ELIXIR (https://www.elixir-europe.org/) and USA Big
Data to Knowledge (BD2K)® trans-NIH initiative, it is clear that a dedicated platform, search
engines and services enabling the aggregation of omics datasets, to resources such as
PubMed® or Europe PubMed Central (EuroPMC), is required.

The Omics Discovery Index (OmicsDI - http://www.omicsdi.org) is an open source platform
that can be used to access, discover and disseminate omics datasets. OmicsDI can integrate
proteomics, genomics, metabolomics, and transcriptomics datasets (Fig. 1). To date, eleven
repositories have agreed on a common metadata structure framework and exchange format,
and have contributed to OmicsDI (Supplementary Notes 1-3), including proteomics
databases (the PRoteomics IDEntifications (PRIDE) database, PeptideAtlas, the Mass
spectrometry Interactive Virtual Environment (MassIVE) and the Global Proteome Machine
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Database (GPMDB)); metabolomics databases (MetaboL ights, the Global Natural Products
Social Molecular Networking project (GNPS), MetabolomeExpress, and the Metabolomics
Workbench), the major European Genome-Phenome Archive (EGA) and transcriptomics
databases (ArrayExpress and Expression Atlas). OmicsDI stores biological and technical
metadata from these public datasets using an efficient indexing system (Fig. 1b) which can
integrate different biological entities including genes, transcripts, proteins, metabolites and
the corresponding publications from PubMed.

In order to facilitate participation in OmicsDI by repositories and the future integration of
other omics fields (e.g. interactomics) we have developed a set of data integration guidelines
and metadata requirements. The level of annotation required is flexible and many
repositories only provide a subset of the metadata included in our guidelines. Data with
varying amounts of annotation can be made ‘Accessible’ in OmicsDI by using a flexible
metadata schema that classifies datasets as either mandatory, recommended or additional. A
flexible exchange system based on the OmicsDI XML format and application programming
interfaces (APIs) has been developed. Each repository needs to generate these file formats to
join the OmicsDI platform. In order to facilitate integration, a stand-alone open source Java
tool has been developed (‘OmicsDI XML validator’). It allows the detection of metadata
related format errors as well as inconsistencies in the dataset representation (Supplementary
Note 4).

Different repositories use their own data models, metadata representation and identifiers, e.g.
controlled vocabularies (CVs) and ontologies. To address any interoperability problems that
arise, OmicsDI includes a metadata normalization and annotation expansion step for every
dataset that is integrated (Fig. 1b). These harmonization steps standardize experimental and
technical metadata, the identifiers for the biological entities, and the references to external
resources. For example, for any publication named using the Digital Object Identifier (DOI)
or a citation, the matching PubMed identifier is inserted during harmonization
(Supplementary Notes 5-6). If the name of an organism is provided using free-text the
annotation step during harmonization converts it to an NCBI taxonomy identifier. Different
datasets can include different terms for the same concept within the same context® e.g. a
protein can also be referred to as a gene product. To overcome this type of problem, an
ontology-based annotation expansion step is applied using the ontology tool ‘Annotator’®,
and every relevant phrase in the metadata (title, description, sample and protocols) and the
corresponding publication (title and abstract) is enriched with the relevant synonyms,
ontology and CV terms.

OmicsDl is a lightweight discovery tool that comprises more than 81,116 omics datasets
(December 2016) from eleven different repositories and includes four omics types
(transcriptomics: 67,361; proteomics: 6,281; genomics: 8,093; and metabolomics: 847). The
number of datasets from human, model organisms and non-model organisms (excluding
human) is uniformly distributed among repositories and omics types (Fig. 2a), highlighting
the diversity of datasets. To the best of our knowledge, OmicsDI is the first resource that
integrates datasets from different omics fields and databases into one framework and web
interface.
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OmicsDI also extends the ‘Findable’ principle by providing methods to find and link
existing datasets. The annotation expansion step using synonyms enables users to find and
associate datasets that cannot otherwise be found. For example, the proteomics dataset
PXD002530 (http://www.ebi.ac.uk/pride/archive/projects/PXD002530) can be found in
OmicsDI with the search term “side effects’, whereas this dataset cannot be found by
searching PRIDE using that term. In PRIDE it is only possible to find the same dataset by
inputting the term “adverse effects’ that was used in the original annotation of the dataset.
By indexing the biological entities information in OmicsDI it is possible to find datasets in
which the queried molecule has been reported without an exact matched term. For example,
the Metabolomics Workbench dataset S7000113 can be found in OmicsDI using the
metabolite name ‘Arg-[13C,15N]3’, whereas the same search will not find S7000113in
Metabolomics Workbench.

OmicsDI links datasets by two methods. First, datasets are directly linked using explicit
mentions in the metadata. If the dataset is a reanalysis (e.g. PeptideAtlas dataset) of a dataset
in a different member repository (e.g. PRIDE), a cross-reference in the OmicsDI XML is
used to define this relation. This annotation can be provided by the original repository in the
OmicsDIl XML (e.g. PeptideAtlas) or can be inferred by OmicsDI during the annotation
process. As of December 2016, the relations ‘ Reanalyzed by’ and ‘ Reanalysis of are
already in use (Supplementary Table 1). This mechanism provides a direct link between
datasets in different repositories. Second, the publication associated with a dataset can be
used to link datasets that are deposited in different repositories. This enabled the linking of
datasets from different databases that are however part of the same multi-omics experiment
(Fig. 2b) and presents them to the user as ‘ Other related omics datasets ir’. As of December
2016, 4,476 datasets have been labeled by the OmicsDI annotation component as part of
multi-omics experiments. While still small (5% of all OmicsDI datasets), the number of
multi-omics datasets is growing (Supplementary Table 2).

OmicsDI also uses the “similar dataset’ concept (Supplementary Note 7). The concept of
‘Related article’ has been applied in PubMed to explore topics®. In OmicsDI, similar
datasets are computed at two different levels: metadata and biological entities. Both
similarity levels are estimated by comparing the weighted term vectors of each dataset using
the dot (scalar) product. The distribution of the metadata similarity (Supplementary Fig. 1)
and molecular similarity (Supplementary Fig. 2) are filtered depending of the distribution for
each omics type. In this way OmicsDI boosts the discoverability of related datasets that use
similar analytical protocols, software (Supplementary Fig. 3), or share similar biological
entities (Supplementary Fig. 4). To our knowledge, this enables for the first time the
association of related datasets stored in different resources. For example, for the Expression
Atlas dataset £-GEOD-30999 (http://www.omicsdi.org/dataset/atlas-experiments/E-
GEOD-30999), OmicsDI reports 14 related datasets. In addition, the *biological similarity’
score computes the number of shared biological entities among datasets without taking into
account additional metadata. For example, the same dataset has five datasets with a
biological similarity score above 0.5 and one dataset with a score of 0.7 (E-GEOD-41662).
Of these, dataset £-GEOD-41663is not classified as related by the metadata-based
similarity, although careful reading of the associated manuscripts reveals that £-
GEOD-41663 used a subset of the samples of £-GEOD-30999. This example demonstrates
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the value of our approach. We determined the correlation between metadata and biological
similarity scores for all OmicsDI datasets (Fig. 2c). The results showed no correlation (R? =
0.03) between both metrics across all types of omics datasets, with the highest correlation
found in metabolomics approaches (R% = 0.3). For example, the datasets PXD000637
(PRIDE), S7T000189 (Metabolomics Workbench), and E-MTAB-3839 (Expression Atlas)
showed a higher biological similarity score (above 0.85) and less than 5 of metadata score
(Fig. 2c). These results show that both scores are orthogonal metrics supporting discovery of
related datasets through complementary methods.

The OmicsDI web interface provides different views each of which focuses on a specific
aspect of the data (Supplementary Notes 8-9). A metadata overview and access statistics
provide a convenient entry point to browse a repository (Supplementary Fig. 5). Datasets can
be searched and filtered based on annotations (e.g. species, tissue, disease), year of
publication, or repository. The result of each search displays all the relevant datasets sorted
using a weighted scoring function (Supplementary Fig. 6). In addition, OmicsDI provides a
dataset page that includes a list of related publications and similar datasets (Fig. 2b—d). If the
biological entities information is available for a given dataset, a chord diagram presents the
link to related datasets with high biological similarity scores (Fig. 2d). A web service
interface, including a standard RESTful API to access the data programmatically, is also
provided (http://www.omicsdi.org/ws). Related libraries and packages used for OmicsDI are
also available at https://github.com/BD2K-DDI. For instance, an R-package called ddiR is
provided, enabling data analysis (Supplementary Note 10).

OmicsDI exploits advances in metadata-based browsing to support dataset findability. The
original datasets are not replicated, but are referenced. In addition to fully open datasets, life
science often produces valuable datasets containing personal identifiable genetic or
phenotypic data. These data are deposited in controlled-access repositories, to which access
is granted after application to a data access committee (DAC). However, the metadata of
controlled —access repositories is accessible, and therefore OmicsDI can integrate data from
EGA (the first controlled-access repository with open, searchable metadata). The
responsibility for provision of well-formatted metadata lies with the original data providers
(similar to the concept of publisher data provision to PubMed). OmicsDI displays and
promotes the original dataset identifiers, not only to avoid creation of another set of
identifiers, but also to ensure attribution of credit to the original data providers. OmicsDI can
integrate with large, broader scope efforts like the Biomedical healthCAre Data Discovery
and Index Ecosystem (bioCADDIE) through shared metadata formats.

In conclusion, Omics DI provides an integrated search framework for datasets that
introduces a range of modern features such as access metrics and discovery of related
datasets that we now take for granted in PubMed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Omics Discovery Index: data standardization, annotation, index and presentation. (a) The
datasets stored in public repositories are converted to a common data representation
including all metadata and biological entities. The OmicsDI XML files are validated using
the OmicsDI XML validator. (b) The OmicsDI XML files are then annotated using public
services and databases like UniProt, ChEBI, and PubMed, and the metadata is enriched
using the Annotator service. The EBI search engine generates the indexes including other
related resources such as PubMed, UniProt, Ensembl and ChEBI. (c) Different clients can
use the OmicsDI API to retrieve data from the resource including the web interface and the

ddiR package.
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Figure 2.

Distributions of OmicsDI datasets. (a) Distribution of datasets per omics type and organism
category including model organisms, non-model organisms (excluding human) and human.
(b) The dataset view showing the other related omics datasets, including the ontology
highlighting option to extract the most relevant terms in the metadata. (c) Pearson-
correlation plot between the metadata similarity score and the biological similarity score,
across transcriptomics (T), proteomics (P) and metabolomics (M) datasets. (d) The shared
molecules box shows all datasets with a biological similarity score of more than 0.5, with a
slider allowing a user to increase the cutoff value (here set to 0.81).
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