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Summary

It has long been hypothesized that aging and neurodegeneration are associated with somatic 

mutation in neurons; however, methodological hurdles have prevented testing this hypothesis 

directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-

nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal 

cortex and hippocampus of fifteen normal individuals (aged 4 months to 82 years) as well as nine 

individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair 
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(Cockayne syndrome and Xeroderma pigmentosum). sSNVs increased approximately linearly 

with age in both areas (with a higher rate in hippocampus) and were more abundant in 

neurodegenerative disease. The accumulation of somatic mutations with age—which we term 

genosenium—shows age-related, region-related, and disease-related molecular signatures, and 

may be important in other human age-associated conditions.

Main Text

Aging in humans brings increased incidence of nearly all diseases, including 

neurodegenerative diseases (1). Markers of DNA damage increase in the brain with age (2), 

and genetic progeroid diseases such as Cockayne syndrome (CS) and Xeroderma 

pigmentosum (XP), both caused by defects in DNA damage repair (DDR), are associated 

with neurodegeneration and premature aging (3). Mouse models of aging, CS, and XP have 

shown inconsistent relationships between these conditions and the accumulation of 

permanent somatic mutations in brain and non-brain tissue (4–7). While analysis of human 

bulk brain DNA, comprised of multiple proliferative and non-proliferative cell types, 

revealed an accumulation of mutations during aging in the human brain (8), it is not known 

whether permanent somatic mutations accumulate with age in mature neurons of the human 

brain. Here, we quantitatively examined whether aging or disorders of defective DDR results 

in more somatic mutations in single postmitotic human neurons.

Somatic mutations that occur in postmitotic neurons are unique to each cell, and thus can 

only be comprehensively assayed by comparing the genomes of single cells (9). Therefore, 

we analyzed human neurons by single-cell whole-genome sequencing (WGS). Since 

alterations of the prefrontal cortex (PFC) have been linked to age-related cognitive decline 

and neurodegenerative disease (10), we analyzed 93 neurons from PFC of 15 neurologically 

normal individuals (Tables 1, S1, S2) from ages 4 months to 82 years. We further examined 

26 neurons from the hippocampal dentate gyrus (DG) of 6 of these individuals because the 

DG is a focal point for other age-related degenerative conditions such as Alzheimer’s 

disease. Moreover, the DG is one of the few parts of the brain that appears to undergo 

neurogenesis after birth (11), which might create regional differences in number and type of 

somatic mutations. Finally, to test whether defective DDR in early-onset neurodegenerative 

diseases is associated with increased somatic mutations, we analyzed 42 PFC neurons from 

9 individuals diagnosed with CS or XP (Tables 1, S3).

We isolated single neuronal nuclei using flow cytometry, lysed the nuclei on ice in alkaline 

conditions as we previously performed (12, 13) (Methods) to minimize lysis-induced 

artifacts, amplified their genomes using multiple displacement amplification (MDA), and 

subjected the amplified DNA to 45X WGS (Figure 1A). To identify somatic single 

nucleotide variants (sSNVs) with high confidence, we developed a bioinformatic pipeline 

called Linked-Read Analysis (LiRA) (14) to delineate true double-stranded sSNVs from 

single-stranded variants and artifacts. This method employs read-based linkage of candidate 

sSNVs with nearby germline SNPs and performs a model-based extrapolation of the 

genome-wide mutational frequency based on the ~20% of sSNVs that are sufficiently close 

to germline SNPs (Figure 1B; Methods). Importantly, sSNVs determined by our algorithm 
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(Tables S4, S5) showed alternate allele frequency distribution strikingly matching that of the 

germline SNVs (Figure S1). sSNV counts were not systematically influenced by technical 

metrics, such as post-mortem interval, time in storage, and coverage uniformity (Figure S2).

Across all normal neurons, genome-wide sSNV counts correlated with age (Figures 2A, S3) 

(p = 2×10−5, mixed effects model, see Methods), despite some within-individual and within-

age group heterogeneity. To explore potential variation in different brain regions, matched 

DG and PFC neurons were sequenced in six cases (Figures 2A, S3). Our analysis uncovered 

region-specific sSNV accumulation with age in both PFC (p = 4×10−5) and DG single 

neurons (p = 2×10−7), suggesting an almost two-fold increase in the rate of accumulation in 

DG (~40 sSNVs/year) relative to PFC (~23 sSNVs/year) (p = 8×10−4). Among the six cases, 

two had significant increases in DG, three had nominally increased counts in DG compared 

to PFC, and one had a nominally higher count in PFC (Figure 2B).

Neurons from postmortem brains of CS individuals showed a ~2.3-fold excess of sSNVs 

relative to the expected age-adjusted normal PFC rate, and XP neurons showed a ~2.5-fold 

increase (p = 0.006 for both) (Figure 2C). Progeroid neurons showed a similar number of 

sSNVs as neurons from aged normal PFC, suggesting that defective nucleotide excision 

repair accelerate aging via sSNV accumulation.

Molecular patterns of sSNVs also evolved with age. We previously reported that cytosine 

deamination influences patterns of human neuron sSNVs, resulting in abundant C>T 

mutations (13). C>T sSNVs accounted for most variants in the youngest PFC samples, but 

this fraction decreased with age (Figures 2D, S4, S5). C>T mutations, while common in 

many biological contexts (15–18), are also a known artifact of MDA (19). Systematic 

differences in C>T burden during aging suggest C>T variants are largely biological and not 

technical in nature. T>C variants increased in the PFC with age (Figures 2E, S4, S5), 

possibly representing DNA damage linked to fatty-acid oxidation (20). As demonstrated 

previously (13), neuronal sSNVs in normal PFC were enriched in coding exons (Figure S6, 

Table S6), displayed a transcriptional strand bias (Figure S7), and genes involved in neural 

function were enriched for neuronal sSNVs (Figure S8, Tables S7). Coincident probability 

modeling suggested the linear accumulation of sSNVs in our dataset would result in an 

exponential accumulation of biallelic deleterious coding mutations, in agreement with 

classical hypotheses regarding the relationship between mutation and aging (Figure S9) (21), 

exacerbating differences in sSNV load in aging, across brain regions, and in disease.

Mutational signature analysis (22) revealed three signatures driving single neuron mutational 

spectra (Figures 3A, B, S10, S11). Signature A was comprised mainly of C>T and T>C 

mutations and was the only signature to increase with age (p = 9×10−12) independent of 

brain region or disease status (Figure 3C–E). Signature A resembled a “clock-like” signature 

found in nearly all samples in a large-scale cancer genome analysis (‘Signature 5’) (22) 

(Figure S10). Our data show for the first time that a similar clock-like signature is also active 

in postmitotic cells and hence independent of DNA replication.

Signature B consisted primarily of C>T mutations and did not correlate with age (Figure 

3D), suggesting a mutational mechanism active at very young ages, perhaps prenatally. 
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Signature B may include technical artifacts, which are primarily C>T, but bona fide clonal 

sSNVs are also predominantly C>T (8, 12). This signature was enriched in DG compared to 

PFC (p = 2×10−4) (Figure 3F), and increased with age in DG, but not in PFC (p = 0.04, 

difference in slopes) (Figure 3G). The observable difference in Signature B between these 

brain regions, and its correlation with age in DG alone, suggest it is dominated by a 

biological mechanism, and these PFC-DG differences strikingly mirror differences in 

neurogenesis.

A third signature, Signature C, was distinct from Signatures A and B by the presence of 

C>A variants, the mutation class most closely associated with oxidative DNA damage (20). 

Indeed, CS and XP neurons, defective in DDR, were enriched for Signature C (p = 0.016 

and 0.023, respectively) (Figure 3H, I), while Signature C also increased modestly with age 

in normal neurons (p = 0.03). An outlier 5087 PFC neuron with the highest sSNV rate in our 

data set had a high proportion of Signature C mutations relative to other normal neurons, 

highlighting that even within a normal brain some neurons may be subject to catastrophic 

oxidative damage.

Our analysis revealed that sSNVs accumulated slowly but inexorably with age in the normal 

human brain, a phenomenon we term genosenium, and more rapidly still in progeroid 

neurodegeneration. Within one year of birth, postmitotic neurons already have ~300–900 

sSNVs, strikingly dovetailing with the 200–400 sSNVs estimated to be already present in 

human progenitor cells at 20 weeks of gestation or earlier (23) [update to Manuscript 

aan8690, Bae et al.]. Three signatures were associated with mutational processes in human 

neurons: a postmitotic, clock-like signature of aging, a possibly developmental signature that 

varied across brain regions, and a disease- and age-specific signature of oxidation and 

defective DNA damage repair. Importantly, these associations were present even when data 

were re-analyzed after removal of all C>T mutations (Figure S11), demonstrating that any 

artifactual C>T mutations that may have escaped our filtering do not affect our main 

conclusions. The increase of oxidative mutations in aging and in disease presents a potential 

target for therapeutic intervention. Further, elucidating the mechanistic basis of the clock-

like accumulation of mutations across brain regions and other tissues would increase our 

knowledge of age-related disease and cognitive decline. CS and XP cause neurodegeneration 

associated with higher rates of sSNVs, and it will be important to define how other, more 

common causes of neurodegeneration may influence genosenium as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Detection of sSNVs across individuals and brain regions using single-neuron WGS and 
linkage-based analysis
(A) Experimental outline. (B) Schematic of linkage-based mutation calling. A somatic 

mutation (red) may occur on one allele of a locus (Locus 1), potentially in close proximity to 

a germline heterozygous site (orange and blue), while other loci, such as Locus 2, remain 

unmutated. Later amplification errors could create a mismatch (yellow) on one strand of one 

allele of Locus 2 near a germline variant (purple). For Locus 1, any WGS read that covers 

both sites and contains the germline (orange) variant should also contain the somatic (red) 

variant, thus these variants are perfectly linked. In contrast, at Locus 2 some but not all reads 

that cover the relevant germline variant (purple) will contain the somatic “variant” candidate 

(yellow), generating two classes of reads, some with the somatic variant on that allele, some 

without. Only perfectly linked sSNV candidates were considered in this study.
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Figure 2. sSNVs increase with age in the PFC and DG, and are elevated in CS and XP
(A) sSNV counts plotted against age for neurons derived from PFC (circles) and DG 

(triangles), with linear regression lines. There is a strong correlation with age in both cases, 

with the rate of accumulation being nearly two-fold higher in the DG than in the PFC. (B) 

Comparison of sSNV counts in matched PFC and DG within brains. (C) CS and XP patient 

neurons display elevated sSNV counts. * denotes p < 0.05 for B and C. (D, E) Fraction of 

sSNVs comprised of C>T (D) and T>C (E). *, **, and *** denote p ≤ 0.05, 0.001, and 

0.0001, respectively, using 2-way ANOVA with Sidak’s correction.
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Figure 3. Signature analysis reveals mutational processes during aging, across brain regions, and 
in disease
(A) Three mutational signatures identified by non-negative matrix factorization (each 

substitution is classified by its trinucleotide context). (B) Number of variants from 

Signatures A, B, and C in each of the 161 neurons in the dataset. (C–E) Signature A strongly 

correlates with age, regardless of disease status or brain region, while Signatures B and C do 

not. (F) Signature B is enriched in DG relative to PFC neurons. (G) Signature B increased 

with age in DG neurons, but not in matched PFC neurons, revealing a DG-specific aging 

signature. Solid shapes represent regional means, and transparent shapes represent individual 
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neurons. (H–I) Comparison of age-corrected estimate of sSNVs per signature in CS and XP 

compared to PFC controls revealed enrichment in Signature C in both CS and XP. * and ** 

denote p ≤ 0.05 and p ≤ 0.001, respectively, mixed linear model.

Lodato et al. Page 11

Science. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lodato et al. Page 12

Ta
b

le
 1

C
as

e 
in

fo
rm

at
io

n 
an

d 
nu

m
be

r 
of

 n
eu

ro
ns

 a
na

ly
ze

d 
in

 th
is

 s
tu

dy
.

C
as

e 
ID

Se
x

A
ge

 (
yr

s)
D

ia
gn

os
is

P
F

C
 N

eu
ro

ns
D

G
 N

eu
ro

ns

In
fa

nt

12
78

M
0.

4
N

or
m

al
9

-

58
17

M
0.

6
N

or
m

al
4

-

13
-

A
do

le
sc

en
t

46
38

F
15

.1
N

or
m

al
10

-

14
65

M
17

.5
N

or
m

al
22

-

55
32

M
18

.4
N

or
m

al
4

5

55
59

F
19

.8
N

or
m

al
5

5

41
10

A
du

lt

46
43

F
42

.2
N

or
m

al
10

-

50
87

M
44

.9
N

or
m

al
4

5

93
6

F
49

.2
N

or
m

al
3

-

17
5

A
ge

d

58
40

M
75

.3
N

or
m

al
3

3

52
19

F
77

N
or

m
al

4
-

51
71

M
79

.2
N

or
m

al
4

-

55
11

F
80

.2
N

or
m

al
3

-

56
57

M
82

.2
N

or
m

al
5

5

58
23

F
82

.7
N

or
m

al
3

3

22
11

C
oc

ka
yn

e 
sy

nd
ro

m
e

17
62

F
4.

4
C

S 
(C

SB
)

6
-

11
24

F
4.

7
C

S 
(C

SB
)

3
-

12
86

M
5.

8
C

S 
(C

SB
)

4
-

Science. Author manuscript; available in PMC 2018 August 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lodato et al. Page 13

C
as

e 
ID

Se
x

A
ge

 (
yr

s)
D

ia
gn

os
is

P
F

C
 N

eu
ro

ns
D

G
 N

eu
ro

ns

58
0

F
8.

4
C

S 
(C

SB
)

4
-

51
05

M
8.

7
C

S 
(C

SB
)

6
-

68
2

M
32

.8
C

S 
(C

SB
)

4
-

27
-

X
er

od
er

m
a 

pi
gm

en
to

su
m

53
79

F
24

X
P 

(X
PA

)
6

-

53
16

F
44

.5
X

P 
(X

PA
)

3
-

54
16

F
46

X
P 

(X
PD

)
6

-

15
-

To
ta

l
24

 c
as

es
13

5 
P

F
C

 N
eu

ro
ns

26
 D

G
 N

eu
ro

ns

16
1 

ne
ur

on
s

Science. Author manuscript; available in PMC 2018 August 02.


	Summary
	Main Text
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

