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Abstract

Purpose of review—To assess the seizure manifestations and risk of epilepsy in encephalitis 

associated to antibodies against neuronal cell-surface (AE) or myelin-associated antigens, and to 

review several chronic epileptic disorders including, Rasmussen’s encephalitis (RE), fever-induced 

refractory epileptic syndromes (FIRES), and new-onset refractory status epilepticus (NORSE).

Recent findings—Seizures are a frequent manifestation of AE. Some AE may associate with 

characteristic features: faciobrachial dystonic seizures (anti-LGI1 encephalitis), EEG extreme 

delta brush (anti-NMDAR), or multifocal FLAIR-MRI abnormalities (anti-GABAAR). In anti-

LGI1 encephalitis, cortical, limbic, and basal ganglia dysfunction results in different types of 

seizures. AE or myelin-antibody associated syndromes are often immunotherapy-responsive and 

appear to have a low risk for chronic epilepsy. In contrast patients with seizures related to GAD65-

antibodies (an intracellular antigen) frequently develop epilepsy and have suboptimal response to 

treatment (including surgery). RE or FIRES may occur with autoantibodies of unclear significance 

and rarely respond to immunotherapy. A study of patients with NORSE showed that 30% 

developed chronic epilepsy.

Summary—Although seizures are frequent in all types of AE, the risk for chronic epilepsy is 

dependent on the antigen: lower if located on the cell-surface, and higher if intracellular. For other 

disorders (RE, FIRES, NORSE) the prognosis remains poor.

Keywords

neuroinflammation; seizures; encephalitis; neuronal antibodies; demyelinating syndromes

Corresponding: Josep Dalmau, MD, PhD, IDIBAPS-Hospital Clinic, University of Barcelona, Casanova, 143; Floor 3a, Barcelona 
08036 (Spain), Jdalmau@clinic.ub.es, Phone: +34 932 271 738 Fax: +34 932 271 726. 

Conflicts of interest
Dr Dalmau receives royalties from Athena Diagnostics for the use of Ma-2 as an autoantibody test and from Euroimmun for the use of 
NMDAR, GABABR, GABAAR, DPPX and IgLON5 as autoantibody tests; he has received an unrestricted research grant from 
Euroimmun.

HHS Public Access
Author manuscript
Curr Opin Neurol. Author manuscript; available in PMC 2018 June 01.

Published in final edited form as:
Curr Opin Neurol. 2017 June ; 30(3): 345–353. doi:10.1097/WCO.0000000000000449.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Epilepsy is a chronic neurological disease defined by the occurrence of at least one 

unprovoked seizure and the enduring predisposition to seizure recurrence.[1] The hypothesis 

that inflammation plays a role in epileptogenesis has long been suggested.[2*] This 

hypothesis has been reinforced by the identification of several autoimmune encephalitis 

(AE) that associate with seizures and occur with antibodies against neuronal cell-surface or 

myelin-related proteins. The study of these disorders has provided new insights into the 

relationship between neuroinflammation, autoimmunity, and seizure generation, giving rise 

to the concept of “autoimmune epilepsy”. In the context of AE, the development of seizures 

and status epilepticus usually represents an acute, symptomatic, manifestation of the brain 

inflammatory process, but little is known about the risk of developing chronic epilepsy. 

Chronic epilepsy might potentially result from an ongoing inflammatory process that 

persists after the acute phase of encephalitis, or from irreversible changes that alter neuronal 

networks and persist after the inflammatory process resolves. Therefore, although 

neuroinflammation may trigger symptomatic seizures, this does not necessarily imply that 

the subsequent development of chronic seizures is inflammation-dependent. Likewise, 

herpes simplex encephalitis may cause acute seizures, but the subsequent development of 

chronic epilepsy is not defined as “infectious epilepsy”.

In this review we first discuss recent developments on the role of neuroinflammation in 

epileptogenesis. Then, we focus on seizure manifestations and risk of epilepsy in AE and 

acute demyelinating syndromes, and discuss several chronic epileptic disorders for which 

there is evidence that autoimmunity plays a pathogenic role such as Rasmussen’s 

encephalitis (RE), fever-induced refractory epileptic syndromes (FIRES), and new-onset 

refractory status epilepticus (NORSE).

Inflammation, autoimmunity, and epileptogenesis

A number of clinical observations have suggested that inflammatory pathways are involved 

in epileptogenesis[3,4] including, 1) the anticonvulsant effect of steroids in some pediatric 

forms of epilepsy, [5] 2) the role of fever in triggering febrile-related epilepsies, [6,7] 3) the 

higher frequency of epilepsy in systemic autoimmune diseases (e.g., systemic lupus 

erythematosus and others), [8–19] 4) the increased prevalence of serum autoantibodies in 

chronic epilepsy (e.g., antinuclear and antiphospholipid antibodies), [20,21] and 5) the 

involvement of immune-related genes in some types of epilepsy and febrile-seizure 

susceptibility.[22]

On the other hand, seizures and status epilepticus can cause neuroinflammation through 

several mechanisms including among others, 1) activation of the interleukin (IL)-1β system 

by microglia, resulting in a cascade of inflammatory processes involving neurons, 

endothelial cells, and astrocytes, and likely responsible for blood-brain barrier breakdown 

and neuronal dysfunction, with alteration of the balance between excitatory and inhibitory 

neurotransmission, [23,24*] and 2) the involvement of the high-mobility-group box 1 

(HMGB1), a danger signal that results in activation of downstream inflammatory pathways 

through interaction with its receptor (Toll-like receptor 4).[2*]
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The immune system, and in particular its adaptive arm, may contribute to 

epileptogenesis[2*] as suggested by experimental studies with antibodies from patients with 

anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis.[25*] Autoantibodies targeting 

this and other neuronal antigens have been infrequently identified in adults or children with 

chronic epilepsy (0–9%) or status epilepticus (< 3%), [26–31,32*,33] and were found at 

higher frequency (15–37%) when the seizures were refractory to antiepileptic treatment.

[34,35] However, with the exception of glutamic acid decarboxylase 65(GAD65) antibodies, 

the significance of antibodies in chronic epilepsy is unclear because they are usually 

identified only in serum and may disappear over time despite seizure recurrence.[31] Careful 

consideration should be given to the interpretation of antibodies against proteins interacting 

with voltage-gated potassium channels (VGKC complex). These antibodies are in fact 

directed against two neuronal cell-surface proteins, leucine-rich glioma inactivated-1 (LGI1) 

and contactin-associated protein-2 receptor (CASPR2), [36,37] and several unknown 

(probably intracellular) proteins. Whereas LGI1 or CASPR2 antibodies associate with 

several syndromes that often occur with seizures (e.g., limbic encephalitis, Morvan 

syndrome), [38**,39*,40**,41*] the detection of VGKC-complex antibodies negative for 

LGI1 and CASPR2 has unclear clinical utility.[42,43**]

Autoimmune encephalitis with neuronal cell-surface antibodies

Seizures are a frequent manifestation of AE. The risk of developing chronic epilepsy as 

sequelae of AE is largely unknown because studies rarely provide this information and the 

patients follow-up is often short considering that some AE recover very slowly.[38**,44] 

The AE that most frequently manifest with seizures and status epilepticus are those mediated 

by antibodies against the γ-aminobutyric acid receptor A (GABAAR), GABABR and LGI1.

[37,45–47, 48**,49,50*,51,52*] However, seizures can occur with any form of AE including 

those with antibodies against NMDAR, [44,53–55] α-amino-3-hydroxy-5methyl-4-

isoxazolepropionic acid receptor (AMPAR), [56,57*] CASPR2, [39*,40**] dipeptidyl-

peptidase-like protein-6 (DPPX), [58–60] metabotropic glutamate receptor 5 (mGluR5), 

[61–63] glycine receptor (GlyR)[64,65] and neurexin3α.[66*] Although seizures are not 

always the presenting symptom, they occur in the majority of patients during the acute or 

early stages of the disease (Table 1).[38**,44,53] In most AE, seizures occur in association 

with other symptoms including among other cognitive dysfunction, altered behavior, 

decreased level of consciousness, movement and sleep disorders, or dysautonomia.

In anti-NMDAR encephalitis, seizures are more often the first clinical manifestation in men 

than in women, and in children younger than 12 years.[67,68] Age-related clinical 

differences have also been reported in anti-GABAAR encephalitis in which children are 

more likely to develop generalized seizures compared to adults who predominantly develop 

focal seizures.[47,52*] Although there is substantial clinical overlap among different AE, 

some symptoms, EEG or MRI findings may suggest the autoantigen. For instance, the EEG 

pattern named extreme delta brush has been found in children and adults with anti-NMDAR 

encephalitis and is highly characteristic of this disorder although it is only detectable in a 

subgroup of patients.[54,69] Extensive multifocal cortical-subcortical T2/FLAIR MRI 

abnormalities occur in approximately 80% of patients with anti-GABAAR encephalitis, but 

rarely occur in other AE.[47,52*]
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Facio-brachial dystonic seizures (FBDS) typically precede the development of anti-LGI1 

encephalitis, which often occurs in association with other seizures. FBDS are brief (typically 

1–2 sec) uni- or bilateral motor seizures, affecting the limbs and face, with a frequency that 

can be over 100 times per day (median 40/day).[38**] Studies suggest that the type of 

seizures may change during the course of anti-LGI1 encephalitis with an initial 

predominance of FBDS and focal seizures (25–30% of the patients) and at later stages a 

predominance of focal or generalized seizures and impairment of consciousness (60–80% of 

the patients).[38**,41*,70**,71] Prompt recognition and treatment of FBDS may prevent 

the development of a full-blown limbic encephalitis.[71,72] A study using EEG, MRI, and 

FDG-PET suggested that FBDS originate in the motor cortex, while other seizure types and 

cognitive impairment result from involvement of mesio-temporal regions.[70**] Another 

study demonstrated that 42% of patients with FBDS have MRI FLAIR and T1 changes in 

the basal ganglia suggesting that dysfunction at this level might contribute to these seizures.

[48**]

In patients with AE generalized seizures and status epilepticus substantially contribute to 

morbidity and mortality.[38**,44–46,53,52*] Overall, 70–80% of patients with AE respond 

to immunotherapy.[38**,44,46,47,57*,52*] Residual deficits may include cognitive 

dysfunction and persistent seizures. Among patients with anti-LGI1 encephalitis, 70–80% 

have residual cognitive deficits, and 30% of them are left with moderate to severe disability.

[38**,41*,49] In most patients the seizures improved or resolved prior to improvement of 

cognitive functions; indeed, after a follow-up of 2 years, 85% of patients were seizure-free 

(71% without treatment, and 14% with antiepileptics) while 15% continued to have seizures 

despite antiepileptics.[38**,49] Similar findings have been reported in patients with anti-

GABAAR encephalitis.[52*]

In more than 70% of patients with AE the associated seizures are successfully treated with 

immunotherapy and antiepileptics, and most do not require chronic antiepileptic medication.

[29,49,73,74] A study on AE associated with antibodies against neuronal cell-surface or 

intracellular antigens reported good seizure response to rituximab in cases refractory to 

corticosteroids, intravenous immunoglobulins and plasma exchange.[74] Overall, the risk of 

developing chronic epilepsy after AE appears low (10–15%) and varies according to the 

target autoantigen.[38**,49,52*] For example, in two cohorts of patients with anti-AMPAR 

and anti-GABABR encephalitis none of the survivors had persistent seizures.[45,56] Patients 

with anti-NMDAR encephalitis may have residual cognitive and behavioral deficits but 

rarely develop chronic seizures.[53]

In patients with anti-LGI1 encephalitis, a high seizure frequency associates with the 

development of mesial temporal lobe sclerosis (MTS).[75] In these patients the degree of 

hippocampal atrophy correlates with memory deficits and delay in implementing 

immunotherapy.[49,50*] In contrast, patients with anti-NMDAR encephalitis may develop 

hippocampal atrophy, which correlates with disease severity and long-term cognitive 

deficits, but rarely develop MTS.[76**]

Patients who have AE triggered by herpes simplex encephalitis frequently harbor NMDAR 

antibodies along with other antibodies against neuronal cell-surface antigens (GABAAR, 
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dopamine 2 receptor), and their outcome is worse (more frequent residual deficits and 

seizures) than that of patients with anti-NMDAR encephalitis unrelated to herpes simplex 

encephalitis.[52*,77,78*]

In patients with AE and seizures who do not respond to immunotherapy, epilepsy surgery 

has been suggested as an alternative treatment, however, this appears to be less effective than 

in patients with epilepsy unrelated to AE.[79–81]

Autoimmune demyelinating syndromes and MOG antibodies

Seizures occur in 11–43% of patients with acute disseminated encephalomyelitis (ADEM), 

including generalized (40%) and focal (< 20%) seizures, and in 0–14% of patients with 

clinically-isolated syndromes (CIS, mostly generalized seizures).[82–89,90*,91] There is 

limited information about the risk of chronic epilepsy in these patients. In a recent study, 3 

of 8 children with ADEM had seizures at disease onset, and one developed epilepsy; 

however, the interval between ADEM and onset of epilepsy was 15 years, making it unclear 

if there was a link between the diseases.[88]

Antibodies against myelin oligodendrocyte glycoprotein (MOG) have been identified in 

about 40% of patients with ADEM and 0–38% of CIS, as well as in a variety of other 

demyelinating disorders that do not manifest with seizures.[82–89,90*] In patients with 

ADEM, the presence of MOG antibodies seems to predict a monophasic course and 

associates with younger age, larger bilateral brain MRI abnormalities, and better outcome.

[84] Future studies should assess the long-term risk of epilepsy in ADEM and CIS, and 

investigate whether MOG antibodies segregate with a higher or lower risk of epilepsy.

Epilepsy associated with GAD65 antibodies

High titers of GAD65 antibodies may be found in patients with seizures in the context of 

limbic encephalitis, [92,93] and in patients with chronic epileptic syndromes without clinical 

or MRI evidence of active CNS inflammation.[92–95] In particular, GAD65 antibodies have 

been reported in 2–3% of adults and 6–7% of children with chronic epilepsy.[94,96] An 

important consideration in assessing the relationship of GAD65 antibodies with epilepsy and 

other neurological syndromes is that these antibodies also occur in 1% of healthy people and 

80% of patients with type 1 diabetes mellitus.[97,98] Compared with healthy people or 

patients with diabetes, patients with neurological symptoms have substantially higher titers 

of serum antibodies (~100–1000 times higher), and the antibodies are detectable in CSF.

[92,93,99]

Since GAD65 is an intracellular antigen and is not accessible to circulating antibodies, the 

pathogenic role of GAD65 antibodies is controversial. It is thought that other mechanisms, 

such as T-cell mediated processes or additional antibodies to yet unknown antigens might be 

involved.[100*] Patients with epilepsy and GAD65 antibodies show poor response to 

immunotherapy. In a retrospective study of 13 patients, only one patient remained seizure-

free after discontinuation of immunotherapy, and similar results were obtained in another 

study.[101,102]
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Epilepsy in Rasmussen’s encephalitis (RE)

RE is a rare chronic epileptic syndrome that predominantly affects previously healthy 

children but in rare instances may also occur in adults.[103–106] Patients develop frequent, 

unilateral motor seizures that evolve to intractable epilepsia partialis continua, hemiplegia, 

and cognitive decline, accompanied by progressive unilateral hemispheric atrophy.[107–109] 

Younger patients are more likely to develop more severe disease and a higher degree of 

hemispheric atrophy.[107] The cause of this disorder is unclear but cytotoxic T-cell 

mechanisms are thought to be involved.[110–113] Although a number of autoantibodies 

have been reported in patients with RE, [114–117] their pathogenic significance and clinical 

utility are uncertain. For example, antibodies against the GluA3 (or GluR3) subunit of 

AMPAR have been reported in 4–25% of patients with RE but also in 40–60% of patients 

with focal or generalized epilepsy unrelated to RE.[114–117] Antibodies against the GluN2 

subunit of the NMDAR, as well as other neuronal proteins, have been inconsistently 

identified in some patients with RE.[115,118–121] Importantly, the AMPAR and NMDAR 

antibodies identified in RE are different from those associated with anti-AMPAR or 

NMDAR encephalitis: the target subunits are different (GluA1/GluA2 in anti-AMPAR 

encephalitis and GluN1 in anti-NMDAR encephalitis), the epitopes in RE are linear instead 

of conformational and are located in the intracellular and not extracellular domain of the 

receptors.[53,120,122,123] Moreover, the appearance of these antibodies in patients with RE 

is often delayed from the time of seizure onset, [124] and the findings are not reproducible 

across different laboratories.

Seizure control in RE is challenging: antiepileptics are inefficient and the response to 

immunotherapies is often poor or transient.[125–127] Natalizumab or rituximab have shown 

some efficacy, but these treatments have not been tested in controlled trials.[128–130] 

Functional hemispherectomy is the only therapeutic option to achieve long-term seizure 

control; it is efficacious in 70–80% of the patients but at the expense of irreversible loss of 

neurological functions.[131]

Fever-induced refractory epileptic syndrome (FIRES) and new onset refractory status 
epilepticus (NORSE)

FIRES is a devastating epileptic syndrome occurring in previously healthy children around 

the age of 5–12 years.[132] It is characterized by frequent seizures developing in the context 

of a nonspecific febrile episode that rapidly evolve to status epilepticus and chronic 

pharmacoresistant epilepsy associated with severe neurodevelopmental delay.[132–134] The 

brain MRI is initially normal but as the disease progresses, mesio-temporal T2/FLAIR 

hyperintensities become apparent and almost all patients eventually develop cerebral atrophy 

and MTS.[135] Due to the refractoriness of status epilepticus, patients frequently need 

pharmacologically-induced coma. Anesthetics are often inefficient and their prolonged use 

seems to negatively influence cognitive outcome.[136]

The etiology of FIRES is unclear.[133,134,137,138] Although inflammation is thought to 

play a pathogenic role, the evidence is inconclusive. CSF oligoclonal bands and testing for 

neuronal autoantibodies are usually negative.[133,134,139] A few patients have been 

reported with antibodies against VGKC complex (unknown antigen), GAD65, or GluA3, but 
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these findings were not confirmed in other studies.[133,139] Immunotherapy is usually 

ineffective.[133,134,136]

NORSE is a descriptive term used to indicate the onset of refractory status epilepticus in 

adults or children without a previous history of epilepsy.[140] A multicenter study on 

patients with NORSE for whom the underlying etiology could not be determined during the 

first 48 hours of presentation, found that in 40% the cause was autoimmune and in the other 

60% the cause remained unknown.[34] In recent reports, the use of immunotherapy 

improved the outcome of 42–75% of patients with NORSE but approximately 30% 

developed chronic epilepsy.[141,142]

CONCLUSIONS

In patients with AE and seizures associated to antibodies against neuronal cell-surface 

proteins, the response to immunotherapy is substantially better than in those with CNS 

disorders that appear to be related to T-cell mediated mechanisms, such as RE or GAD65 

antibody-associated epilepsy. The long-term risk to develop epilepsy is low in neuronal cell-

surface antibody-associated AE (<15%) and moderate in NORSE (30%). Future studies 

should assess whether early recognition of these disorders and prompt immunotherapy 

decrease the risk of chronic epilepsy, and whether T-cell targeted immunotherapies may have 

a role in some disorders. A better understanding of the inflammatory processes underlying 

chronic epileptogenesis is critical for developing novel treatments.
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KEY POINTS

• Most patients with AE associated to antibodies against neuronal cell-surface 

antigens develop seizures. However, after the encephalitis is successfully 

treated, the risk of developing chronic epilepsy is low (< 15%).

• The subtypes of AE that more frequently associate with seizures are those 

related to antibodies against GABAAR, GABABR, LGI1, CASPR2, AMPAR, 

and NMDAR. Patients with ADEM or CIS may also develop seizures, and 

rarely develop epilepsy. Some of these patients have MOG antibodies.

• In AE, the assessment of symptoms, EEG, and MRI may suggest the 

underlying immune response. For example, FBDS characteristically occur in 

patients with LGI1 antibodies and often precede the development of a full-

blown encephalopathy. The EEG pattern « extreme delta brush» associates 

with anti-NMDAR encephalitis. The occurrence of multiple cortical-

subcortical FLAIR MRI abnormalities suggests anti-GABAAR encephalitis.

• Patients with seizure disorders associated to antibodies against neuronal cell-

surface proteins or receptors, or patients with ADEM, usually respond to 

immunotherapy. In contrast, patients with seizure disorders without these 

antibodies (RE, FIRES) or with antibodies against intracellular proteins 

(GAD65) are much less responsive to immunotherapy.
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