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Abstract

We present new algorithms and a software implementation for assigning confidence to peptide 

sequence assignments obtained through classic accurate mass and retention time (AMT) matching 

techniques, as well as methods for integrating these assignments with standard proteomics 

workflows. The algorithms are intended to increase the number of peptides and proteins identified 

(and, when applicable, quantitated by isotopic labeling) among related proteomics experiments 

that use high-resolution mass spectrometry instrumentation. The motivations for our extensions 

include the need to exploit high-resolution data to support highly complex proteomics 

experiments, especially those involving extensive off-line fractionation, to which recent label-free 

workflows might not easily generalize.
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INTRODUCTION

High-resolution mass spectrometry (MS) along with tandem MS dramatically increases the 

precision and volume of data that can be captured from proteomics experiments compared 

with tandem MS using low-resolution instruments alone. In particular, the high-resolution 

instruments provide a more complete census of precursor ions observable in a protein 

mixture. Several related approaches have been recently developed to exploit these data (see 

Veltri et al.(1) and Mueller et al.(2) for recent reviews) that rely on direct chromotographic 

alignment and emphasize the use of these data for label-free quantitative proteomic analysis. 

Here, we instead focus on the use of high-resolution LC-MS data in more traditional 

experiments which use isotopic labeling for quantitative comparisons and which also involve 

extensive fractionation of peptides and proteins.

All approaches that exploit high-resolution data begin with the identification of peptide 

signatures, including location of monoisotopic masses and retention times and computation 
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of ion intensities. Approaches to downstream processing of these discovered peptide 

locations diverge. Some recent methods are based on associating ions across multiple 

experiments by direct chromatographic alignment. However, the earlier use of high-

resolution data, pioneered by the Smith Laboratory(4-6), uses an Accurate Mass and Time 

(AMT) method for comparing ions. AMT exploits the fact that each peptide’s location in 

mass and normalized retention time (NRT) is strongly related its chemical composition. The 

sequences of peptide ions can be determined by matching their AMT “tags” to the tags 

stored in an external peptide database derived from MS/MS analysis. The AMT approach 

has been demonstrated to find more peptides in a single MS interrogation than tandem MS 

alone, and ion intensities may be used for quantitative comparison across or (when isotope 

labeling is used) within experiments.

One of the most challenging aspects of the AMT approach is matching the ions located in a 

single MS interrogation to a dense AMT database containing thousands of sequence entries, 

such as those derived from large-scale proteomics experiments. Determining the accuracy of 

each AMT assignment is a key component of any AMT workflow, as it allows the ability to 

control the overall error rate of the experiment (5-7).

We have developed a new algorithm for determining the confidence of sequence assignments 

obtained through AMT methods. The algorithm extends the approach introduced by the 

Smith Laboratory (6) and also the approach previously implemented in msInspect/AMT (7).

The Smith method determines match confidence in a manner directly analogous to the decoy 

database approach in tandem MS(8), in which False Identification Rates (FIRs) are 

computed. In brief, peptide locations are matched within some distance threshold to a target 

AMT database and then again matched within the same threshold to a decoy AMT database 

that contains the same sequences but with perturbed masses (e.g., 11 Daltons added to the 

peptide mass). The FIR is computed by comparing the numbers of matches to the target and 

decoy AMT databases.

One disadvantage of this and all FIR approaches is that the same uncertainty measure 

applies to the entire group of peptides identified within the region and does not distinguish 

between the higher- and lower-quality assignments within the group. Our approach attempts 

to identify parameters for determining match accuracy dynamically and to compute a per-

peptide level of confidence (a match probability) - an approach analogous to that taken by 

PeptideProphet(9) for evaluating tandem MS measurements.

We have implemented these new algorithms for making peptide assignments and assigning 

match confidence within the open-source msInspect/AMT software platform(7). We also 

include other extensions to msInspect/AMT that support the use of these AMT-derived 

sequence assignments alongside sequences identified through standard tandem MS 

experiments. Specifically, after the assignment of peptides via AMT, msInspect/AMT 

automatically augments the tandem MS search results (PepXML files) to include the AMT 

sequences and match probabilities for use by downstream analysis tools for purposes such as 

protein inference (e.g, ProteinProphet(10)) or quantitation using isotope labeling (e.g., 
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EXPRESS(11), ASAPratio(12) or Q3(13) for SILAC, ICAT, Acrylamide, or 18O(14) 

labeling).

To demonstrate the performance of our approach we evaluated a series of experiments using 

isotopically labeled human plasma, having between 88 and 96 fractions each. We show that, 

in this uncommonly complex experiment, accurate AMT assignments in combination with 

tandem MS approaches can increase the yield of confidently identified and quantitated 

peptides and proteins in each fraction, and in each experiment, compared with MS/MS 

results alone. This analysis shows that the traditional AMT workflow may be particularly 

useful in complex experiments having extensive fractionation, to which the more recent 

methods that exploit high-resolution data may not generalize well.

EXPERIMENTAL PROCEDURES

We begin by presenting our algorithm for assigning confidence to sequence assignments 

obtained through AMT matching and also extensions to msInspect/AMT to support their use 

in applied experiments. We then describe the series of experiments used to evaluate these 

methods.

Algorithm for Assigning Peptide Sequences Using AMT and Evaluating Match Confidence

Consider a single MS interrogation in which N peptide features have been located and their 

retention times normalized, and which we wish to match to the locations of sequences in an 

AMT database (a description of the steps needed to generate an AMT database and to 

extract and normalize peptide features is described below). Peptides will match the AMT 

database elements imperfectly, and we denote these errors in mass and retention times 

together as Zi=(Xi,Yi), where Xi and Yi represent errors in mass and retention time, 

respectively. A density plot representing the distribution of Z for a single fraction is shown 

in Figure 1 showing that, as has been observed previously(5), the distribution of errors in 

each dimension contains a Gaussian distribution, also mixed with an apparent uniform 

distribution. Here we formally model these distributions with the hypothesis that the 

distribution components result from a latent (unobserved) dichotomous variable Di 

representing correct (Di=1) or incorrect (Di=0) AMT assignments. Our statistical procedure 

will be used to estimate the latent quantities and use these estimates as the level of 

confidence in each AMT match. This formulation is functionally a two-dimensional version 

of the approach used with tandem MS identifications by PeptideProphet, in which the 

distribution of the null component (a Gamma distribution in PeptideProphet) is replaced by a 

uniform distribution. We refer the reader to the PeptideProphet manuscript(9) for technical 

understanding of this approach in a context specific to proteomics and to Dempster et al.(15) 

for technical details of the statistical approach in general.

a. Represent Mass and Time Match Errors Using a Statistical Model—Formally 

we model Di marginally as a Bernoulli distribution with probability p (the total rate of 

correct assignments) and model Z for false matches (Di=0) as two independent uniform 

distributions over the matching tolerances tx and ty, with areas Ax = [−tx, tx] and Ay = [−ty, 

ty]. For true matches (Di=1) we approximate Z with two independent normal distributions 
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with mean and standard deviation μX, σX, μY, and σY, respectively. Figure 1, as well as 

analysis of many such distributions, supports each of these assumptions. Thus, formally,

b. Estimate Model Parameters—We estimate the model parameters by their maximum 

likelihood estimates (MLE), making use of the Expectation-Maximization (EM) algorithm 

(15) as a device to compute them. We omit technical details of the EM algorithm because the 

iterative steps for our model are quite similar to those described in detail elsewhere (10). 

However, in brief, in this specific mixture model framework (this is not true for all statistical 

models) the EM algorithm reduces to an intuitive, simple iterative procedure in which we 

first replace the latent data elements Di with their expected values (denoted ) computed as 

if the model parameters were known and then estimate the parameters as if the missing data 

elements Di are equal to . The first step (the E-Step) can be written as follows:

The second step (M-step) can be expressed as  and  and 

 (similar expressions hold for  and ) where .

c. Choose Algorithm Starting Point and Evaluating Convergence—The iterative 

EM algorithm requires a starting point and also a method for determining convergence of the 

algorithm. The EM algorithm is quite robust to the specific choice of starting parameters, 

and so it is most convenient to begin with computationally simple approximations. Our 

starting point sets μX and μY to the mean of all error values in the RT and mass dimensions, 

respectively, and we set σX and σY to their standard deviations. The starting point for p is 

derived from the FIR approximated from a decoy AMT match using loose tolerances (as 

previously implemented in msInspect/AMT). To evaluate convergence we follow standard 

approaches and monitor all parameters and the complete data likelihood, but we also 

monitor the results of the E-steps, , which provide our assignment probability estimates. 

We stop when the largest change in any assigned probability between iterations is smaller 

than 0.5% (for a probability of 0.9, for instance, this represents a change of 0.0045), or at 

minimum after 30 iterations. msInspect also provides graphs which can be used to evaluate 

convergence, including a plot of the model parameters and probability change estimates 

against iterations [See Supplementary Material for example].

d. Filtering Identifications—A general filter is applied to remove the obvious errors. We 

remove all sequence assignments having probability less than 0.1, and those for which the 

second best match exceeds 0.5 or the first and second best match are within 0.1 of each other 

(all parameters configurable).
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Integrating Matching Results into Standardized Pipeline

The algorithm provides estimates of , the probability of AMT assignment i being correct. 

msInspect/AMT adds all of the AMT sequences with their matching probabilities to the 

PepXML files resulting from the MS/MS search from the same interrogation, so that they 

may be used by all downstream analysis tools that operate on this standard file format, 

including ProteinProphet for protein inference and quantitation tools such as EXPRESS, Q3 

or ASAPratio.

Interrogation of Plasma Using Isotope Labeling and Intact Protein Separation Prior to LC-
MS/MS

Four independent, matched pairs of human serum pools were interrogated and compared 

with the Intact Protein Analysis System (IPAS) (13, 16). In brief, for each experiment, 

consisting of one disease pool and one control pool, sera pools were separately depleted of 

the top six abundant serum proteins using a Multiaffinity Removal System (MARS) column 

(4.6 ×100 mm; Agilent, Wilmington, DE)(16), then intact proteins were labeled with either 

heavy or light acrylamide(13) and combined prior to extensive off-line separation(16). The 

separation strategy used an orthogonal two-dimensional HPLC system in which intact 

proteins are fractionated first on an anion exchange column and then on a reversed phase 

column for a total of 656 fractions. These fractions were pooled into 96 fractions (fewer 

fractions were collected in some experiments due to equipment malfunction), digested(16), 

then interrogated using high-resolution tandem MS using an LTQ OrbiTrap XL mass 

spectrometer (Thermo-Finnigan) coupled to a nanoLC 2D, a two-dimensional HPLC system 

(Eksigent). The spectra were acquired in a data-dependent mode in m/z range of 400 to 

1800, with selection of the five most abundant +2 or +3 ions of each MS spectrum for 

MS/MS analysis.

Database Search of MS/MS Data and Quantitation of Isotopically Labeled Peptide Using 
Tandem MS Workflow

Raw data files were converted to mzXML format using ReAdW 1.1 and Xcalibur 2.2. All 

mzXML files were searched using X! Tandem (2007.01.01) with an alternative scoring 

plugin(17) compatible with PeptideProphet. Searches were conducted against the human 

International Protein Index database (IPI Human v3.20) plus common contaminants. All 

searches used the following parameters: +/−1.5Da precursor mass error, tryptic cleavage 

with up to two missed cleavage sites, static modification of 71.0366Da (light acrylamide) on 

cysteine, potential modifications of 74.0466Da (13C acrylamide) on cysteine, and 15.9949Da 

(oxidation) on methionine. Peptide assignments were evaluated using PeptideProphet(9).

Creation of AMT Database from MS/MS Identifications and Identification of Peptide 
Locations in High-Resolution Data

Peptide identifications from the LC/MS-MS database search were processed using 

previously described methods which place retention times on a common scale (7, 18). We 

included in the AMT database all peptides with PeptideProphet probability ≥ 0.95. Each of 

the 374 mzXML files were processed by msInspect to discover all LC-MS peptide locations 

(19), which were filtered for quality by removing all peptides located without multiple 
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isotopes or with a KL score exceeding 3.0 (KL is a quality score for LC-MS peptides(19)). 

Normalization procedures(7) were used to place their retention times on the same 

normalized scale as the AMT database. AMT database entries were duplicated to 

accommodate both light and heavy isotopic labels. We performed a first-pass match to the 

AMT database with loose mass and normalized retention time tolerances (defaults 20ppm 

and 0.15 NRT units), and then masses were calibrated based on this initial match prior to 

matching using the EM algorithm.

Using Mixture Model to Assign Peptide Features to AMT Database and Augment Search 
Results

We next assigned each peptide location to the AMT database and inferred match confidence 

using the EM algorithm described above. All data following the database search were 

processed using an Intel Xeon 5160 3GHz processor with 16GB of memory (only 1GB of 

memory was given to msInspect/AMT). Creating the combined AMT database from 374 

fractions consumed approximately 13 minutes. Matching of all 374 fractions to the AMT 

database required 181 minutes (29 seconds per fraction). Matches passing a confidence 

threshold (probability ≥ 0.1, configurable) were added as additional information into the 

results of a database search on the tandem MS data for the same run.

Processing Augmented PepXML File to Identify Quantitative Ratios and Infer Proteins

Next we computed quantitative ratios between case and control samples (light and heavy 

labels) using Q3(13), an algorithm specifically designed to accommodate the three-Dalton 

mass difference for singly-labeled peptides, and ratio information was added to the existing 

PepXML files. Finally, we performed protein inference with ProteinProphet(10) in order to 

determine the proteins present in the experiment, using all identified peptides with 

probability greater than 0.2, and combined all peptide-level quantitation information for 

each identified protein in order to determine abundance ratios.

Architecture and Software Availability

All methods are implemented as part of the msInspect/AMT platform, which is a cross-

platform and largely written in Java, with some statistical components (e.g., EM algorithm) 

written in the R statistical language. All analytical tools described in this work are freely 

available and open source under the Apache 2.0 license. The tools and source code, with 

sample datasets and a tutorial on use of the software, may be downloaded at http://

proteomics.fhcrc.org/CPL/amt.

RESULTS

A total of four experiments consisting of 374 fractions were interrogated by MS/MS. The 

peptide and protein identifications resulting from the traditional MS/MS analysis alone and 

combined with the AMT results are summarized in Table 1. The experiment-level and 

fraction-level data are summarized in the right and left halves of the table, respectively.

We first consider the identifications from MS/MS analysis alone. In total, between 5843 and 

7400 (average 6650.3; see final row of Table 1) unique peptide sequences (PeptideProphet 
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probability ≥ 0.9) were identified per experiment, and between 722.7 and 996.6 unique 

peptide sequences (average 805.6) were identified per individual fraction. The number of 

unique quantified peptides (containing at least one cysteine) ranged between 1401 and 1774 

per experiment, and between 209.3 and 298.3 per fraction. On the protein level (right two 

columns) between 710 and 1044 protein groups (average 924.5) were identified per 

experiment (ProteinProphet probability ≥ 0.9) and, within each experiment, peptide evidence 

for between 60.9 and 83.4 protein groups was identified on average per fraction (average 

over all experiments 69.2). The total number of quantified proteins was between 270 and 

392 (average of 334.3) per IPAS experiment.

We also characterized each protein in each experiment by the percent amino acid coverage 

obtained, and also the number of fractions in which it was identified. On average, peptides 

associated with the accession number of each individual protein were observed in 11.9 

fractions in a single experiment, and the median percent of amino acid coverage for each 

protein was 16.19% (95% of proteins’ coverage exceeds 3.74%). We report this information 

because, along with the goal of identifying as many proteins as possible in an experiment, 

another is to improve the ability to identify different protein isoforms(16), or proteins having 

a different chemical compositions but which have the same accession number (e.g., 

modifications, cleavage products, etc. are each different chemically but have the same 

accession number), and amino acid coverage information is vital to this analysis.

We next evaluated these same performance metrics using the combined MS/MS and AMT 

information. The increased information for all experiments is shown in Table 1. On the 

experiment level (left half of the table), between 7069 and 8815 (average 7861.25; see final 

row of Table 1) unique peptide sequences (PeptideProphet probability ≥ 0.9) were identified 

via MS/MS and AMT combined, an increase of 18.2% on average over MS/MS alone. 

Between 1045.5 and 1165.3 unique peptide sequences (average 1098.3) were identified per 

fraction, an increase of 36.3%. The number of unique quantified peptides ranged between 

1603 and 2003 per experiment, an increase of 13.5%, and between 253.3 and 419.9 per 

fraction, an increase of 31.7%. On the protein level (right two columns), between 875 and 

1335 proteins (average 1118.8) were identified with high confidence per experiment (an 

increase of 21.0%) and, within each experiment, peptide evidence for between 191.5 and 

268.1 proteins was identified on average per fraction (average over all experiments 223.0, an 

increase of 42.6%). The total number of quantified proteins is between 314 and 428 (average 

of 374.5) per IPAS experiment, an increase of 12.0%.

Every fraction found quantified peptides and proteins that were not quantified using 

traditional MS/MS-based approaches, and over all experiments an average of 1113.0 

peptides per experiment were quantified in fractions in which they had not been quantified 

by MS/MS alone (data not shown). From among all IPAS experiments a total of 4621.25 

unique peptides (69.2% of all peptides found in via MS/MS search) were identified in at 

least one fraction with AMT but not (in that fraction) by standard MS/MS methods.

To interpret the gain in proteins at the experiment and fraction level, one must not only 

consider the number of entirely new proteins ascribed to the experiment or fraction, but also 

the ability to increase the explained amino acid coverage of the proteins already identified. 
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Figure 2 demonstrates this ability graphically for proteins in a single representative fraction. 

The horizontal axis represents the coverage based on MS/MS alone and the vertical axis 

represents the fold increase in coverage based on the combined analysis. Overall, of the 

proteins identified by high quality with MS/MS, 20% find an increase in explained amino 

acid sequence coverage, with a median improvement of 18% per protein.

The complementarity of AMT and MS/MS identifications, which governs the amount of 

increase in peptide coverage that AMT identifications provide in an MS/MS experiment, is 

illustrated in Figure 3. Each point represents the MS/MS (horizontal axis) and AMT 

(vertical axis) match probabilities for a peptide assigned by both methods in the same 

fraction. Region A denotes the peptides that are found by both methods with high quality 

(probability>0.9; 41% of peptides fall in region A). The peptides falling in Region B are 

those peptides with low MS/MS PeptideProphet score in a fraction but which are confidently 

identified using AMT; in this experiment, 10% of peptides fall in this range. The peptides 

falling in Region D are those peptides with low AMT probability score in a fraction but 

which are confidently identified using MS/MS; in this experiment, 5% of peptides fall in this 

range. Not visible in this Figure are the peptides identified by AMT (Region C, 14% of 

peptides) or by MS/MS (Region E, 27% of peptides), but not by both. Overall, in this 

experiment, the AMT approach can thus improve the number of peptides confidently 

identified per fraction by 14% + 10% = 25% compared with using MS/MS alone.

Evaluating the Accuracy of Matching

The results above show the ability to increase coverage and identifications based on AMT 

matching with the new algorithm. We used several approaches to demonstrate the overall 

accuracy of our matching algorithm.

The rate of agreement between MS/MS and AMT sequences identified in each fraction, as 

shown in Figure 3, provides a direct demonstration that the AMT matching is of high 

quality. We also evaluated the rates at which the AMT assignments and high-quality MS/MS 

assignments for the same ion disagree. We associated MS/MS identifications with LC-MS 

peptide features in the same mzXML file if they fell within 5ppm and 20 seconds of each 

other and matched uniquely. Of those peptide features that matched the AMT database with 

probability ≥0.9, only 0.26% (a rate of 0.0026) disagreed with the sequence assigned by 

MS/MS. These rates suggest that the matching algorithms rarely create discordance between 

AMT and MS/MS identifications.

We also established that the increase in percentage of amino acid coverage one should 

expect by chance is far below that shown in Figure 2, by matching that same experiment to a 

decoy AMT database. The points in red show the results of this analysis. Compared with 

20% of the proteins increasing their coverage in the target AMT database, only six proteins 

(less than 0.01%) found an increase when using the decoy database.

We also evaluated the fit of the parametric model using a quantile-quantile plot of the 

estimated mixed distribution against the density of the actual match data using the 

automated graphing functions of msInspect (as described above; see Supplementary Material 

for example) and found an overall high-quality agreement between the estimated parametric 
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model and the empirical behavior of the data, suggesting that our parametric assumptions are 

reasonable.

Finally, we compared the spatial distribution of peptides across the two dimensions of 

separation within a single experiment to determine whether the MS/MS and AMT 

identifications were overall concordant. The similarity of the spatial distribution is evidence 

for the accuracy of the method because the fraction information was not used as part of the 

matching algorithm, and so is an independent confirmation of the accuracy of the model. To 

compare the spatial behavior, we selected all peptide sequences found in a selected fraction 

(the “origin”) and then recorded the number of these peptides found in all other fractions 

separately by either MS/MS or AMT methods. Figure 4(a) shows a representative 

distribution of these counts across all fractions for MS/MS data, and Figure 4(b) shows the 

distribution for AMT matches; the two charts reveal a high degree of spatial association of 

their identified sequences.

One should also expect a high degree of correlation between the quantitative ratios derived 

by the Q3 algorithm based on MS/MS data and AMT data only if a high degree of accuracy 

can be obtained in our matching, because our matching algorithm does not make use of ion 

intensity. However, one should not expect identical quantitation by MS/MS and AMT for 

computed ion intensities because each method uses a different starting point for peptide 

abundance detection. The correlation coefficient between log AMT ratios (based on de novo 
discovery of peptides and quantitation) and log MS/MS ratios (based on MS/MS driven 

quantitation) was 0.95 (See Figure 5), 95% of the ratios (on the raw scale) differ between 

AMT and MS/MS by less than 15%, and 86% of the ratios peptides differ by less than 5% 

between the two methods. These differences compare quite favorably with, for instance, the 

agreement expected between different MS/MS-based quantitation methods (e.g., Q3, Xpress, 

ASAPRatio).

DISCUSSION

We presented 1) a new algorithm for determining the probability of correct AMT sequence 

assignments, 2) its implementation in a workflow that allows the incorporation of the results 

into a traditional tandem MS pipeline, and 3) an example using this workflow with a set of 

experiments of uncommon complexity. This work leads us to conclude that it is feasible to 

borrow strength across a large number of experiments and across fractions within an 

experiment to increase the peptide and protein identifications and to increase the amino acid 

coverage of proteins identified by MS/MS methods alone. Since our implementation makes 

use of standard file formats for MS/MS data processing (PepXML), it is convenient to 

augment an existing MS/MS-based proteomics workflow to gain the benefits of AMT data.

The AMT approach used here follows the original formulation advocated by Smith et al., 

which can be seen as a means to integrate high resolution data into proteomics experiments. 

As with the Smith formulation, our model of the distribution of AMT matching error uses 

both the mass component and the NRT component of the error. This is far more effective 

than using only one component or the other alone. The actual benefit of using both mass and 

time will depend on the density of the peptide features in a single interrogation, as well as 
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the density of the AMT database being matched. For our specific example here, using a 

model based only on mass, or only on NRT, to make AMT assignments would result in a 

roughly four-fold increase in the number of ambiguous matches (matching assignments to 

more than one peptide).

Our work has focused on quantitation of peptides and proteins only for isotopically labeled 

experiments. This may be contrasted to the more recently developed platforms that use high-

resolution data(3, 20) and that emphasize label-free quantitative approaches. Those recently 

developed platforms circumvent the need to create an explicit AMT database and instead 

rely on direct chromatographic alignment of peptide locations between related series of 

experiments. In the AMT approach, peptide locations are associated between experiments 

only if they match the same entry in an external database. Each of these two approaches has 

advantages and disadvantages. An advantage of the direct chromatographic alignment 

approaches is that peptides that may never have been sequenced successfully are accessible 

for quantitative comparison between experiments, whereas the classic AMT approach 

requires the ions to have been selected for CID and sequenced with high confidence in some 

experiment.

However, an advantage of the AMT approach, combined with isotopic labeling, may be its 

suitability for evaluating complex experiments, such as those requiring off-line separation. 

There are several outstanding problems that still need to be solved before direct 

chromatographic alignment approaches may be used for these more complex workflows. For 

example, with fractionation, consider a series of n samples having k fractions each. Because 

individual peptides are likely to occur in multiple fractions (especially with intact protein 

separation(16)), naïve, direct chromatoghraphic alignment of all pairs of fractions could 

require roughly (nk)2 alignments (precisely nk(nk – 1)/2), each with some propensity to 

admit and propagate errors. The classic AMT approach requires only nk alignments. 

Moreover, another consequence of peptides existing in multiple fractions is the difficulty in 

defining peptide intensity for peptides that migrate across one or more fractions, a problem 

automatically accounted for in experiments using isotopic labeling. Until those 

computational issues are resolved, the AMT approach using isotopic labeling and the 

method we describe here allow the use of information contained in high resolution 

instruments in complex proteomics workflows requiring separations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An illustration of the mixed distribution of AMT database matches across the two-

dimensional space of Mass and NRT match error. Points indicate individual AMT matches. 

Red box represents the near-uniform distribution of false matches. Green region indicates 

the bivariate normal distribution of true matches. Coloration of individual points indicates 

probability as assigned by the EM algorithm: reddest points indicate p=0, bluest points 

indicate p=0.96.
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Figure 2. 
Fold increase in amino acid coverage of proteins with AMT peptide identifications (vertical 

axis) vs. percent amino acid coverage using only MS/MS peptide identifications (horizontal 

axis). Blue points show coverage increase when matching to a target AMT database; red 

points show a decoy database match (only 6 proteins with increased coverage).
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Figure 3. 
MS/MS database search probability (horizontal axis) vs. AMT match probability for the 

same peptide (vertical axis). Region A (41% of peptides): high probability in both MS/MS 

and AMT. Region B (10%): high-probability in AMT but low in MS/MS. Region C (14%): 

high-probability matches unique to AMT. Region D (5%): high-probability in MS/MS but 

low in AMT. Region E (27%): matches unique to MS/MS.
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Figure 4. 
Heatmaps describing the distribution of peptide identifications throughout the AX 

(horizontal axis) and RP (vertical axis) dimensions of a fractionated experiment. Red 

indicates many IDs, blue indicates few. Identifications charted are those peptides confidently 

identified via MS/MS in fraction (5,5), the reddest fraction in both charts. a) Peptides 

confidently identified via MS/MS. b) Peptides confidently matched via AMT.
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Figure 5. 
Comparison of median per-charge-state peptide labeled isotope ratios calculated by the Q3 

algorithm, based on high-quality LC-MS/MS database search results (horizontal axis) and 

high-quality AMT matches (vertical axis). Correlation coefficient is 0.95.
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Table 1

Summary of peptide-level and protein-level results for each experiment, with MS/MS data alone and with 

MS/MS data combined with AMT data. All peptide counts are with PeptideProphet or AMT probability ≥ 0.9. 

All protein counts are of protein groups with ProteinProphet probability ≥ 0.9. Fraction-level numbers are 

averages over all fractions in each experiment. Counts of unique and quantified proteins per fraction are counts 

of protein groups with any high-quality peptide evidence (with isotopic ratios, for quantified summary) for the 

group in the fraction.

Experiment (Number of
Fractions)

Analysis
Approach

Experiment-Level Summary Fraction-Level Summary

Unique
Peptides

Quant.
Peptides

Unique
Proteins

Quant.
Proteins

Unique
Peptides

Quant.
Peptides

Unique
Proteins

Quant.
Proteins

1
(96)

MS/MS 6128 1726 841 392 722.7 255.2 145.9 77.5

+AMT
(% Increase)

7357
( 20.1%)

1922
(11.4%)

1038
(23.4%)

428
(9.2%)

1165.3
(61.2%)

343.9
(34.8%)

213.9
(46.6%)

97.3
(25.5%)

2
(96)

MS/MS 7230 1408 1103 329 742.4 209.3 160.0 60.9

+AMT
(% Increase)

8204
(13.5%)

1603
(13.8%)

1227
(11.2%)

354
(7.6%)

1045.5
(40.8%)

253.3
(21.0%)

218.5
(36.6%)

71.7
(17.7%)

3
(88)

MS/MS 5843 1401 710 270 760.6 214.9 142.3 65.9

+AMT
(% increase)

7069
(21.0%)

1632
(16.5%)

875
(23.2%)

314
(16.2%)

1069.6
(40.6%)

270.7
(26.0%)

191.5
(34.6%)

77.1
(17.0%)

4
(94)

MS/MS 7400 1774 1044 346 996.6 298.3 177.4 83.4

+ AMT
(% increase)

8815
(19.1%)

2003
(12.9%)

1335
(27.9%)

403
(16.5%)

1112.9
(11.7%)

419.9
(40.8%)

268.1
(51.1%)

108.9
(30.6%)

Mean
(93.5)

MS/MS 6650.3 1577.3 924.5 334.3 805.6 244.4 156.4 69.2

+ AMT
(% increase)

7861.3
(18.2%)

1790.0
(13.5%)

1118.8
(21.0%)

374.5
(12.0%)

1098.3
(36.3%)

322.0
(31.7%)

223.0
(42.6%)

88.8
(28.3%)
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