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Abstract

Lung cancer is the leading cause of cancer-related death in the United States and worldwide. 

Novel therapeutic developments are critically necessary to improve outcomes for this disease. 

Aberrant epigenetic change plays an important role in lung cancer development and progression. 

Therefore, drugs targeting the epigenome are being investigated in the treatment of lung cancer. 

Monotherapy of epigenetic therapeutics such as DNA methyltransferase inhibitors (DNMTi) and 

histone deacetylase inhibitors (HDACi) have so far not shown any apparent benefit while one of 

the clinical trials with the combinations of DNMTi and HDACi showed a small positive signal for 

treating lung cancer. Combinations of DNMTi and HDACi with chemotherapies have some 

efficacy but are often limited by increased toxicities. Preclinical data and clinical trial results 

suggest that combining epigenetic therapeutics with targeted therapies might potentially improve 

outcomes in lung cancer patients. Furthermore, several clinical studies suggest that the HDACi 

vorinostat could be used as a radiosensitizer in lung cancer patients receiving radiation therapy. 

Immune checkpoint blockade therapies are revolutionizing lung cancer management. However, 

only a minority of lung cancer patients experience long-lasting benefits from immunotherapy. The 

role of epigenetic reprogramming in boosting the effects of immunotherapy is an area of active 

investigation. Preclinical studies and early clinical trial results support this approach which may 

improve lung cancer treatment, with potentially prolonged survival and tolerable toxicity. In this 

review, we discuss the current status of epigenetic therapeutics and their combination with other 

antineoplastic therapies, including novel immunotherapies, in lung cancer management.
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1. Introduction

Lung cancer is the leading cause of cancer-related death and a major healthcare challenge 

globally [1]. Non-small cell lung cancer (NSCLC), accounting for about 85% of all cases, is 

the major histologic subtype. Small cell lung cancer (SCLC) accounts for 10–12% of all 

lung cancer cases [2]. At the time of diagnosis more than 40% of patients are already in an 

advanced tumor stage. Despite the recent development of targeted therapies and 

immunotherapies, the overall prognosis for patient is still poor, with less than 15–18% of 

patients surviving at 5 years after diagnosis. The primary treatment for the majority of 

advanced lung cancer patients continues to be cytotoxic chemotherapy [3]. Novel lung 

cancer treatment strategies using epigenetic therapeutics alone or in combination with other 

therapies have been preclinically developed and clinically tested over the last decade, with 

numerous ongoing clinical trials. Epigenetic therapeutics were first shown to be effective in 

the treatment of hematological malignancies such as acute myeloid leukemia (AML), 

myeloid dysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL) and some types 

of lymphoma. Some are approved by the US Food and Drug Administration (FDA) as shown 

detailed in Supplementary Table 1. Epigenetic therapeutics such as DNA methyltransferase 

inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis) were first tested as 

monotherapies, and subsequently as combination therapies. In this review, we discuss the 

current status of their potential application in lung cancer management with perspectives on 

combination with other novel therapies, including immunotherapy.

2. Epigenetics in lung cancer

Epigenetic alterations such as DNA methylation and histone modifications are known to be 

involved in tumor development and tumor progression of lung cancer and other cancers [15].

2.1 DNA-methylation

DNA methylation affects the transcription of genes without altering the DNA nucleotide 

sequence and is found sparsely but globally in human cells. In eukaryotic DNA, cytosine is 

methylated and then converted into 5-methylcytosine by DNA methyltransferases (DNMTs) 

[16]. There are three enzymatically active DNMTs in human cells: DNMT1, 3a and 3b [17–

19]. Global hypomethylation is characteristic in the transformation of benign cells to 

malignant cells and accelerates as cancer progresses. On the other hand, hypermethylation of 

specific regions, such as the CpG islands of tumor suppressor genes, plays an important role 

in carcinogenesis for many types of cancers, including lung cancer [20, 21]. 

Hypermethylation of these sequences can induce inappropriate silencing of growth 

regulatory genes and tumor suppressor genes. Inactivation of tumor suppressor genes via 

promoter hypermethylation is an early event in carcinogenesis and reported to be an early 

sign of lung cancer development [22].

2.1.1 DNA-methyltransferase—inhibitors In the 1960s, Vesely et al. first described the 

DNMTis azacitidine and decitabine and showed their cancerostatic effect in preclinical 

leukemia studies [23, 24]. In 1980 Jones et al. discovered that azanucleotides could induce 

DNA hypomethylation, especially when lower doses were used [25]. Momparler et al. 

Cho et al. Page 2

Curr Pharmacol Rep. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conducted preclinical and clinical studies proving that azanucleotides were effectively 

targeting DNA methylation in leukemic cells [26, 27]. After numerous further trials, 

azacitidine and decitabine were finally approved by the FDA for hematological malignancies 

(see Supplement Table 1).

2.1.2 DNMTi-monotherapy in lung cancer—A pilot phase I-II study on decitabine in 

patients with stage IV NSCLC was conducted by Momparler et al. [28, 29]. One patient was 

reported to have survived 81 months. This promising finding led to further DNMTi trials in 

lung cancer patients. Most of these trials combined DNMTis with other agents. To our 

knowledge, only one monotherapy trial with decitabine was conducted in NSCLC patients; 

no objective clinical response was observed and severe toxicities occured. Grade 4 

neutropenia was observed in 15 patients, and was dose limiting in four patients; grade 3 

neutropenia, thrombocytopenia or anemia were frequently reported as well. Two patients 

with extensive liver metastases experienced grade 3 hepatotoxicity [4] (Table 1). Due to 

limited efficacy in NSCLC as monotherapy, further trials combined DNMTis with other 

agents [4, 30].

2.2 Histone modifications

In eukaryotes, 147 base pairs (bp) of DNA are wrapped around an octamer of histones 

consisting of two copies each of H2A, H2B, H3 and H4 [31]. The resulting nucleosomes are 

further compacted to form higher-order chromatin structures. There are several types of 

histone modifications, including acetylation, methylation and ubiquitination. These 

modifications regulate gene expression by altering the interactions of histones with 

chromatin-associated proteins, marking regions of transcriptionally active euchromatin and 

inactive heterochromatin [32]. Histone post-translational modification is not dependent on 

the cell cycle and is potentially reversible [33, 34]. Histones can be post-translationally 

modified by histone acetyltransferases (HATs) and histone deacetylases (HDACs) [35]. 

HDACs are responsible for removing the acetyl-group from lysine residues in histones, 

inducing a condensed state of inactivated-chromatin (heterochromatin) and transcriptional 

repression; HATs perform the opposite function by adding acetyl-groups to lysine residues 

and inducing a euchromatin state and transcriptional activation [36]. There are four classes 

of HDAC enzymes based on their structures and functions: class I (HDAC 1–3 and 8), II 

(HDAC 4–7, 9 and 10), III (Sir-2 related - SIRT1-7) and IV (HDAC 11) [37] HDAC 

expression can be altered in various cancers. Overexpression of HDACs was observed in 

several solid tumors including lung cancer [38–40]. A synergistic interaction between 

HDAC-mediated histone deacetylation and DNMT-mediated DNA methylation can 

collaboratively cause gene silencing [15, 41, 42]. These mechanisms are known to be 

involved in cancer development [36].

2.2.1 Histone deacetylase inhibitors—HDACis were developed to reverse the gene 

silencing effect of HDACs and are classified into the following four major classes: 1) 

hydroxamic acids, 2) amino-benzamides, 3) cyclic peptides and 4) short-chain fatty acids 

[31]. The most commonly used HDACi in clinical trials with solid tumors and hematological 

malignancies belong to the first two groups. Three HDACi have been FDA-approved for the 

treatment of T-cell lymphomas: vorinostat, romidepsin, and belinostat. The HDACi 
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panobinostat has been FDA-approved for the treatment of multiple myeloma since 2015 

(Supplementary Table 1).

2.2.2 HDACi-monotherapy in lung cancer—HDACi monotherapies were investigated 

in NSCLC and SCLC clinical trials. Romidepsin was tested in three single-arm monotherapy 

trials. Among them, a phase I trial in patients with neuroendocrine tumors was terminated 

early due to an increased number of severe cardiac toxicities [43]. Two later trials, one in 

NSCLC and one in SCLC, did not identify severe cardiac toxicities despite the fact that the 

dosage was increased in the NSCLC trial [44, 45] (Table 1 and Supplementary Table 3). 

Romidepsin was ultimately found to be clinically ineffective in a monotherapy setting. 

Safety and efficacy of entinostat, vorinostat, belinostat and panabinostat were investigated in 

monotherapy settings in NSCLC patients [6, 7, 9]. Entinostat showed only minimal efficacy, 

but was reported to be safe and tolerable in NSCLC [6, 7]. Vorinostat did not show any 

objective antitumor response in NSCLC patients, and severe toxicities were reported [9]. 

Panobinostat, a pan-deacetylase inhibitor, is the only HDACi that induced tumor-shrinkage 

as a monotherapy in SCLC. However, the trial was terminated earlier than planned, as only a 

small percentage of patients responded [46]. Thus, HDACi monotherapy has not proven to 

be effective in lung cancer.

2.3 Epigenetic therapeutic combinations for the treatment of lung cancer

As the antitumor efficacy of epigenetic monotherapies is low, more recent trials have 

combined epigenetic therapeutics in an effort to improve outcome. The observation both in 
vitro and in vivo that HDAC-mediated histone deacetylation and DNMT mediated DNA 

methylation collaboratively cause gene silencing supported clinical trials to test the efficacy 

of combining HDAC inhibition and DNMT inhibition in cancer treatment [15, 19, 41, 42]. 

Several such trials were terminated earlier than planned. Chu et al. published a clinical trial 

combining HDAC inhibition with valproic acid and DNMT inhibition with decitabine in 

NSCLC patients. Unacceptable neurotoxic adverse events were reported and there was no 

survival benefit [14]. Juergens et al. conducted a phase I/II trial of combined azacitidine and 

entinostat in NSCLC patients. Median overall survival (OS) and median progression free 

survival (PFS) were encouraging, 8.6 months and 7.4 weeks respectively, after completion of 

at least one cycle of epigenetic treatment, although the objective response rate was low [10]. 

The vast majority of patients (87%) discontinued the therapy due to disease progression [10] 

(Table 1). Another interesting finding from this study was an increased objective response 

(21%) of those patients continuing with other chemotherapies. Subsequently, further trials 

combining chemotherapy with epigenetic agents were conducted.

3. Epigenetic therapeutics combined with non-immune therapies in lung 

cancer

To improve therapeutic efficacy in lung cancer, clinical trials with combinations of 

epigenetic therapeutics with chemotherapeutics, radiotherapy, targeted therapy and more 

recently immunotherapy have been conducted.
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3.1. Epigenetic therapeutics combined with chemotherapy

In preclinical studies, taxanes and platinum-based agents led to an increased antitumor effect 

when combined with HDACi [47, 48]. This was investigated in clinical trials combining 

HDACi with chemotherapeutics. Ramalingam et al. published a trial combining carboplatin 

and paclitaxel with vorinostat or placebo in 94 NSCLC patients. Among them, twenty 

completed the vorinostat arm and, showed a prolonged PFS (6 vs 4.1 months), a prolonged 

OS (13 vs. 9.7 months) and an improved response rate (RR) of 34% compared to 12% in the 

placebo arm. The 1-year OS was 51% in the vorinostat group and 33% in the placebo group 

[45]. Toxicities were substantial with 3 deaths occurring in the vorinostat arm [49, 50], Table 

2a. Jones et al. reported partial response (PR) in 1 out of 5 lung cancer patients treated with 

panobinostat, paclitaxel, and carboplatin [50]. A recent phase I study combining belinostat 

with carboplatin and paclitaxel, presented at the 2016 World Conference on Lung Cancer by 

Waqar et al., demonstrated encouraging antitumor efficacy. In 13 out of 23 patients RR was 

available. PR was seen in 35%, stable disease (SD) in 17% and only one patient had a 

progressive disease (PD) [51]. Compared to carboplatin/paclitaxel alone, the combination 

with an HDACi appears promising [49].

Unfortunately, the results of most clinical trials combining HDACi with chemotherapy in 

lung cancer have been negative. Some of these trials were terminated early due to toxicities. 

Trials with published outcome data are limited, and several trials are still ongoing (Table 2a). 

While combined treatment of lung cancer patients with either belinostat or vorinostat with 

carboplatin and paclitaxel shows preliminary efficacy, larger trials must be performed and 

ongoing trials need to be completed to confirm efficacy. In a neoadjuvant phase-I trial 

combining the proteasome inhibitor bortezomib with vorinostat, necrosis was detected in 6 

out of 20 patients who completed the treatment. Additionally Jones et al. reported reduced 

SUV-uptake in PET-CT scans performed after treatment completion but before surgery [52]. 

Erasmus et al. reported that a reduction of SUV-uptake could predict operability and survival 

[53]. It remains unclear if the necrosis was related to the treatment or caused by the tumor 

itself. Furthermore the tumor size was not reduced by this neoadjuvant treatment. Toxicities 

were dose-limiting in two patients (Table 2a).

3.2 Epigenetic therapeutics combined with targeted therapies

There are several ongoing and completed trials combining epigenetic drugs with targeted 

therapies (Table 2a). A trial combining the HDACi belinostat with the erlotinib was 

terminated due to intolerable toxicities. The full publication of this study is still pending. 

Witta et al. published a phase II, two-arm trial combining entinostat or placebo with erlotinib 

in 132 advanced NSCLC who previously experienced chemotherapy treatment failure. The 

trial population was not preselected by actionable EGFR mutation. The combined therapy of 

erlotinib and entinostat did not result in improved clinical outcome in this unselected patient 

population. Han et al. published a phase I/II trial combining gefitinib and vorinostat in 

patients with both EGFR-mutant and EGFR-wildtype advanced NSCLC. Subgroup analysis 

found that vorinostat potentially improves the efficacy of gefitinib in EGFR-mutant NSCLC 

[78, 82]. However, only 13 patients in this study were EGFR-mutant. Larger trials will be 

needed to validate the finding. A preclinical study demonstrated that the combined use of 

vorinostat and osimertinib could reverse BIM deletion polymorphism–mediated osimertinib 
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resistance in EGFR-mutant NSCLC cells. Therefore, the authors suggest the future 

development of selective HDAC inhibitors to overcome osimertinib resistance [83]. To our 

knowledge, combined epigenetic therapy and ALK-inhibitor therapy trials have not yet been 

conducted. A preclinical study by Fukuda et al. demonstrated that HDAC inhibition with 

quisinostat could overcome crizotinib resistance by mesenchymal-epithelial transition. This 

preclinical finding might support related clinical studies in NSCLC with ALK 

rearrangement [84].

3.3 Epigenetic therapeutics combined with radiation therapy

Preclinical studies combining HDACi and radiation therapy in lung cancer, colon cancer, 

breast cancer, and other cancers demonstrated increased anti-tumor efficacy [85–87]. The 

combination of HDACi with radiotherapy was investigated in three recent lung cancer trials 

[88–90]. Vorinostat was used as a radiosensitzer in a phase-I study, enrolling twelve NSCLC 

patients with brain metastases. The combination of vorinostat with radiation therapy was 

reported to be safe and the median OS was 36 weeks. A recently published study by Choi et 

al. enrolled 17 NSCLC patients with up to 4 brain metastases and used vorinostat as a 

radiosensitizer before sterotactic radiotherapy of the brain metastases. Dose-limiting 

toxicities did not occur (Supplementary Table 3) [89]. Further studies are ongoing.

4. Epigenetic therapeutics combined with immunotherapy

4.1 Lung cancer immunity and immunotherapy

NSCLC has been historically considered to be non-immunogenic. In recent years the role of 

the immune system in cancer development and progression, and in lung cancer in particular, 

has been better understood [91, 92]. Both the innate and the adaptive immune systems are 

involved in destroying cancer cells and inhibiting cancer cell growth [93]. Immature 

dendritic cells (DC), existing in most human cancers, capture cancer cell antigens [94, 95]. 

Once activated, DCs present cancer antigens within the major histocompatibility complex 

(MHC) to naïve T-cells in tumor-draining lymph nodes and induce a T-cell response. 

Cytotoxic CD8+ T-cells are then enabled to spot and destroy cancer cells [3]. Dysfunction of 

the immune system is well-known to be involved in cancer development and progression 

through different mechanisms [93, 96, 97]. Recent publications have demonstrated that 

various immunological mechanisms play an important role in NSCLC. Impairment of T-cell 

proliferation and an immunosuppressive microenvironment contribute to lung cancer growth 

[98–100]. One of the major mechanisms of T-cell suppression is the so-called immune 

checkpoint. Several immune checkpoints have been discovered including CTLA-4/B7, PD-

L1/PD-1, LAG-3, TIM-3 [101].

Programmed death receptor-1 (PD-1) is expressed by cytotoxic T-cells infiltrating NSCLCs. 

The increased expression and activation of PD-1 has a wide immunosuppressive effect 

[102]. The upregulation of programmed death receptor ligand-1 (PD-L1) on NSCLC cells 

correlates with the suppression of activating tumor-infiltrating DCs and T-cells [103–105]. 

These recent findings in cancer immunity brought forth the development of novel 

immunotherapies in lung cancer and other malignancies. Some of the most promising drugs 

target immune checkpoints such as PD-1/PD-L1 and CTLA-4. An increased OS in NSCLC 
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patients treated with anti-PD-1 or anti-PD-L1 in second-line therapy and also in selected 

patients in first-line therapy was demonstrated [91, 106–108]. Nivolumab (anti-PD1), 

pembrolizumab (anti-PD1), and atezolizumab (anti-PDL1) have been approved as a 2nd line 

NSCLC therapy. Pembrolizumab has been approved as 1st line treatment in metastatic 

NSCLC. In May 2017, pembrolizumab in combination with carboplatin and pemetrexed was 

granted accelerated approval for metastastic nonsquamous NSCLC as 1st line treatment 

(Supplementary Table 4).

4.2 Preclinical studies of combined epigenetic therapeutics and immunotherapy

Only a minority of patients treated with immunotherapy shows a long-term benefit [18, 107, 

109]. To enhance clinical efficacy, combinations of epigenetic therapies with 

immunotherapies were studied in lung cancer and other cancers [110]. Several preclinical 

studies suggest that epigenetic reprogramming enhances immune recognition and response 

against cancer cells and reverse immune evasion [111, 112]. HDACi and DNMTis 

significantly augment the effector T-cell tumor-infiltration by removing or inhibiting 

myeloid-deprived suppressor cells (MDSC) and other immune suppression components 

[113–115].

Preclinical studies demonstrate that combining epigenetic drugs with immunotherapy could 

lead to alteration of multiple pathways, changing the phenotype of cancer cells and 

facilitating long-lasting adaptive- and innate- immune responses [111, 113, 116]. The 

HDACis vorinostat and romidepsin enhance T-cell chemokine expression and augment 

response to PD-1 immunotherapy in lung adenocarcinoma. In vivo experiments with this 

combined treatment result in nearly complete lung cancer eradication [113]. A mouse-model 

with colon carcinomas and mammary carcinomas treated by combining azacitidine, 

entinostat and anti-PD-1 or anti-CTLA-4 therapy revealed a remarkable improvement in 

treatment outcomes and cure of more than 80% of tumor-bearing mice [116]. Furthermore, 

epigenetic therapies have been reported to increase tumor antigen expression. Weiser et al. 

reported that treatment with the DNMTi decitabine alone as well as the sequential treatment 

with decitabine and the HDACi depsipeptide increase the expression of cancer testis antigen 

NY-ESO-1 and facilitate the recognition of thoracic cancer cells by CD8+ T-cells specific 

for NY-ESO-1 [117].

4.3 Clinical combinations of epigenetic therapeutics with immunotherapy

Wrangle et al followed up 6 patients who previously received epigenetic therapy with 

azacitidine and entinostat within a trial mentioned above [10] and subsequently treated with 

anti-PD-1 or anti-PD-L1. Of these 6 patients, 3 partial responses and two stable diseases 

were observed after immune checkpoint blockade [112, 118–120]. These recent preclinical 

and clinical discoveries support the rationale of several clinical combination therapy study 

designs. Combinations of epigenetic drugs and immunotherapies are currently under 

investigation in multiple lung cancer trials (Table 2b). To date, only limited outcome data is 

available from such trials.

Preliminary results of an ongoing trial combining pembrolizumab and entinostat in NSCLC 

patients and melanoma patients (ENCORE 601) were recently presented as posters at the 
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Society for the Immunotherapy of Cancer Annual Meeting in 2016 and Annual ASCO 

meeting in 2017 respectively [121, 122]. Out of 22 enrolled NSCLC patients, 17 were 

evaluable. Of eleven anti-PD-1/PD-L1 naïve patients, one PR, one SD and nine PD were 

reported. The prior preclinical finding of reduced immunosuppressive myeloid driver 

suppressor cells and regulatory T-cells could be verified in blood samples of the study 

patients [116, 121]. Of the remaining six patients who had received prior anti-PD-1/PD-L1 

therapy and were now receiving combination therapy, three had SD and the other three had 

PD. Grade 3/4 treatment-related adverse events included hypophosphatemia (9%), 

neutropenia (5%), anemia (5%), acute respiratory failure (5%), elevated alkaline 

phosphatase (5%), and immune-mediated hepatitis (5%) [121]. Syndax Pharmaceuticals 

recently announced the interim analysis of this trial. The pre-specified objective response 

threshold to advance into the second stage of the Phase 2 trial was met [123]. At least 2 out 

of 20 NSCLC patients, previously progressive on anti-PD-1 or anti-PD-L1 therapy or 3 out 

of 13 NSCLC patients previously naïve to anti-PD-1 or anti-PD-L1 therapy responded 

objectively, defined as either a PR or complete response (CR) to entinostat/pembrolizumab 

treatment [123]. Encouraging signals have emerged from preliminary interim analyses, 

although most clinical trials in this field are still ongoing. The completion of ENCORE 601 

and other ongoing trials will provide data to answer weather clinical efficacy could be 

confirmed for combining epigenetic and immunotherapies (Table 2b).

5. Discussion

This review focuses on epigenetic therapeutics and their impact on novel therapies including 

immunotherapy of lung cancer. FDA-approval of these drugs for MDS, AML, ALL and 

lymphomas treatment encouraged the exploration of the efficacy of epigenetic therapy 

studies in lung cancer patients. The efficacy of monotherapies in lung cancer was very 

limited; and when higher doses were applied severe toxicities were observed. The discovery 

of a possible synergistic effect of different groups of epigenetic therapeutics led to multiple 

lung cancer trials combining DNMTis and HDACis [10, 14] (Table 1). Again, substantial 

toxicities occurred and led to the early termination of numerous trials. Most of the dual-

agent epigenetic therapy trials completed in lung cancer did not result in a survival benefit. 

Prolonged survival and PFS were achieved in some lung cancer patients in a clinical trial 

combining azacitidine and entinostat [10].

An additive effect of epigenetic therapies and chemotherapy was found in 21% of patients 

who subsequently continued with chemotherapies [10]. Several clinical trials were initiated 

to verify this improved effect. Ramalingam et al. described a trend toward improvement in 

median PFS and OS in the vorinostat-group [49]. Unfortunately, the synergistic effect was 

accompanied by added toxicities, which led to death in several patients [49]. Several other 

trials with the same approach are to be completed in the near future and might shed light on 

an optimal regimen when epigenetic therapeutics are combined with chemotherapy in lung 

cancer patients (Table 2a).

Some combined targeted therapy and epigenetic therapy trials were designed before the 

necessity of EGFR mutation testing for effective targeted therapy was known. Therefore, the 

clinical impact of these combinations remains unclear. The clinical efficacy of such 
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combinations should be investigated in a preselected cohort of EGFR-mutated NSCLC 

patients. At least one such trial currently enrolls EGFR-mutant NSCLC patients (Table 2a). 

Preclinical data suggest that HDACi could reverse the acquired resistance to 3rd generation 

EGFR inhibitors and ALK inhibitors in NSCLC patients with actionable EGFR or ALK 

mutations. These findings need to be verified in clinical trials designed to test this strategy. 

Another promising approach is the combination of epigenetic therapies with radiotherapy. 

Only a few trials investigated this approach, but the available data suggests a survival benefit 

and tolerable toxicities.

Immune checkpoint blockade and other emerging immunotherapy are changing the 

landscape of lung cancer therapeutics. Positive signals from preclinical and clinical NSCLC 

studies suggested the efficacy of epigenetic therapeutics in combination with 

immunotherapy. Several clinical NSCLC studies combining HDACis, DNMTis, or both with 

anti-PD-L1 therapy and anti-PD-1 therapy with or without anti-CTLA-4 are recruiting 

patients (Table 2b). Preliminary results of some of those studies including ENCORE 601 

support that this approach is clinically meaningful. To date, there are still gaps in the 

understanding of how epigenetic therapeutics can improve the efficacy of immunotherapies. 

Further understanding of epigenetic modulation not only in cancer cells, but also in the 

tumor microenvironment and immune system will help to optimize the clinical trial design 

and lung cancer management.

Epigenetic therapies have the potential for improving outcomes for lung cancer patients. 

These therapies can impact varieties of genes and pathways in cancer cells as well as other 

cells. Currently there is no reliable predictive biomarker for epigenetic therapies. Bringing 

these therapies to treat lung cancer and other cancers will require further studies confirming 

efficacy, minimizing side effects, and optimizing management. The most encouraging 

developments come from combination therapy, particularly with immunotherapy. 

Advancement of our understanding of tumor epigenetics and immunology, insight from 

previous and ongoing studies, and continuing the search for new ways to optimize treatment 

regimens will help us integrate epigenetic treatment into real world management of lung 

cancer and change the outcome of this disease.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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