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Abstract

Motivated by health applications, eating detection with off-the-shelf devices has been an active 

area of research. A common approach has been to recognize and model individual intake gestures 

with wrist-mounted inertial sensors. Despite promising results, this approach is limiting as it 

requires the sensing device to be worn on the hand performing the intake gesture, which cannot be 

guaranteed in practice. Through a study with 14 participants comparing eating detection 

performance when gestural data is recorded with a wrist-mounted device on (1) both hands, (2) 

only the dominant hand, and (3) only the non-dominant hand, we provide evidence that a larger set 

of arm and hand movement patterns beyond food intake gestures are predictive of eating activities 

when L1 or L2 normalization is applied to the data. Our results are supported by the theory of 

asymmetric bimanual action and contribute to the field of automated dietary monitoring. In 

particular, it shines light on a new direction for eating activity recognition with consumer 

wearables in realistic settings.
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1. INTRODUCTION

Automatically detecting eating activities is a cornerstone of a wide range of health 

applications, helping behavioral researchers understand the link between diet and disease 

[Hatori et al. 2012], and enabling new forms of dietary self-monitoring such as semi-

automated food journaling [Choe et al. 2017]. Over the last few years, computing 

researchers have developed new approaches for automatic eating detection by making use of 

the inertial sensing capabilities in off-the-shelf devices such as mobile phones, smart 

watches, activity trackers, and wearable devices [Dong et al. 2013, Thomaz et al. 2015, 

Junker et al. 2008, Amft and Tröster 2009, Merck et al. 2016, Rahman et al. 2015, Rahman 

et al. 2016]. This methodology, referred to as commodity sensing, opportunistically 

leverages technologies that the general population has begun to incorporate into their 

everyday lives, hence greatly facilitating long-term data collection in naturalistic settings.

Despite the possibilities afforded by commodity sensing, a key question of relying 

exclusively on devices that individuals have adopted is whether these devices provide the 

sensing coverage that is required to fully recognize certain behaviors. In the context of 

eating detection, researchers have used sensors in popular smart watches to identify 

unimanual food intake gestures. While this seems like a straightforward task in principle, 

numerous challenges exist in practice. The most significant one is that in everyday living, 

many people choose to wear a wristwatch on their non-dominant hand while food intake 

gestures are usually performed by the dominant hand. Another difficulty emerges when 

utensils are involved. There are many styles individuals embrace when it comes to 

consuming foods with fork and knife. Most people in the U.S. follow either the European 

eating style, the American eating style or a hybrid of the two. According to the European 

style, the dominant hand is used exclusively for holding the knife and cutting while in the 

American style, the dominant hand is used for both cutting the food and bringing it to the 

mouth.

Assuming no prior knowledge of how individuals eat and which hand they regard as their 

dominant one, it is easy to see how eating detection based on the recognition and modeling 

of one unimanual gesture (i.e., food intake) is rather limiting. The contribution of this work 

is to provide evidence of a new type of behavior marker in eating detection with commodity 

sensors. Technically, we show that by applying normalization to the sensor data over longer 

time windows, it is possible to recognize symmetric and asymmetric bimanual actions 

beyond unimanual intake gestures [Guiard 1987]. This was accomplished with a user study 

where 14 participants performed eating and non-eating activities. In practice, this is 

significant because it provides grounds for eating behavior tracking with one wrist-mounted 

device placed on the non-dominant hand.

2. EATING AS A BIMANUAL TASK

Manual tasks have been of scientific interest across disciplines for many decades. For 

example, primatologists have studied prehensile movements and the relationship between 

hand posture and activity [Napier and Tuttle 1993], while HCI researchers have investigated 
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two-handed mode switching techniques and the benefits of two-handed manipulation [Li et 

al. 2005, Hinckley et al. 2010].

In the context of bimanual action, the work of Guiard has been particularly relevant [Guiard 

1987]. While proposing a framework for investigating asymmetry in bimanual action, he 

described three classes of human manual activities: unimanual (one-handed tasks such as 

dart throwing), asymmetric bimanual (two hands taking different roles, such as playing a 

stringed musical instrument), and symmetric bimanual (two hands taking the same role, as in 

rope skipping). Based on this description, eating activities could be placed into any of these 

three classes depending on the context, such as what is being consumed and how, as shown 

in Table 1. It is also worth noting that within just one eating episode, such as breakfast or 

lunch, it is typical for individuals to perform unimanual and bimanual gestures that fall into 

all of the proposed human manual activity classes. In other words, the theoretical construct 

proposed by Guiard validates the intuition that it would be advantageous to capture data 

from both wrists in eating detection, even though this level of tracking may not be possible 

in practice.

An additional contribution of Guiard’s work is particularly relevant to the discussion of 

identifying food intake gestures, especially with regards to the value of capturing and 

analyzing eating gestures with only one wrist-mounted sensor. His observations suggest that 

there is, in fact, a “division of labor” between hands spanning all human bimanual activities; 

for any task for which only one hand seems to be involved (i.e. unimanual), it is impossible 

to demonstrate that the other hand plays no role. For instance, in an activity such as writing, 

the non-dominant hand seems to play a complementary role to the dominant hand, 

repositioning the paper and assisting with spatial reference. The implication of this finding 

for eating detection is that it might be possible to identify when eating is taking place by 

analyzing subtle, postural gestures and patterns performed by the non-instrumented wrist. 

This is the research question that underlies this work.

3. RELATED WORK

Perhaps the most comprehensive analysis of the impact of sensor placement and modality on 

human activity recognition with inertial sensors is provided by Bulling et al. [Bulling et al. 

2014]. They used three inertial measurement units (IMU) to classify activities in a tutorial 

on human activity recognition. This work neither examines recognition performance with 

sensors that are symmetrically placed on both sides of the body nor focuses on eating 

detection.

Several research efforts have applied wrist-mounted inertial sensors towards automated 

dietary monitoring. However, only a fraction of these efforts instrumented both participants’ 

wrists at the same time during data collection. Amft et al. demonstrated how a jacket 

instrumented with a variety of sensors, including inertial sensors in the lower arms, could be 

used to detect eating gestures across various gesture categories [Junker et al. 2008, Amft and 

Tröster 2009]. However, the authors did not provide a disaggregated view of the impact of 

each one of the sensors on classification. Dong et al. showed an approach for detecting 

eating periods using an iPhone 4 on the wrist for data collection [Dong et al. 2013]. Only 
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one wrist was instrumented and the phone was placed inside a case that could be tied around 

the forearm. Using a smart watch with inertial sensing capabilities, Thomaz et al. 

demonstrated eating detection by conducting studies both in a laboratory setting and in real-

world conditions [Thomaz et al. 2015]. Similar to Dong et al., the wrist-mounted device was 

placed on the subjects’ dominant hand only.

Other researchers have worked in the area of eating detection and recognition with inertial 

sensors. Kim et al. used the Chronos wrist-mounted sensing platform to identify eating 

activities and recognize food types [Kim et al. 2012]. Like Amft et al. and Thomaz et al., 

these efforts focused on classification performance given a chosen sensing modality and did 

not explore how sensor placement and hand movement patterns might impact classification 

results. More recently, Rahman et al. leveraged two wrist-mounted sensors to predict about-

to-eat moments, but both sensors were placed on the dominant hand [Rahman et al. 2016]. 

Merck et al. recognizes the challenge of needing to track the dominant hand while sensing 

devices (e.g., smartwatches) are usually worn on the non-dominant hand [Merck et al. 2016]. 

While it does a good job comparing the impact of dominant versus non-dominant wrist 

sensing, it does not discuss eating behavior tracking beyond unimanual food intake actions.

4. USER STUDY

To explore symmetric and asymmetric bimanual hand actions in eating activity prediction, 

we conducted an IRB-approved study. The aim of our study was to compare the performance 

of inertial sensor-based food intake gesture classification with data collected from (1) both 

hands, (2) only the dominant hand, and (3) only the non-dominant hand over time windows 

of varying duration. The study protocol, designed in close collaboration with nutritional 

epidemiologists who are experienced at running dietary assessment experiments, centered on 

capturing behavioral sensor data as participants ate a variety of foods and performed non-

eating activities.

A convenient sample of 14 participants (10 males, 4 females) were recruited as participants 

across two educational institutions; they were graduate and undergraduate students between 

the ages of 18 and 55; all of them claimed to be right-handed. The study lasted an average of 

55 minutes and took place around lunchtime. We instrumented participants with two 

Microsoft Bands, one on each wrist, for collecting accelerometer and gyroscope inertial 

sensor data. Participants performed eating and non-eating activities interchangeably under 

no time constraints. For the eating activities, the foods offered were: popcorn, lasagna, and 
yogurt. These food choices were served so that we could collect data that represented 

different eating styles (i.e., with fork and knife, with spoon, and with hands only). All 

participants were offered the exact same food types and amount for each food. Some eating 

activities required the use of utensils and some did not. Participants were told which foods 

would be served and allowed to eat as much as they wanted; drinking activities were coded 

as separate from eating activities. Although none of the participants had food restrictions, all 

foods served were vegetarian. We constrained the set of available food options to mitigate 

confounds and maintain consistency across study sessions.
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Seven non-eating activities were included in the study: watch a movie trailer, read a 
magazine, take a walk, use smartphone, place a phone call, use a computer, and brush teeth. 

These tasks were selected to represent activities that required physical movement (i.e., 

walking), represented common everyday tasks (e.g., use a computer, use mobile phone, read 

a book), or could be confused with intake gestures due to the hand coming in proximity to 

the head (e.g., brush teeth, place a phone call). While it is often desirable to conduct studies 

in naturalistic settings, we chose to conduct a semi-controlled study in our labs in order to 

obtain reliable and detailed ground truth annotations for intake gestures. While methods 

such as context-aware experience sampling and wearable cameras have facilitated the 

collection of ground truth labels in naturalistic settings, the annotation resolution these 

techniques offer is at the level of activities, not gestures. To make the lab study as 

ecologically valid as possible, it was minimally controlled and multitasking was allowed. We 

gave participants the freedom to have social interactions during the study, and perform the 

requested activities anyway they chose. For example, we asked participants to take a short 

walk but did not explicitly instruct them where to go. Likewise, when asked to interact with 

their phones, some participants checked email and exchanged text messages with friends 

while others browsed the web.

4.1 Annotation

A video camera was setup in front of participants and each study session was recorded so 

that gestures and activities could be annotated (Figure 1). The annotation process involved 

coding food and drinking intake gestures. Based on empirical observations, we considered 

each intake event to last 4 seconds; this interval corresponded to 2 seconds before and 4 

seconds after the exact timing the food or drinking cup reached the mouth. The video and 

corresponding sensor data were annotated with 8 possible labels that qualified food intakes 

gestures by grasp type (i.e., hand, spoon, fork, and drink) and by side (i.e., left and right). 

Non-eating activities were left unannotated, which resulted in the creation of a null class. To 

aid the annotation process, we used the ChronoViz tool [Fouse et al. 2011].

5. CAPTURE AND CLASSIFICATION

The Microsoft Band1 was used as the sensor capture device. It contains both an 

accelerometer and a gyroscope, thus providing 6 DoF inertial sensor data. Since participants 

wore two Bands at a time during the study, one on each wrist, 12 streams of inertial data 

were captured; the sampling rate was set to 30Hz. The data was transmitted in real-time to a 

mobile phone (iPhone 6S, iOS version 10.2.1) using the Bluetooth Low Energy 

communication protocol, and was saved locally on the phone.

The data was analyzed at the end of the study sessions. We first preprocessed the sensor 

streams using an exponentially-weighted moving average (EMA) for noise reduction, and 

applied either a scaling (i.e., MinMax) or normalization (i.e., L1 or L2 norm) function to the 

data. For feature extraction, we used a sliding window approach with 50% overlap and 

computed 5 features for each frame: mean, variance, skewness, kurtosis, and root mean 

1http://www.microsoft.com/microsoft-band

Thomaz et al. Page 5

DigitalBiomarkers 17 (2017). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.microsoft.com/microsoft-band


square (RMS). We chose these features because we have found them to be effective at 

providing a discretized and compact representation of the raw sensor signals in gesture 

recognition tasks. The output of the frame extraction step was a 60-dimensional feature 

vector per frame (5 features for each of the 12 streams of sensor data), which we passed on 

to a Random Decision Forest (RDF) classifier. We chose to use a RDF classifier because in 

our experience it has shown superior performance at nonlinear modeling tasks if compared 

to other algorithms. We used the Scikit-learn [Pedregosa et al. 2011] RDF implementation.

6. RESULTS & DISCUSSION

In total, the 14 participants performed 1184 food intake gestures across all eating activities. 

Of the total, 679 were performed with the right hand, and 505 with the left hand. 

Considering that all participants declared themselves as right-handed, the number of intake 

gestures performed with the left hand was surprisingly high. This discrepancy occurred 

because some participants reported hand dominance that was not reflected in practice, 

underscoring the difficulty of instrumenting individuals with sensors for activity tracking. 

Additionally, some individuals consider themselves right-handed for some tasks but not 

others (e.g., writing vs. eating).

During analysis, we experimented with different sliding window sizes and preprocessing 

operations. The charts in Figure 3 shows the effect of sliding window size on aggregate 
eating detection performance (F-Score) as a function of wrist instrumentation across all 

participants (leave-one-participant-out cross-validation). When L1 or L2 normalization is 

applied to the sensor data, it is possible to recognize eating activities with a wrist-mounted 

device on the non-dominant hand (blue line) almost as well as with a sensing device on the 

dominant hand (green line), or when both hands are instrumented (yellow line).

While the non-dominant hand is not the one performing unimanual intake gestures, these 

gestures are not the only indicators of eating activity; there are many eating-related hand 

gestures performed by the non-dominant hand that are also behavior markers of eating. 

These other gestures reflect Guiard’s asymmetric division of labor in bimanual action; our 

classifier was able to learn these complementary, and sometimes mirroring motions during 

training.

Interestingly, we discovered that normalization was key to this result. As shown in the 

bottom chart in Figure 3, when the data is not normalized, performance drops significantly 

in the case where the sensing device is placed on the non-dominant hand only. This is 

because L2 normalization is not only rotational invariant [Ng 2004], but it also equalizes all 

the gestural data by establishing a common reference and scale, giving prominence to the 

subtler motions of the non-dominant hand that would have been largely discarded as noise 

otherwise. As evidence of these subtler gestures of the non-dominant hand, we noticed that 

many participants regularly mixed their food together in a circular pattern when holding a 

fork and knife; this could have been an attempt to cool the food off, or was indicative of 

participants’ eating styles. Regardless of the motivation, the mixing gestures were unique to 

the eating activities. Additionally, upon review of the study session videos, we saw evidence 

of symmetric bimanual food intake actions. While having a yogurt, P2 held the food 
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container with his non-dominant hand and the spoon with his dominant hand (Figure 2). At 

the same time he lifted the dominant hand to bring yogurt to his mouth with the spoon (i.e., 

intake gesture), he also slightly raised the container with his non-dominant hand. In effect, 

the non-dominant hand was mirroring the intake gesture performed by the dominant hand. 

This effect was also observed as participants drank a cup of water.

7. CONCLUSION

The current paradigm in eating detection with practical, wrist-mounted inertial sensing 

hinges on identifying intake gestures with off-the-shelf devices placed on the dominant 

hand. Despite numerous attempts, tracking food intake gestures this way remains a difficult 

undertaking, due in large part to the high number of false positives. In this work, we provide 

evidence that subtle gestures and hand motions beyond unimanual food intake gestures are 

closely tied to dietary activity. This perspective is supported by Guiard’s asymmetric 

bimanual action theory [Guiard 1987] and offers the possibility of new approaches for 

practical eating detection.

The key contribution of our paper is provide evidence of a new direction in eating detection 

with commodity sensors. This is particularly significant because it provides grounds for 

eating behavior tracking with one wrist-mounted device placed on the non-dominant hand. 

Technically, we show that a larger set of arm and hand movements beyond food intake 

gestures can be used to predict eating activities when L1 or L2 normalization is applied to 

the sensor data. It is worth noting that the primary aim of this work is not to advance the 

state of the art in terms of performance numbers; instead we propose an alternative way for 

reasoning about eating detection with wrist-mounted sensor, offer empirical evidence of its 

validity, and provide a theoretical underpinning for the approach. Finally, to encourage 

further work in the field of dietary monitoring and facilitate the validation of our analysis, 

we are making the data collected in our study available to the community as a public dataset.
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Figure 1. 
Participants were video-recorded as they performed eating and non-eating activities. The 

image on the right highlights the wrist-mounted sensor participants wore during the study.
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Figure 2. 
Examples of bimanual eating action observed in the user studies. At the top, a male 

participant performs a symmetric bimanual intake action while having yogurt (i.e., the non-

dominant hand lifts the cup, mirroring the dominant hand). At the bottom, the same type of 

action can be observed as the female participant lifts a water cup with both hands. On the 

right side, asymmetric bimanual actions (i.e., cutting food) are weaved with unimanual 

intake gestures with both hands.
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Figure 3. 
In these graphs, it is possible to see the effect of sliding window size on eating detection 

performance (F-Score) across all participants in the lab study (LOPO). When L1 or L2 

normalization is applied to the sensor data, it is possible to recognize eating activities with a 

wrist-mounted device on the non-dominant hand (blue line) almost as well as with a sensing 

device on the dominant hand (green line) or on both hands (yellow line).
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Table 1

The diversity of eating modes places the eating activity into any of the three activity classes defined by Guiard 

[Guiard 1987].

Activity Class Description Eating Example

Unimanual One-handed tasks Having soup with spoon

Asymmetric Bimanual Two hands taking different roles Eating with fork and knife

Symmetric Bimanual Two hands taking the same role Holding a sandwich with both hands

DigitalBiomarkers 17 (2017). Author manuscript; available in PMC 2018 March 01.
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Table 2

Best leave-one-participant-out performance results for eating detection (sliding window = 50 seconds) when 

taking into account sensor data from the instrumented left hand, right hand, and both. Notice the gain in 

performance with the left-hand when either L1 or L2 normalization is applied to the data during pre-

processing (also shown in Figure 3).

Preprocessing Left Hand (F-score) Right Hand (F-score) Both Hands (F-score)

MinMax Scaling 48.9% 70.5% 69.1%

L1 Norm 70.7% 75.9% 74.9%

L2 Norm 71.8% 75.7% 76.3%
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