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Abstract

In order to maintain homeostasis, mature cells removed from the top compartment of hierar-

chical tissues have to be replenished by means of differentiation and self-renewal events

happening in the more primitive compartments. As each cell division is associated with a

risk of mutation, cell division patterns have to be optimized, in order to minimize or delay

the risk of malignancy generation. Here we study this optimization problem, focusing on the

role of division tree length, that is, the number of layers of cells activated in response to the

loss of terminally differentiated cells, which is related to the balance between differentiation

and self-renewal events in the compartments. Using both analytical methods and stochastic

simulations in a metapopulation-style model, we find that shorter division trees are advanta-

geous if the objective is to minimize the total number of one-hit mutants in the cell popula-

tion. Longer division trees on the other hand minimize the accumulation of two-hit mutants,

which is a more likely evolutionary goal given the key role played by tumor suppressor

genes in cancer initiation. While division tree length is the most important property determin-

ing mutant accumulation, we also find that increasing the size of primitive compartments

helps to delay two-hit mutant generation.

Author summary

Cells in multicellular organisms are organized hierarchically. A stem cell gives rise to a

chain of dividing and progressively differentiating offspring. At the end of this chain

(called a lineage) are terminally differentiated cells that perform their function and

undergo programmed cell death, to be replaced by new divisions of less differentiated

cells. Here we are interested in the design of such lineages. At one extreme, one can imag-

ine that a loss of terminally differentiated cells only results in divisions of cells in close

hierarchical proximity to them, giving rise to very short division trees. On the other hand,

it is possible that a long chain of increasingly primitive cells gets activated in response to

the loss of differentiated cells. We expect that an important type of selection pressure act-

ing upon tissue design is the minimization of mutations that happen in the course of
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everyday tissue maintenance (homeostasis). For example, tumor suppressor gene inactiva-

tion (two consecutive mutations) is an early rate-limiting step in many cancers. Using

mathematical and computational methods, we find that the length of division trees is anti-

correlated with the likelihood of double mutations, and lengthening the trees may provide

an evolutionary advantage to the organism by delaying the onset of cancer.

Introduction

Many tissues in complex organisms are hierarchically organized, such as the human colon, the

small intestine, the skin, and the haematopoietic system. Hierarchically organized tissues are

renewed constantly by means of a balance of cell deaths and cell divisions. Understanding the

mechanisms that regulate cell self-renewal and differentiation patterns is key to explaining the

robust nature of homeostasis [1]. Because of the imminent risk of mutation acquisition, tissue

organization also plays an important role in preventing cancer [2–9].

At the root of hierarchically organized tissues are a small number of stem cells (SCs), capa-

ble of both self renewal and differentiation into more specialized cells [10]. Downstream from

SCs there are intermediate cells of increasing degrees of maturity, which can undergo a certain

number of divisions. Finally, there are fully mature (terminally) differentiated cells, which per-

form their function and are discarded and replenished through divisions of less differentiated

cells. For instance, evidence suggests that on or near the bottom of the colon crypts and the

small intestine crypts, there are between 4 − 6 SCs [11–13], and the remaining compartments

are composed of transit amplifying (TA) cells and finally mature differentiated cells that are

discarded, so that the entire crypt is renewed every 2 − 7 days [14]. A similar situation occurs

in the haematopoietic system, where a stem cell pool of about 400 cells is required to replenish

a daily bone marrow output of about 3.5 × 1011 cells [15, 16].

Stem cells are thought to be capable of symmetric or asymmetric divisions. Asymmetric

divisions of a stem cell result in one daughter cell that is a stem cell and the other daughter cell

that is a more differentiated cell. Symmetric divisions result in two identical daughter cells.

The two types of symmetric divisions are illustrated in Fig 1(a) in a more general context: dif-

ferentiation divisions result in two offspring that are both more differentiated than the divid-

ing cell, and self-renewal divisions result in two offspring whose differentiation status is

identical to that of the parent.

Because experiments to track cell divisions and mutations are in general difficult, or not

feasible in some hierarchically organized tissues, mathematical models have been used to

understand cellular dynamics or homeostasis and mutations. In particular, the origin and

development of colorectal cancer have been extensively studied. It has been demonstrated the-

oretically that mutations leading to colorectal cancer can originate in either the stem cell com-

partment or TA cells [3, 5, 7, 17]. Computational models, such as virtual crypts, have helped

to understand the process of self renewal in hierarchically organized tissues, for instance the

organization of the colon [18–21]. Several studies have investigated tissue architecture with the

goal of understanding its utility in protection against mutation accumulation. Traulsen, Wer-

ner and colleagues used mathematical models to study mutations in the haematopoietic sys-

tem, and found theoretical evidence that tissue architecture and the process of self renewal

were a protection mechanism against cancer [6, 9, 22, 23]. Rodriguez-Brenes et al. [8] pro-

posed that an optimal tissue architecture that minimized the replication capacity of cells was

one where the less differentiated cells had a larger rate of self-renewal. Another study [2]

showed that having symmetric stem cell divisions (self-renewals and differentiations) rather
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than asymmetric stem cell divisions minimized the risk of two-hit mutant generation. Further-

more, Dingli et al. [24] considered the question of mutation generation by stem cells and

found that mutations that increased the probability of asymmetric replication could lead to

rapid expansion of mutant stem cells in the absence of a selective fitness advantage. Pepper

et al. [25] examined a tissue undergoing serial differentiation patterns originating with self-

renewing somatic stem cells, continuing with several TA cell differentiations, and showed that

such patterns lowered the rate of somatic evolution. Finally, Sprouffske et al. [26] emphasized

the importance of spatial considerations in the modeling of stem cell hierarchies and division

patterns.

Despite significant progress reported in the literature, there are still unanswered questions

regarding tissue renewal and cancer development in hierarchically organized tissues. In partic-

ular, the optimal mechanisms of self renewal and self-renewal to maintain homeostasis is a

crucial process which is not completely understood. In a recent paper, [27] present an elegant

model that allows one to calculate the optimal lineage structure that minimizes the divisional

load of cells. The premise of this paper is that to limit the accumulation of somatic mutations,

renewing tissues must minimize the number of times each cell divides during differentiation.

On the other hand, as was discovered by Werner et al. in their analysis of mutant dynamics

[23], the occurrence of a mutant and the compartment of origin and its subsequent clonal

dynamics are all of importance. In the present study we consider an optimization problem,

where the objective is to optimize observables that are important for cancer prevention/delay.

Fig 1. Schematics showing key concepts of the paper. (a) Two types of symmetric divisions: self-renewals and

differentiations. Each circle represents a cell, and i denotes the ith compartment, while i + 1 denotes the (i + 1)th

compartment. Panels (b) and (c) demonstrate the division chains that replenish 8 differentiated cells eliminated from the

top compartment. Dead cells are denoted by X’s and arrows show divisions. Cells are arranged in horizontal layers

corresponding to compartments. Only the dividing cells are shown (for example, there may be more than 4 cells in the

second to top compartment in panel (b)). In (b), the dead cells are replaced by a longer division tree, and in (c) by four

shorter division trees.

https://doi.org/10.1371/journal.pcbi.1005967.g001
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Namely, our aim is to minimize the number of one-hit mutants accumulated in the tissue, and

to maximize the expected time until two-hit mutants are generated.

We proceed by first formulating a top-down, hierarchical stochastic model of tissue self-

renewal, and then deriving analytical expressions for the expected number of mutants in each

compartment. This informs a deterministic approximation resulting in a set of differential

equations describing mutant dynamics in different compartments. It turns out that this meth-

odology can be further adapted to describe not only the approximately deterministic regime of

large populations and large mutation rates, but a more relevant regime of small populations

and small mutation rates. We investigate the dynamics of our model in different scenarios,

focusing on different self-renewal/differentiation probabilities and different compartment size

arrangements. In addition, we perform stochastic simulations to study the accumulation of

mutations in a stochastic regime. We describe both one-hit and two-hit mutant generation,

and find the parameters that can be tuned to delay cancer initiation in hierarchically organized

tissues.

Materials and methods

The top-down approach

To illustrate the questions we are interested in solving, consider a hierarchical tissue where

symmetric divisions are prevalent, such as the human colon [28–31]. When mature differenti-

ated cells in the most downstream compartment (the “top” layer of tissue) are discarded, cells

from the adjacent upstream compartment divide to replace the eliminated cells. This gives

rise to a chain of differentiations, because the cells that differentiated and migrated from the

upstream compartment also need to be replaced, in order to keep the tissue at homeostasis. Fig

1(b) and 1(c) schematically illustrates two opposite trends. Both panels depict 8 mature cells

that are eliminated. These cells are replenished by 4 differentiation events, whereby cells from

the neighboring compartment differentiate and migrate downstream to replace the dead cells.

In panel (b), the 4 cells are, in turn, replenished by two differentiation events from the adjacent

upstream layer (representing a compartment in the hierarchy), leaving two cells to be replaced.

This is done by a single differentiation event from the bottom layer, and the remaining cell is

then replaced by a self-renewal event from the same layer. These processes comprise a differen-

tiation cascade, or a differentiation chain, which in this case includes differentiation events in 3

consecutive compartments. A different scenario is shown in panel (c) where the 4 cells that dif-

ferentiate and migrate from the second-to-top layer are all replaced by self-renewal divisions

of cells in the same layer. In this case we have 4 shorter differentiation chains which only

include differentiation events in one compartment. As will be shown, a range of intermediate

scenarios is possible.

Biologically, differentiation chains are shaped by a system of feedback loops determined by

signals altering self-renewal, differentiation, apoptosis, migration, and adhesion in both the

stem cell compartment and the transit amplifying cells [1, 8, 32]. The self-renewal and differ-

entiation activity is a well controlled system to guarantee tissue homeostasis in hierarchically

organized tissues, thus, changes in self-renewal and differentiation patterns might be associ-

ated with an increased risk of cancer development, as found, for example, by Merrit et al. [33]

in the context of colorectal cancer. Fig 1(b) and 1(c) suggests that in terms of tissue architec-

ture, and in the presence of hierarchical lineages, there are multiple arrangements that are

all, in principle, capable of maintaining balanced tissue turnover. Each arrangement preserves

the number of cells in each compartment in the face of divisions triggered by cell deaths in the

top compartment. Because each cell division is associated with a probability of harmful muta-

tions, the question then becomes if there is a preferred strategy for a tissue to arrange its
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turnover and/or compartment sizes in order to minimize the number of mutants generated

and accumulated.

We note that in our top-down approach for the optimization problem, we assume that

the number and the turnover rate of the terminally differentiated cells is a given constraint,

dictated by the needs of the organ. It is the upstream arrangement of the less differentiated

compartments that is under the evolutionary pressure to delay cancer. A precise formulation

of this concept is presented next.

The stochastic process

Assume that there are n + 1 compartments, C0, . . ., Cn, with total constant cell numbers

N0, . . ., Nn. Inside individual compartments, we assume complete mixing, and the compart-

ments are arranged linearly from the least mature, C0, to the most mature, Cn. At each time

step, 2n cells from the most differentiated compartment Cn are removed. These cells must be

replaced by 2n divisions in different compartments.

This is done by going through the compartments consecutively in the upstream direction

(Cn−1, Cn−2, . . ., C0) and probabilistically assigning the division event types that take place.

The parameter that determines the division type is 0� vi� 1, which is the probability for a

cell in compartment Ci to be replaced by means of a self-renewing division in the same com-

partment. We assume that vn = 0, that is, terminally differentiated cells do not self-renew. Fur-

ther, because there is no compartment below the stem cell layer, removed stem cells can only

be replaced by self-renewal and v0 = 1 necessarily.

In the stochastic simulations, we let the size of each compartment Ci be constant (Ni, for

each i = 0, 1, . . ., n) and we track the numbers of mutants mi in each of the compartments. The

number of healthy cells is therefore Ni − mi, where each such cell can be thought of as a biolog-

ical “wild card” in the sense that, if the cell is chosen for cell division, it will mutate with proba-

bility u.

The initial number of mutants is zero, and the simulation proceeds as a sequence of discrete

updates. Each update starts with 2n cells removed from compartment Cn. A mutant is dis-

carded with probability
mn
Nn

, otherwise, the cell discarded is a wild type cell. The next step is to

replace the 2n cells removed in compartment Cn. Because cells in compartment Cn cannot pro-

liferate, 2n−1 cells differentiate out from compartment Cn−1. In each division, a mutant is cho-

sen with probability
mn� 1

Nn� 1
, which increases the number of mutants in compartment Cn by two

while the number of mutants in compartment Cn−1 decreases by one. If a wild type cell is cho-

sen for differentiation in compartment Cn−1, a de-novo mutant is produced with probability u,

such that the number of mutants in Cn increases by one. The number of wild-type cells in Cn−1

is decreased by one. There are altogether 2n−1 differentiations from Cn−1 performed in this

way.

Next, 2n−1 cells have to be replaced in compartment Cn−1. Each of these cells can be replaced

by a self-renewal event in Cn−1 with probability vn−1. Cells that are not replaced by a self-

renewal event are replaced by a differentiation event from compartment Cn−2 with probability

1 − vn−1. If the number of cells to be replaced by differentiation events is odd, we add an extra

self-renewal event in compartment Cn−1 so that the number of remaining openings is even. If

the division event is a self-renewal, a mutant is chosen with probability
mn� 1

Nn� 1
which increases

the mutant population in compartment Cn−1 by one. If the proliferating cell is a wild type cell,

it produces a de-novo mutant with probability u such that the number of mutants in compart-

ment Cn−1 increases by one. If the wild type cell did not mutate or a mutant was not chosen for

reproduction, the number of wild type cells in compartment Cn−1 increases by one. If the event
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is a differentiation from compartment Cn−2, mutants and wild type cells are updated in the

same way as described above for differentiations from compartment Cn−1.

After this, there are a number of cells “missing” from compartment Cn−2 that have to be

replaced in a similar way. Every time a cell is chosen for division from compartment Ci, it is a

mutant with probability
mi
Ni

. The process of cell replacement proceeds until compartment C0 is

reached. Cells “missing” from this compartment are replaced by self-renewal divisions in the

same compartment with probability v0 = 1.

Trees and their probabilities

Here we will build all possible division trees that can result from removing 2n cells from com-

partment Cn. Then, given the values vi, we will calculate the probability for each possible divi-

sion tree.

Since cells in compartment Cn do not proliferate, following an� 2n removals from Cn, there

will be an−1 = 2n−1 differentiation divisions in compartment Cn−1. Next, an−1 cells in this com-

partment must be replaced, either by differentiation divisions from compartment Cn−2 or by

self-renewal divisions from compartment Cn−1. Suppose there are an−2 differentiations and

an−1 − 2an−2 self-renewals. Next, an−2 cells from compartment Cn−2 must be replaced. This pro-

cess gives rise to a division tree, which is uniquely characterized by the numbers of differentia-

tion divisions in each compartment:

fa0; . . . ; an� 1g; ð1Þ

where an−1 = 2n−1 and

0 � ai � 2i; i ¼ 0; . . . ; n � 1:

The number of self-renewals in compartment Ci is given by ai − 2ai−1. The length of the tree is

the number of compartments that have nonzero numbers of differentiation events, and it var-

ies from 1 to n. In other words, the length of the tree is the number of cell levels that activated

as a response to cell death in the top level.

Self-renewal and differentiation events are assigned probabilistically, by means of the fol-

lowing process. Suppose ai cells must be replaced in compartment Ci, that is, there are i open-

ings to fill. Each cell is replaced by a self-renewal division in this compartment with probability

vi. If the number of remaining openings is odd, then an additional self-renewal division hap-

pens, such that the number of remaining openings is even, and they are then filled by differen-

tiation divisions from compartment Ci−1. This allows us to calculate the probability of a given

tree defined by string (1). First we calculate the probability of having ai differentiations in com-

partment Ci given that there are ai+1 differentiations in compartment Ci+1:

pðaiÞ ¼ C2ai
aiþ1
ð1 � viþ1Þ

2ai vaiþ1 � 2ai
iþ1 þ C2aiþ1

aiþ1
ð1 � viþ1Þ

2aiþ1vaiþ1 � 2ai � 1

iþ1 ; 0 � i � n � 1;

where formally an = 2n and we use the following notation for the binomial coefficients:

Ck
n ¼

n!

k!ðn � kÞ!
:

We then have the probability of string (1):

Pða0; . . . ; an� 1Þ ¼
Yn� 1

i¼0

pðaiÞ:

In particular, since vn = 0, we obtain that an−1 = 2n−1 with certainty.
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In Fig A in S1 Text and Fig B in S1 Text (Section 1 in S1 Text) examples are presented

where probabilities of all possible division trees are calculated for a particular value of n. In

general, decreasing the probability of self-renewal, v, increases the mean length of differentia-

tion trees, meaning that divisions occur in the more primitive cell levels, see Fig 2.

Deterministic dynamics of the expected number of mutants

We can formulate a metapopulation-style, ordinary differential equation (ODE) model of the

renewal dynamics described above. Let us suppose that in each compartment, the number of

mutants is given by mi, 0� i� n. We would like to calculate the expected change in the num-

ber of mutants after 2n cells are removed in compartment Cn. To do this, let us determine the

expected change in the number of mutants associated with a particular tree, string (1). This

can be done by considering the change resulting from ak differentiations from compartment

Ck to compartment Ck+1 and ak+1 − 2ak self-renewals in compartment Ck+1. These events will

affect the numbers of mutants in compartments Ck and Ck+1. Note that in the equations in this

section we used combinatorial expressions obtained from sampling with replacement. In the

stochastic simulations below, sampling without replacement was used, but it was established

that sampling with replacement led to similar results.

(a) When ak cells differentiate out of compartment Ck, 0� k� n − 1, with probability

Pdiff
i ¼ Ci

ak
mi

kð1 � mkÞ
ak � i
;

i of them may be mutants, where

mk ¼
mk

Nk

is the probability to pick a mutant among Nk cells. In this case, i mutants are removed

from compartment Ck and 2i mutants are added to compartment Ck+1. Further, among

the remaining ak − i differentiations, there may be l mutations which will increase the

number of mutants in compartment Ck+1 by l. To calculate the corresponding

Fig 2. Properties of division trees as a function of v, the probability of self-renewal in compartments 1, . . ., n − 1. (a) Mean tree length, defined as the mean

number of compartments involved in the division trees. (b) Mean division position. For an individual tree, sequence (1), this is defined as

2� nPn
i¼0

2iðai � ai� 1Þ; plotted is the expectation of this quantity across all the trees. In this example, n = 4.

https://doi.org/10.1371/journal.pcbi.1005967.g002
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probability, we note that ak − i wild type cells differentiating in compartment Ck will

produce 2(ak − i) offspring, each of which is a mutant with probability u. Therefore, l
mutants are generated with probability

Pdiff
i;l ¼ Cl

2ðak � iÞu
lð1 � uÞ2ðak � iÞ� l

:

The total change in compartment Ck+1 is then 2i + l, the total change in compartment Ck

is −i, and this happens with probability Pdiff
i Pdiff

i;l . These changes must be summed up for

0� i� ak and 0� l� 2(ak − i).

(b) When ak+1 − 2ak cells proliferate in compartment Ck+1, 0� k� n − 1, with probability

Ppro
i ¼ Ci

akþ1 � 2ak
mi

kþ1
ð1 � mkþ1Þ

akþ1 � 2ak � i
;

i of them are mutants. This means that i new mutants are added to compartment Ck+1.

The remaining ak+1 − 2ak − i proliferating cells are wild type, and it is possible that l of

the offspring are new mutants. This happens with probability

Ppro
i;l ¼ Cl

2ðakþ1 � 2ak � iÞu
lð1 � uÞ2ðakþ1 � 2ak � iÞ� l

:

The total change in compartment Ck+1 is then given by i + l and happens with probability

Ppro
i Ppro

i;l . Again, these changes must be summed up for 0� i� ak and 0� l� 2(ak − i).

(c) A special case is compartment C0. Here, a0 cells will proliferate, and the number of

mutants is calculated similar to (b).

(d) Another special case is compartment Cn. Cells do not proliferate in this compartment,

but 2n cells are removed, and we need to calculate the expected number of mutants

removed, similar to Pdiff
i in (a).

For each tree, the expected change in the number of mutants can be expressed as a vector

whose components are obtained as the expected change in each compartment, as calculated in

(a-d) above. These vectors must be added together, weighted by the probability of each tree.

The resulting vector gives the time derivatives of the quantities m0, . . ., mn.

When ak cells differentiate out of compartment Ck, 0� ak� n − 1, the expected gain of

mutants in compartment Ck+1 is given by

adiff
kþ1
¼
Xak

i¼0

X2ðak � iÞ

l¼0

ð2iþ lÞPdiff
i Pdiff

i;l :

When ak+1 − 2ak cells proliferate in compartment Ck+1, 0� k� n − 1, the expected gain of

mutants in compartment Ck+1 is

a
pro
kþ1 ¼

Xak

i¼0

X2ðak � iÞ

l¼0

ðiþ lÞPpro
i Ppro

i;l :

The compartment Ck+1 loses mutants when ak+1 cells differentiate and migrate into compart-

ment Ck+2, and the expected loss is

b
diff
kþ1
¼
Xakþ1

i¼0

X2ðakþ1 � iÞ

l¼0

ð2iþ lÞPdiff
i Pdiff

i;l :
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Thus the total change in the number of mutants in compartment Ck+1 is

Tkþ1 ¼ adiff
kþ1
þ a

pro
kþ1 � b

diff
kþ1
:

The value Tk+1 represents the expected number of mutants in compartment Ck+1 produced by

a single tree or chain of differentiation; because more than one tree could affect the expected

number of mutants in each compartment, we need to sum the contributions from all trees to

compartment Ck+1 weighted by their probability. This weighted sum defines the rate of change

of the number of mutants in each compartment:

_mk ¼
X

All trees

ProbtreeT tree
k ; 0 � k � n: ð2Þ

For the simplest cases, we list the ODEs derived by computing the expected number of

mutants produced by all possible chains of differentiation in each compartment. We will use

the assumption that vi = v for 1� i� n − 1, which has been assumed in other studies [7, 9, 23].

For the case n = 1 we have

_m1 ¼ uþ m0ð1 � uÞ � m1;

_m0 ¼ 2uð1 � m0Þ:

For n = 2 we have

_m2 ¼ 4ðuþ m1ð1 � uÞ � m2Þ;

_m1 ¼ 2ð1 � vÞ2ðuþ m0ð1 � uÞ � m1Þ þ 4uð2 � vÞvð1 � m1Þ;

_m0 ¼ 2uð1 � vÞ2ð1 � m0Þ:

For n = 3 we have

_m3 ¼ 8ðuþ m2ð1 � uÞ � m3Þ; ð3Þ

_m2 ¼ 4½uð1 � m1 þ vð2 � 3v þ 4v2 � 2v3Þð1þ m1 � 2m2ÞÞ

þð1 � vÞ2ð1þ 2v2Þðm1 � m2Þ�;
ð4Þ

_m1 ¼ 2ð1 � vÞ6ðuþ m0ð1 � uÞ � m1Þ þ 4uð2 � vÞð1 � vÞ4vð1 � m1Þ

þ4uvð2 � 3v þ v3Þð1 � m1Þ;
ð5Þ

_m0 ¼ 2uð1 � vÞ6ð1 � m0Þ: ð6Þ

To create a system for a general value of n, and also for general, non constant values of vi, we

have created a program in Mathematica, see S1 File. In Section 1.2 in S1 Text, we present fur-

ther details of these calculations.

The n + 1 linear ordinary differential equations derived here are applicable in the high

mutation rate / large population limit (uN� 1). The unique fixed point of the system, for all

n, which is always stable, is

mi ¼ Ni; 0 � i � n:

In Fig 3, we set n = 3 and show the number of mutants in each of 4 compartments as a function

of time, obtained from numerical solution of deterministic system (3–6) (solid lines) and sto-

chastic simulations (dashed lines). The dynamics for two different values of v are presented,

v = 0.9 and v = 0.1; the numerical and simulated results in both scenarios are very close and for
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the most part are impossible to distinguish. The number of mutants reaches saturation, Ni, in

each compartment. The larger the value of v, the longer it takes for the lower compartments to

reach their equilibrium values. This is because for large self-renewal probabilities, long trees

are unlikely and divisions rarely happen in the less differentiated compartments. Further

details of the deterministic regime are presented in S1 Text. Note that in this paper, we use

Fig 3. Comparison between the average number of mutants from 100 stochastic simulations without replacement

and the number of mutants predicted by the ODE approximation. (a) Comparing the number of mutants for a high

value of the proliferation probability, v = 0.9. (b) Comparing the number of mutants when the proliferation probability

is small, v = 0.1. Solid lines correspond to the number of mutants in compartment Ci, i = 1, . . ., 3, predicted by the

ODE approximation and dashed lines correspond to the mean number of mutants in compartment Ci from the

stochastic simulations. We assume n = 3, a mutation rate of u = 10−3, and the compartment sizes are N0 = 1063, N1 =

104, N2 = 105, N3 = 106.

https://doi.org/10.1371/journal.pcbi.1005967.g003
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ODE’s as a deterministic tool to study the stochastic system at hand. An alternative approach

was adopted by [23] who used ODEs as the basic model and studied the stochastic effects by

formulating a related Gillespie process.

Results

The central question we address is what values of the self-renewal probability, v, produce fewer

mutants; related to this, we investigate how the length of differentiation chains affects the accu-

mulation of cancer cells. If low values of v produce fewer mutants, this would imply that long

chains of differentiation are favorable, as they are likely to decrease the number of cancer cells;

on the other hand, if high values of v produce fewer mutants, short chains of differentiation

would decrease the number of cancer cells. In addition, we investigate how tissue architecture

combined with the self-renewal probabilities affects mutant production.

De-novo mutant generation

In the ODE model derived here, mutations are generated constantly at a rate u. This is a cor-

rect assumption with high mutation rates and high population numbers. In smaller systems

with low mutation rates, the processes of mutant (de novo) generation and their clonal spread

can be treated as separate. Mutant generation becomes a rare event, and a single mutant that is

generated gives rise to a clone that does not interfere with the creation of other mutant clones.

This regime can also be studied with the help of the probabilities calculated above.

The removal of 2n mature cells from compartment Cn gives rise to a chain of 2n cell divi-

sions that replenishes the lost cells. The probability of each such chain is calculated above.

Further, every chain gives rise to an expected change in the mutant numbers in each of the

compartments. This information can be used to study the de-novo generation of mutants and

their subsequent clonal spread. To calculate the probability that a mutant will be generated in

each of n + 1 compartments, we evaluate the right hand side of system Eq (2) with mi = 0 for

all 0� i� n (that is, no prior mutations exist in the system). We obtain a vector proportional

to the mutation rate u. Normalizing this vector to create a probability distribution, we obtain

the probability to generate a mutant in each of the compartments. This vector only depends on

the quantities (v1, . . ., vn−1), and not on the population sizes of individual compartments.

We can study the vector of probabilities of mutant generation by setting vi = v for all

1� i� n − 1 and examining the dependence on v. Smaller values of v give rise to longer trees,

and consequently higher probabilities of generating mutants in the stem cell compartment.

Larger values of v correspond to shorter trees, such that mutants are not generated in the stem

cell compartment. These trends are illustrated in Fig 4(a).

Clonal dynamics of mutants

Once generated, a mutant undergoes clonal expansion and is also subject to being flushed out

of the system (depending on its location). Let us consider the clonal propagation of mutants,

in the absence of new mutations, which is achieved by setting u = 0 in the main system of

ODEs, Eq (2). We obtain the following system:

_m0 ¼ 0; _mk ¼ KðvÞk
mk� 1

Nk� 1

�
mk

Nk

� �

; k � 1; ð7Þ

where the constants KðvÞk , which we can call the “flush-out rates”, depend on the vector

(v0, . . ., vn). One can show that these rates scale with powers of (1 − v). For example, for
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compartment C1 and for constant v, the flush-out rate is given by

KðvÞ1 ¼ 2ð1 � vÞ2
n � 2
; ð8Þ

see Section 1 in S1 Text. Generally, for constant v, we have the following expansion of the

flush-out rates in the vicinity of v = 1:

KðvÞi ¼ Aið1 � vÞgi þ Oð1 � vÞgiþ1
; 1 � i � n;

where γi = 2n−i+1 − 2 and Ai does not depend on v.

The structure of Eq (7) can be understood intuitively. Suppose that Q cells are removed

from compartment Ck. This results in three effects:

• The expected number of mutants removed from Ck by differentiating out is Qμk.

• On average, Qvk cells will be replaced by self-renewals in compartment Ck, resulting in Qvkμk

mutants added on average to Ck.

Fig 4. The role of the self-renewal rate on mutant generation and mutant dynamics (the analytical approach). (a) The probability of generating a mutant in each of

the compartments for 6 different values of v: v = 0, 0.05, 0.1, 0.4, 0.7, 1. (b) The expected number of mutants produced from a single mutant cell in the absence of

further de-novo mutations, plotted as a function of time for three different values of v. (c,d) The expected dynamics of mutants generated in different compartments at

t = 0, in the absence of new mutations, for (c) v = 0.1 and (d) v = 0.5. Other parameters are: n = 4, and the compartment sizes are, from C0 to Cn: 40, 80, 120, 160, 200.

https://doi.org/10.1371/journal.pcbi.1005967.g004
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• The remainder of the cells, Q(1 − vk), will be replaced by differentiations from compartment

Ck−1. There will be Q(1 − vk)/2 such differentiations, resulting in Q(1 − vk)μk−1 mutants

added on average to compartment Ck.

The net change in the mean number of mutants is then given by Q(1 − vk)(−μk + μk−1),

which agrees with the above equations. The steady state of system Eq (7) is given by

mk ¼ m0

Nk

N0

: ð9Þ

The interpretation of this result is quite straightforward: the probability of fixation of the

mutant in compartment C0 is m0/N0, and the expected number of mutants in all the down-

stream compartments is given by the corresponding compartment size multiplied by this fixa-

tion probability.

Depending on the origin of the mutation, the behavior of this system (and therefore,

mutant clonal dynamics) will be different. Only in the case where the mutant is introduced at

C0, is the steady state Eq (9) nontrivial, that is, mutations will persist in the system if the stem

cell compartment acquires a mutation. If a mutant is introduced in any other compartment,

there is transient dynamics, and then the mutation will be flushed out, since m0 = 0 in Eq (9).

The diagonal entries of the lower-triangular matrix in the linear system Eq (7) define the

time-scale of the transient dynamics. The first diagonal entry is zero and corresponds to the

neutrality of the number of mutants in the stem cell compartment. This is a consequence of

modeling the behavior of mutants deterministically: in a stochastic system, the probability of

increasing and decreasing the number of mutants in C0 are equal to each other, leading to a

symmetric Markov chain. The mean behavior however is correctly captured by the present sys-

tem. The rest of the diagonal entries of the matrix in system Eq (7) have quantities Ni in the

denominators (that is, larger compartments are characterized by slower mutant dynamics),

and the numerators are products of powers of 1 − vk. For small values of the self-renewal prob-

abilities, the mutants are flushed out quickly because of a high rate of differentiations leading

to upward motion of cells through the compartments. For larger values of v, mutants are

flushed out slowly so they tend to accumulate in compartments, giving rise to very long-lived

mutant populated states. In the extreme case of v = 1, only compartment Cn−1 divides, and

mutants accumulate in that compartment (the right hand side of Eq (7) is zero in this case,

except for the equation for mn). These trends are illustrated in Fig 4(c) and 4(d), where the

dynamics of mutant clones are shown depending on the compartment of mutant origin. These

results are obtained from the ODEs in Eq (7).

The role of self-renewal in mutant generation and dynamics

As the value of v increases, there is a trade-off between two different trends associated with the

probability of self-renewal: the shortening of the division trees on the one hand, and a decrease

in the mutant flush-out rate. More precisely, small values of v imply longer trees and a higher

probability of generating mutants in the stem cell compartment. When the mutants arise how-

ever, they will be flushed out quickly. On the contrary, large values of v correspond to shorter

trees, such that mutants are not likely to be generated in the stem cell compartment. Once gen-

erated, however, the mutants accumulate and persist for longer. These trends are illustrated in

Fig 4(b). There, we plot the expected dynamics of mutants, where the initial condition reflects

the probabilities of producing a mutant in the different compartments, Fig 4(a). We assume

that the initial condition is a probability vector from Fig 4(a), no further mutants are generated,

and clonal dynamics are according to Eq (7). We observe that for small values of v, mutant

accumulation is initially the least, but for larger times, there is a significant expected number of
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mutants in steady state (that is, a good chance that the mutants fixate). For larger values of v,

mutants tend to accumulate (as shown by the transient increase in the number of mutants),

but in the long run, the expected number of mutants is smaller (a smaller chance that there is

fixation in the system). While the above examples assume a constant value of v, a more general

result holds (see Section 1.2 in S1 Text): the flush-out rates KðvÞi are non-increasing functions of

all self-renewal probabilities vi (see Fig B in S1 Text), and the probability of mutant creation in

compartment C0 is a decreasing function of the values vi.

In S1 Text we also explore how compartment sizes influence mutant generation and expan-

sion (Section 7 in S1 Text), the effect of asymmetric divisions (Section 5 in S1 Text) and the

developmental stage (Section 4 in S1 Text).

Stochastic simulations and a summary of trends

In this study, the number of mutants produced by a stem cell lineage system is influenced by

different factors. The two factors that we focused our investigation on are the probability of

self-renewal in the compartments, v, and the size of different compartments. Recall that low

probability of self-renewal translates into activation of many upstream cell compartments,

which is equivalent to having longer division trees, while high probability of self-renewal

translates into activation of few upstream cell compartments, which is equivalent to having

shorter division trees. Here we summarize our findings and further illustrate them with sto-

chastic simulations, Fig 5. In this figure, we present the mean dynamics of mutations in differ-

ent compartments, corresponding to two different values of v and two different architectures,

increasing and constant. As shown below, the behavior of the stochastic system is consistent

with our predictions based on the ODEs, which were described above.

1. Self-renewal probability and accumulation of mutants. In the short term, lower probabil-

ities of cell self-renewal (lower values of v) tend to be advantageous, as they result in a lower

overall number of mutants; for larger values of v mutants tend to accumulate quickly,

which temporarily increases the number of mutants beyond what is observed in low-v sys-

tems, see Figs 5(c) and 4(b). As v increases and the mean tree length decreases, there is a

trade-off between decreasing the probability of mutant creation in the SC compartment

and also decreasing the flush-out rate. In the long run, however, we observe that the latter

tendency becomes less important, and larger values of v result in a smaller overall number

of mutants. This can be seen again in Fig 4(b). The same tendency is observed in stochastic

simulations of Fig 5(c), where blue lines (v = 0.9) are below green lines (v = 0.1) for large

times. The typical time-scale before the equilibrium is reached scales as 2−γ with γ = 2n − 2.

2. Self-renewal probability and mutations in stem cell compartment. Larger values of v are

again advantageous from the viewpoint of minimizing the number of mutants in the stem

cell compartment. With a shorter division tree length, divisions in the stem cell compart-

ment happen less often leading to a lower number of mutations. This can be seen for exam-

ple in Fig 3 by comparing the black lines (the number of mutants in compartment C0) and

in Fig 4(a); see also Fig 5, where for the time scale of the simulations, no mutants have

appeared in C0 in (a) for v = 0.9, and there is a nonzero expected number of mutants in C0

in (b) for v = 0.1 (depicted by black lines).

3. Compartment sizes and accumulation of mutants. When the value of v is fixed, constant

architectures (where all compartment sizes are equal, marked “constant” in the figures) will

ultimately produce fewer mutants than increasing architectures; see Fig 5(c) here in and Fig

J(b) in S1 Text. However, as shown in Fig J(a) in S1 Text, increasing architectures (when

compartment size increases in the downstream direction) will appear to perform better
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than constant architectures for a short initial period with large v values. Thus, while con-

stant architectures are more beneficial in the long-term, increasing architectures are benefi-

cial in the short-term when v is large. Another scenario where increasing compartment

sizes are advantageous arises if we assume that the self-renewal probabilities in compart-

ments are correlated with compartment sizes, such that differentiation from large to

Fig 5. Mean number of mutants from 1000 stochastic simulations. We compare two arrangements of the

compartment sizes for n = 3: constant from C0 to C3 (N0 = 65, N1 = 65, N2 = 65, N3 = 65) and increasing from C0 to C3

(N0 = 20, N1 = 40, N2 = 80, N3 = 120). (a) The mean number of mutants produced in compartments C1, C2 and C3 for

v = 0.9. Note that no mutants were produced in compartment C0 over the time scale shown. (b) The mean number of

mutants produced in compartments C0, C1, C2 and C3 for v = 0.1. (c) The mean of the total number of mutants

comparing both architectures for v = 0.9 (blue line) and v = 0.1 (green line). For all panels, solid lines correspond to

constant architecture and dashed lines to increasing architecture. In these simulations u = 0.001.

https://doi.org/10.1371/journal.pcbi.1005967.g005
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small compartments is favored. In this case, increasing architecture may give rise to fewer

mutants, see Fig J(b) in S1 Text.

4. Compartment sizes and mutations in stem cell compartment. Increasing architecture

always minimizes the number of mutants in the stem cell compartment. This follows from

the ODE description, see for example, the equation for the number of mutants in compart-

ment C0, Eq (6). The same trend is observed in the stochastic dynamics, see the black lines

in Fig 5(b), where the dashed line corresponding to the increasing architecture shows fewer

mutants in C0 compared to the solid line for constant architecture (please note that in this

figure, in the long run, the number of mutants in each compartment in the constant archi-

tecture is very similar, such that all the solid lines are superimposed).

Finally we note that a model that includes asymmetric divisions is presented in Section 5 in

S1 Text.

Generation of two-hit mutants

Stochastic simulations developed here were also used to investigate the dynamics of two-hit

mutant generation. In this setting, one-hit mutants were allowed to undergo a secondary

mutation process, and the simulations were stopped as soon as the first two-hit mutant was

generated. This situation corresponds to the scenario where two-hit mutants are advantageous

and do not obey the same homeostatic control as the wild type cells or one-hit mutants. Fig 6

shows the histograms of times when the first two-hit mutant was generated under different

parameters. It presents a comparison between different tissue architectures (panels (a) and

(b)) and different self-renewal probabilities (panels (c) and (d)) s. In particular, we notice that

the largest difference in two-hit mutant generation times is experienced when we change v; see

Fig 6(c) and 6(d). For both architecture types, low values of v lead to longer two-hit mutant

generation times. Therefore, we can say that from the viewpoint of two-hit mutant generation,

low values of v are advantageous. This can again be explained by thinking about flush-out

rates. Larger values of v lead to long-lived (although transient) mutant accumulation in tissue

compartments, which in turn results in a higher chance of two-hit mutant generation. As a

consequence, having lower self-renewal rates and longer differentiation trees results in slower

two-hit mutant generation.

It has been observed that small differences in fitness can be acted upon by selection [34, 35].

The differences in tissue architectures result in smaller differences in two-hit mutant genera-

tion time, but the trends we observe coincide with those seen in Fig J in S1 Text: for small val-

ues of v, increasing architecture leads to a faster production of two-hit mutants (because it

results in the fastest accumulation of one-hit mutants), and for larger values of v, increasing

architecture corresponds to the largest delay of two-hit mutant generation. This effect becomes

even stronger if asymmetric divisions are included in the model, see Fig I in S1 Text.

Fig 7 further explores the differences between increasing and constant architecture by

assuming that the self-renewal probability is defined by the compartment sizes. We observe

that the constant architecture tends to delay the production of two-hit mutants compared to

an increasing architecture. This result follows from the fact that lower values of v slow down

two-hit mutant generation, as demonstrated above. Since the constant architecture results in

lower values of v, it results in the longest two-hit mutant generation times.

Discussion

In this paper we considered the dynamics of mutant accumulation in hierarchical tissues

under homeostatic turnover. What tissue architecture can be considered optimal from the
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viewpoint of minimizing mutations? We have focused our attention on two aspects of tissue

architecture: (1) probability of self-renewals/differentiations of cells in compartments; and (2)

compartment size.

The first aspect is the probability of cells in each compartment to proliferate. A self-renewal

division is one way of replenishing cells that have been removed (by differentiation) from the

compartment; the other way is to replace “missing” cells by a differentiation division from an

Fig 6. Distribution of the generation times to second mutation from 5000 stochastic simulations. We consider two

arrangements of the compartment sizes for n = 3: constant from C0 to C3 (N0 = 65, N1 = 65, N2 = 65, N3 = 65) and

increasing from C0 to C3 (N0 = 20, N1 = 40, N2 = 80, N3 = 120). (a) The time to observe a second mutant for both

architectures and a high value of the self-renewal probability, v = 0.9. The mean time for constant and increasing

architectures is 3.33 and 3.39 respectively; the p-value obtained by two-tailed t-test is p = 0.078, indicating that the

means are different only at the 10% level (size effect is 0.04). (b) The time to observe a second mutant for both

architectures and a small value of the self-renewal probability, v = 0.1. The mean time for constant and increasing

architectures is 3.67 and 3.60 respectively; the p-value is p� 0.001, indicating that the means are different; the effect

size is 0.16. (c) and (d) The time to observe a second mutant for a constant and increasing architecture, respectively,

for small and high v. In these simulations u = 0.001, and the effect size is 0.68 and 0.46 respectively.

https://doi.org/10.1371/journal.pcbi.1005967.g006
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upstream compartment. Therefore, by changing the probability of self-renewal v (as opposed

to differentiation) we change the probability that an upstream compartment will be engaged,

thus changing the length of a typical hierarchical division tree. We have found that increasing

v results in two clear tends: (i) the trees get shorter and it becomes unlikely that mutations are

acquired in the more primitive compartments, and (ii) mutations that are generated are

flushed out more slowly from the non-stem cell compartments, and tend to accumulate (at

least, transiently). This interesting trade-off results in different “optimal” solutions, depending

on the objective of optimization. If the goal is to minimize the total number of one-hit mutants

residing long-term in all compartments, relatively large values of v are desirable. If on the

other hand we want to protect the stem cell compartment, then low values of v are superior.

Finally, from the point of view of two-hit mutant generation, again lower values of v are

advantageous.

Although the optimization problem solved in this paper is formulated differently from the

work presented by Dérenyi et al. in [27], there is an interesting point of convergence between

our results and the results of [27]. The optimal architecture for delaying 2nd mutations corre-

sponds to low values of v. Therefore, it is characterized by the longest possible active trees.

These trees look like binary trees, which are (nearly) the perfect solution found by [27].

Maximally delaying the generation of two-hit mutants is important in the context of tumor

suppressor gene inactivation, which is a common event in carcinogenesis. In tumor suppressor

genes, such as the APC gene that is inactivated in a large fraction of colorectal cancers, or Rb

gene responsible for retinoblastoma, both copies must be inactivated for the resulting cell to

acquire a phenotypic change that eventually may lead to cancer. Tumor suppressor gene inac-

tivation is often considered an early event in cancer progression, and therefore a delay in this

event is of crucial importance for evolution. Our analysis indicates that in order to delay

tumor suppression gene inactivation in a hierarchical tissue, mitotic activities must be

Fig 7. Distribution of the generation times to second mutation, obtained from stochastic simulations, in the case where

v depends on the compartment sizes. We perform 5000 stochastic simulations and compare two arrangements of the

compartment sizes: (a) constant compartment size (red bars) and increasing (blue bars); (b) decreasing (red bars) and

increasing (blue bars). Compartment sizes are as in Fig 6. The self-renewal probabilities are v1 = 1, v3 = 0, vi ¼
Ni

NiþNi� 1
, i = 1, 2.

We assume n = 3 and u = 0.001. In part (a), the mean time to a two-hit mutant for constant and increasing architecture is

3.65 and 3.59 respectively; the p value obtained by a two-tailed t-test is p� 0.001, the effect size is 0.12. In part (b), the mean

time to a two-hit mutant for decreasing architecture is 3.73; p� 0.001; the effect size is 0.30.

https://doi.org/10.1371/journal.pcbi.1005967.g007
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concentrated near the stem cell compartment. This finding coincides with in vivo measure-

ments performed in [36, 37], where divisions were more often observed near the bottom of the

hierarchical compartments. In Section 7 in S1 Text, we compare the cell division data pre-

sented in [37] to the expected number of divisions generated by our model. The model output

is only consistent with the data under the assumption of relatively low values of the self-

renewal probability v, supporting our prediction that low values of v should be selected for.

Other, indirect pieces of evidence pointing toward the protective potential of cell division

regulation come from studies that investigate the connection between loss of differentiation

and cancer. Our result that small values of the self-renewal probability v lead to double-hit

mutant suppression is consistent with the findings of [38], who reported that overexpression

of protein kinase CβII induced colonic hyperproliferation, and thus, increased the risk of colon

carcinogenesis. This behavior has also been observed in other types of cancers, where a disrup-

tion in differentiation patterns might increase the risk of cancer [33, 39–42]. Tenen [43]

explained that the loss of differentiation is an important component of many cancers, specifi-

cally, haematopoietic transcription factors are crucial for differentiation to particular lineages,

and their disruption is critical in acute myeloid leukemia (AML) development. Researchers

have also found that mutations related to brain cancer and leukemia cause the production of

an enzyme that can reconfigure on–off switches across the genome and stop cells from differ-

entiating [44–46].

To test model predictions about the accumulation of mutations more directly, we propose

measuring the natural flush-out rate of cells in a hierarchical tissue, such as the colonic crypt.

One approach to this is to use an experimental animal model and label a single cell (in the

stem or other compartment). The cell’s progeny should then be tracked in the hierarchy

through time using prospective lineage tracing. While often this is done at a single time point,

observations at multiple time points would allow for a comparison with the clonal expansion

of mutant (“labeled”) cells predicted by the model. While experimentally intensive, there are a

variety of genetic techniques for prospective cell lineage tracing in model organisms that could

be used to generate such data (see [29] for an example in the mouse intestinal crypt and [47]

for a recent review).

We should also discuss this result in the context of the previous theoretical work by [7] and

[48]. In both of these papers, variants of a linear model of the colon were investigated, where

individual cells were arranged in a linear array and where dividing cells pushed out their

neighbors upstream [49]. Interestingly, while both papers found that divisions near the stem

cell compartment (the “bottom-high” division distribution) resulted in lowering the risk of

secondary mutations experienced by existing one-hit mutants, the overall two-hit mutant gen-

eration was found by [48] to be accelerated in this case (and the “top-high” division distribu-

tion, where most divisions happen near the top, was shown to lead to a delay in two-hit

mutant production). This pattern is different from the result reported in the present model,

and the difference stems from the modeling assumptions: the linear model was adopted by [7,

48], whereas a model with separate compartments that experience a certain degree of mixing

was considered here (similar in spirit to metapopulation models that are often used in popula-

tion biology, see e.g. [50–53]). In the present model, the linear arrangement is not 1-cell thick,

but instead, there is a possibility that mutants can accumulate, or “get stuck”, in a compart-

ment that has a size greater than one cell. This is in contrast to the linear model, where such a

possibility does not exist, and each mutant will inevitably be pushed toward death at the top of

the crypt in a regular fashion. The tendency of mutants to accumulate in the presence of a

large self-renewal probability discovered in the present setting, points toward a possibility that

is ignored in the linear models. In a sense, this is similar to the differences between one-dimen-

sional spatial population models on the one hand, and two-/three-dimensional population
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models or metapopulation models on the other, see also [54, 55] for discussion of these issues.

Mutant spread is greatly restricted in one-dimensional geometry, whereas there are different

ways to spread in higher dimensions or in metapopulations.

The second aspect of architecture investigated here is the arrangement of compartment

sizes. It is physiologically determined that the top compartment, containing the most mature

cells performing their function in the organ, must be the largest. Under this restriction, there

are a great variety of ways in which sizes of consecutive compartments can be arranged. In this

paper we show that the size of the upstream compartments matter when it comes to delaying

mutant production in a hierarchical tissue. We found that the smaller the differences in the rel-

ative compartment size, the longer it takes on average to generate a double-hit mutant. This

suggests the existence of evolutionary pressure to equalize compartment sizes to facilitate the

flushing out of mutant cells.

Next, we would like to interpret our model and its implications in the broader context of

tissue architecture and the development of multicellular organisms. We can view tissue as the

“functional unit” consisting of the physiologically necessary, fully mature cells, and a “support

unit” consisting of less differentiated cells that do not perform the same function but are there

to support and replenish the cells from the functional unit. The question then becomes, how to

best organize the support unit that maintains a certain number of “functional” cells, see also

[5, 56]. As one extreme scenario, one can envisage a great number of very short division trees

where more or less each mature cell is replenished by divisions of its own stem cell. At the

other extreme, it could happen that all the mature cells are replenished by means of an enor-

mously long division tree, and are all part of the same large lineage stemming from a common

stem cell. Our model is capable of distinguishing between these two extreme possibilities (and

the whole range of intermediate possibilities). If 2n cells are removed, the longest division tree

has length n and the shortest has length 1. If v = 0, then the longest tree is always utilized. If

v = 1, then only the shortest trees are activated, and only cells in one upstream compartment

(compartment Cn−1) divide. If this was the evolutionarily preferable scenario, this would mean

that compartment Cn−1 is essentially the SC compartment, and that only one division step sep-

arates SCs from fully differentiated cells. If an intermediate value of v was selected, then the

size of stem cell lineage would be defined by the length of a typical division tree corresponding

to this value of v, and the upstream compartments that hardly ever divide would eventually be

eliminated. Our results point towards the evolutionary utility of lengthening of stem cell line-

ages, because decreasing v leads to an increase in the two-hit mutant generation time. This

process of lengthening of stem cell lineages however has to be limited by other factors, such as

geometric constraints and the necessity of spatial distribution of lineages (for example colon

crypts).

Incidentally, our result whereby lengthening of the SC lineages is preferred, is again differ-

ent from the previous one obtained in [56], for the same reason that was highlighted above:

the present model allows for mixing in the compartments, whereas the older model of [56] is

rigid in the same way as the linear model of [7] (although it is not a linear model but rather a

sequence of deterministic divisions on a binary tree, where randomness only comes about

when creating de-novo mutations, see [17]).

The hierarchical model considered here, although less rigid in terms of division patterns

compared with the linear model of [7] and the binary model of [56], is obviously still a simpli-

fication of reality. There are many extensions that can be introduced into this model. Somatic

mutations are not necessarily neutral, they might be disadvantageous, or advantageous. In this

context, a fitness advantage or disadvantage might be assigned to mutants to study how it

impacts the mutant population. Another important feature that could be added to our model

is a replication capacity. This could be done by assigning a maximum number of divisions
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to each compartment, which would definitely have an impact on the type of chains of differen-

tiation observed and therefore, on mutant development. It has been shown that a finite, and

relatively small, replication capacity (between 50 and 70 divisions [57]) is a mechanism of pro-

tection against cancer in hierarchically organized tissues [32].

Finally, we note that the present model takes the metapopulation approach to spatial rela-

tionships among cells. It can be refined by adopting a fully spatial, two- or three-dimensional

description, for example, a cellular automaton or a hybrid model with a degree of cell migra-

tion included. It will be interesting to see how the properties of this model change under such

a refinement. The main finding of the present model is that lowering the probability of self-

renewal in each compartment and compensating by differentiations in longer division trees

leads to a delay in two-hit mutant generation. We predict that this result should continue to

hold in the fully spatial case.
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