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Summary

Objectives—Whether they have been engineered for it or not, most healthcare systems 

experience a variety of unexpected events such as appointment miss-opportunities that can have 

significant impact on their revenue, cost and resource utilization. In this paper, a multi-way multi-

task learning model based on multinomial logistic regression is proposed to jointly predict the 

occurrence of different types of miss-opportunities at multiple clinics.

Methods—An extension of  regularization is proposed to enable transfer of information 

among various types of miss-opportunities as well as different clinics. A proximal algorithm is 

developed to transform the convex but non-smooth likelihood function of the multi-way multi-task 

learning model into a convex and smooth optimization problem solvable using gradient descent 

algorithm.

Results—A dataset of real attendance records of patients at four different clinics of a VA medical 

center is used to verify the performance of the proposed multi-task learning approach. 

Additionally, a simulation study, investigating more general data situations is provided to highlight 

the specific aspects of the proposed approach. Various individual and integrated multinomial 

logistic regression models with/without LASSO penalty along with a number of other common 

classification algorithms are fitted and compared against the proposed multi-way multi-task 

learning approach. Fivefold cross validation is used to estimate comparing models parameters and 

their predictive accuracy. The multi-way multi-task learning framework enables the proposed 

approach to achieve a considerable rate of parameter shrinkage and superior prediction accuracy 

across various types of miss-opportunities and clinics.

Conclusions—The proposed approach provides an integrated structure to effectively transfer 

knowledge among different miss-opportunities and clinics to reduce model size, increase 

estimation efficacy, and more importantly improve predictions results. The proposed framework 

can be effectively applied to medical centers with multiple clinics, especially those suffering from 

information scarcity on some type of disruptions and/or clinics.
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1. Introduction

The problem of miss-opportunities for scheduled appointments creates significant disruption 

in the smooth operation of almost all healthcare systems. For example, when patients do not 

show-up for their appointments or show up late, resources will be underutilized and other 

patients cannot get timely access to the care. Also, when scheduled patients cancel their 

appointments, they reduce the system (available) time to fill the schedule, which can cause 

even more problems than no-show. While, overbooking may help to some extent in these 

circumstances, it can result in congestion and patient frustration. Indeed, miss-opportunities 

negative effects on healthcare operations efficiency, patient satisfaction, and clinic costs, can 

reach hundreds of thousands of dollars yearly [1–5]. Hence, accurate prediction of no-show 

and cancellation probability is a cornerstone for any scheduling system and miss-opportunity 

reduction strategy [2, 5–9].

This paper presents a multi-way multi-task learning methodology based on multinomial 

logistic regression and an extension of  regularization to jointly predict two major 

types of disruptions, namely no-show and cancellation across different clinics of medical 

centers, while transferring the information among miss-opportunities and clinics to improve 

the prediction results. The proposed approach can result in better appointment scheduling 

systems and more effective miss-opportunity reduction strategies [10–17].

The remainder of the paper is organized as follows: Section 2 discusses the related works in 

the literature. Section 3 explains various pieces of the proposed model. Section 4 evaluates 

the performance of the proposed prediction approach based on a real healthcare dataset from 

a VA medical center. Section 5 discusses the major features and some of the challenges 

using the proposed approach. Finally, Section 6 summarizes the experimental results and 

potential applications of the proposed approach.

2. Relevant background and problem formulation

While very few researchers consider the prediction of cancellation [10], numerous studies 

focus on no-show [18–22]. The probability of no-show in the literature fluctuates 

considerably for different diagnoses and demographics, stretching from almost zero up to 

64% [3, 23–25]. Various reasons are reported for no-show ranging from conflict with other 

appointment to lack of transportation to forgetting the appointments [10, 26–30]. Several 

contributing factors are also associated with non-attendance behavior [9, 17, 31–34]. Some 

studies discuss the relationship between miss-opportunities and some specific health 

outcomes including primary care, psychiatric, and diabetes [35–39]. Several papers also 

discuss strategies to reduce appointment no-shows [40–47]. Meanwhile, the effectiveness of 

most of miss-opportunities reduction strategies depends on the accurate prediction of miss-

opportunities in individual patients [9].
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From a methodological perspective, most miss-opportunity prediction models use logistic 

regression [22]. There have also been researches based on classification and regression trees 

and rule-based [48]. Neural networks, Support Vector Machines (SVM), and Boosting 

methods are other data mining techniques that have been used for predicting miss-

opportunities [10, 49]. Time series methods, filtering and smoothing algorithms are other 

examples of methods built on individual patients non/attendance records [10, 49].

While at least some of the existing approaches in the literature are shown to have acceptable 

performance in predicting a single type of miss-opportunity, most of them are not effective 

in modeling one or more of the following scenarios that occur commonly in healthcare: (1) 

multiple types of disruptions, i.e. no-show and cancellation, that are to be considered 

simultaneously, (2) multiple clinics in a medical center with significant miss-opportunities 

problem, (3) data/information scarcity for some types of disruptions and/or clinics, (4) too 

many (potential) factors suspected to affect miss-opportunities. The major problem with the 

existing approaches in dealing with above mentioned scenarios is that they cannot 

effectively transfer the information/knowledge from one type of disruption to another in 

order to improve the prediction results and help sparsity. Neither can they use the 

information/knowledge gained from one clinic (population) to advance the inference on the 

other/s. In the next section, a multi-way multi-task learning methodology is developed based 

on multinomial logistic regression and an extension of  regularization to jointly 

predict two major types of disruptions, namely no-shows, and cancellations while 

transferring the information among various types of miss-opportunities as well as different 

clinics to improve the predictions.

3. The proposed multi-way multi-task learning

The proposed multi-way multi-task learning model is composed of three major components: 

(1) a multinomial logistic regression for joint estimation of no-show and cancellation, (2) a 

multi-way multi-task learning approach for transferring knowledge among different miss-

opportunities and clinics, and (3) a proximal gradient descent algorithm for estimating the 

parameters of the proposed model (See Figure 1).

3.1 A multinomial logistic regression for joint estimation of no-show and cancellation

The proposed approach begins with developing a multinomial logistic regression for joint 

estimation of no-show and cancellation based on general social and demographical 

information of clinical population. Let Y denotes an appointment outcome (attendance, no-

show, cancellation) in a clinic, i.e. mental health ophthalmology, dental care, and 

dermatology, and X denotes the associated risk factors (explanatory variables) including: 

gender, age, marital status, medical service coverage, distance to medical center, 

appointment time, and appointment weekday (See also Table 1). The multinomial logistic 

regression  then takes the form:
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(1)

where  denotes the kth event probability, and k is in the index of the possible outcome 

(attendance, no-show, cancellation) and that k=0,1,2.

To learn the parameters of the multinomial logistic regression one can use a negated log-

likelihood estimator  where  is a  matrix ( ), whose kth 

row corresponds to the coefficients for the kth miss-opportunity (no-show, cancellation), and 

pth column corresponds to the coefficients of the pth factor in the model. In that case, the 

negated log-likelihood estimator for all the miss-opportunity probabilities is given by:

(2)

To achieve a sparse solution to facilitate the interpretation of the model, a regularization 

term such as  can be considered in the model, which changes Equation (2) to the 

following loss function.

(3)

The second term in the above equation indicates a  penalty that encourage sparsity, 

, and  is a tuning parameter that control the amount of shrinkage [50]. 

This optimization problem can be solved by gradient descent algorithm or any other 

appropriated mean.

3.2. A multi-way multi-task learning approach for transferring knowledge among different 
miss-opportunities and clinics

The probabilities of no-show and cancellation resulted from the proposed multinomial 

logistic regression are related and this information can be used to further to improve the 

predictions. This motivates the introduction of the multi-task learning paradigm that exploits 

the correlations amongst different miss-opportunities by learning them simultaneously rather 

than individually [51]. Several recent studies on multi-task learning have shown that the 

accuracy of predictive models can be improved when the tasks, e.g. classification problems, 

are related [52–55].
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Exploiting the correlations amongst multiple tasks can be achieved by developing a group 

regularization penalty that enforces learning multinomial logistic regression for no-show and 

cancellation simultaneously rather than individually.

Reconsidering matrix of the multinomial logistic regression coefficients in Equations 

(1–2), Then a  group penalty can be defined as follows:

(4)

where . In this case,  penalty is applied over the  norms of the vectors of 

regression coefficients, rather than individual elements of regression coefficients in 

regularization. Using this penalty,  regularized multinomial logistic regression for 

joint prediction of multiple miss-opportunities estimates the matrix of regression coefficients 

 by solving the following optimization problem:

(5)

where λ is the tuning parameter that determines the magnitude of penalization. Equation (5) 

can be viewed as a special group LASSO for multinomial logistic regression [56–58], in 

which groups are defined over individual risk factors, e.g. gender, at different miss-

opportunities, namely no-show and cancellation. Consequently, the  penalization 

shrinks the regression coefficients  for the pth risk factor across all miss-opportunities to 

zero jointly, if that factor is not associated with any miss-opportunity, thus reducing the 

number of false positives. Conversely, if the factor is relevant to one or more miss-

opportunities, i.e. no-show or cancellation, all elements in will be jointly set to have non-

zero values, but the  norm still allows the association strengths to be different across 

different types of miss-opportunities for the pth risk factor. Thus, the joint inference made by 

the  penalty enables us to infer association between the risk factors by borrowing 

strength across different miss-opportunities and setting the corresponding regression 

coefficients jointly to non-zero values. One may notice that a large value of λ will set more 

columns ’s of  to zero.

In addition to the correlation among different types of miss-opportunities, there also exists 

correlation among specific miss-opportunities across various clinics in a medical center, i.e. 

mental health ophthalmology, dental care, and dermatology, that can be exploited to further 

improve the predictions. Such generalization will extend the matrix  of the multinomial 

logistic regression coefficients into a three dimensional array where the hth 

dimension corresponds to the regression coefficients for the hth clinic (population) while p 
and k interpretation stays the same as before (See Figure 2).
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Given the structure of the three dimensional array , an additional group 

regularization term needs be added to Equation (6) to capture the correlation among clinics.

(6)

where , and . The second and third terms of Equation 

(6) are  regularization terms for exploiting the correlation among different miss-

opportunities and clinics and influence different dimensions of the array  of regression 

parameters. Similar to Equation (5), Equation (6) can be viewed as a special group LASSO 

for multinomial logistic regression [56–58], in which two sets of groupings are defined over: 

(1) individual risk factors across different clinics, and (2) individual risk factors across 

different miss-opportunities. This multi-way regularization of the multinomial logistic 

regression likelihood function for joint learning of multiple tasks (miss-opportunities), i.e. 

no-show and cancelation, at multiple populations (clinics), i.e. mental health ophthalmology, 

dental care, and dermatology, etc. is referred to as “multi-way multi task learning” in this 

paper (See also Figure 3).

Various block-structured norms in the form of , , can be used to combine 

information from multiple tasks. For instance, in group LASSO, the grouping structure of 

the risk factors is assumed to be known, and the  part of the  norm is defined over 

regression coefficients for the members in each group, so that they are jointly selected or 

deselected. In multi-response regression, the  part of the  norm acts over the 

regression coefficients for all responses associated with each risk factor, and a risk factor is 

selected to be jointly influencing all of the responses. The proposed use of  norm 

differs from these previous methods in that: (1) it takes advantage of the grouping structure 

among the risk factors/responses as well as samples, wherein each group corresponds to a 

miss-opportunity and/or clinic, and (2) it applies the  regularization in a multi-way 

(two-way) rather than one way to affect different dimensions of array .

Obozinski et al. [59] found that for k regressions, under certain conditions, the sample 

complexity for , is up to k times smaller than the LASSO sample complexity, with 

weak assumptions of shared support. Thus, we can expect under certain conditions, the 

proposed multi-way (two-way)  app will approximately require up to  times fewer 

samples than LASSO to obtain the correct set of regression coefficients.

3.3. Parameter estimation

The regression coefficients  are estimated by solving the optimization problem in Equation 

(6). The first tem of Equation (6), the log-likelihood of multinomial logistic regression, is a 

smooth convex function which can be easily minimized using first-order gradient 

algorithms. However, the second and third terms of Equation (6),  penalties, are 
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convex but not smooth at zero, and for this reason, methods based on the first-order gradient 

cannot be used directly for optimizing it. Here, a variation of Fast Iterative Thresholding 

Algorithm (FISTA) [60] is proposed to address the above problem. FISTA is an extension of 

proximal gradient descent algorithms for non-smooth functions where proximal gradient 

step is performed on the extrapolated point based on the previous two iterates to improve the 

convergence rate of the algorithm [61–65]. It should be noted that, instead of FISTA, one 

may use global optimization algorithms, such as simulated annealing [66] or pattern search 

[67], which don’t require transformation of non-smooth function. In our simulation studies, 

these algorithms provide slightly less accurate estimates, but better computational 

complexity, which make them suitable for large scale problems.

FISTA for multi-way multi-task learning multiple logistic regression—Let H 
represents the total number of clinics and  denotes the number of patients in clinic h, with 

; FISTA begins with rewriting the optimization problem 

in Equation (6) as:

(7.a)

(7.b)

(7.c)

where  is the negated log-likelihood of multinomial regression for multiple clinics 

 which is a continuously differentiable with Lipschitz continuous gradient, 

and  is a set of continuous non-smooth convex group LASSO penalties with 

inexpensive prox-operator.

FISTA algorithm solves Equation (7) by generating a sequence  via:

(8.a)

(8.b)
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where the first step is an extrapolation step and the second step is the proximal gradient 

descent, and s is the step size determined by the line search. In the remainder of this section, 

first proximal gradient descent and line search criterion are briefly explained and then 

integrated into the final algorithm for parameter estimation.

Proximal gradient descent (PGD)—PGD minimizes  plus a simple quadratic 

local model of  around  as follows:

(9.a)

(9.b)

(9.c)

where s the step size, which can be determined using line search. In Equation (9), , the 

negated log-likelihood of the multinomial logistic regression, is a differentiable function 

with gradient:

(10.a)

(10.b)

From sub-gradient definition of , , if and only if  minimizes 

.

Line search criterion—One natural and commonly used line search criterion is to require 

that the objective function value is monotonically decreasing. More specifically, one may 

propose to accept the step size  at the outer iteration k if the following monotone line 

search criterion is satisfied:
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(11)

where σ is a constant in the interval  [68].

Proposed FISTA algorithm—Given the proximal gradient descent and line search 

criterion, the FISTA steps can be summarized in Algorithm 1. Step 1 sets the parameters of 

the algorithm. Step 2 initializes the starting point  and the outer loop counter of the 

algorithm. Steps 3-10 represent the outer loop of the algorithm with Step 4 initializing the 

step size. A good step size is critical for the fast convergence of the algorithm. In this paper, 

we propose to initialize the step size by adopting the Barzilai-Borwein (BB) rule [69], which 

uses a diagonal matrix  to approximate the Hessian matrix  as follows:

(12)

wherein  should be in the vectorized form. Steps 5-8 constitute the inner loop of the 

algorithm with the proximal gradient descent in Step 6, step size updation in Step 7, and 

line search criterion check in Step 8. Finally Step 9-10 increase the counter and check the 

stopping criterion of the outer iteration.

Algorithm 1

FISTA for Multi-Way Multi-Task Learning Multinomial Logistic Reg.

1. Choose parameters and  with 

2. Initialize iteration counter  and a bounded 

3. Repeat

4.   ← Equation (12)

5. Repeat

6.   ←Equation (9)

7.   

8. Until Equation (11) satisfies

9.  

10. Until some stopping criterion satisfied
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4. Experimental results

In this section, first using a real dataset of attendance records at a VA medical center, the 

performance of the proposed multi-way multi-task learning approach is studied in 

comparison with classical and LASSO regularized multinomial logistic regression as well as 

a number of other predictive models including support vector machine, random forest, 

Bayesian network, and multilayer perceptron. Next, a simulation study, investigating more 

general data situations is provided to highlight the specific aspects of the proposed approach. 

Matlab (R2016.a) has been used for developing the computer code, which is published 

available as Online Appendix 1.

4.1. Real-world case study

The real-world case study is based on a set of 410 attendance records to predict no-show and 

cancellation events at four clinics, i.e. mental health, ophthalmology, dental care, and 

dermatology at a Veteran Affairs (VA) Medical Center (See Table 1).

Regarding the size of dataset, using a small dataset such as the one considered for this 

research can better demonstrate the performance of the proposed framework in the presence 

of data scarcity, which is a common problem in some healthcare areas [70, 71]. In addition, 

while it might be more desirable to have a larger dataset, acquiring a dataset containing 

multiple clinics with some common patients is challenging.

4.1.1. Comparison with classical and LASSO regularized multinomial logistic 
regression—Given the dataset of patient information, various models of multinomial 

logistic regression are fitted and compared against proposed multi-way multi-task learning 

approach. These methods include individually fitted multinomial logistic regression for each 

clinic with/without regularization, and integrated multinomial logistic regression wherein 

clinics are incorporated as a 3-level risk factor into the model with/without regularization 

(See Table 2). LASSO penalty is used for regularized models, while  regularization is 

considered for transferring information among both clinics and miss-opportunities in the 

proposed approach. As shown in Table 2, from the sparsity stand point, the proposed multi-

way multi-task learning model achieves a higher shrinkage ratio compared to the other 

models, because of regularizing the parameters in two directions, i.e. miss-opportunities and 

clinics.

Five-fold cross validation [72] with three training subset, one validation subset and one test 

subset in each of the five repetitions is used to train the parameters of comparing models, 

optimize the tuning parameters, and test their predictive accuracy. Figure 4 illustrates the 

contour plot of the validation Mean Squared Error (MSE) for the proposed multi-way multi-

task learning approach as function of tuning parameters . The large number of 

parameters in the model inflates the shrinkage penalty terms , and therefore MSE can 

be minimized over a relatively small range of tuning parameters with a minimum at 

.

Figure 1 in Online Appendix 2 shows the effect of varying tuning parameters  on the 

estimated parameters (excluding the intercept) and sparsity of the proposed multi-way multi-
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task learning approach for mental clinic. At the optimal level of tuning parameters, i.e. 

, the estimated parameters can be roughly grouped into three categories: 

(1) parameters shrunk to zero which show deselected risk factors, such as late afternoon, (2) 

parameters associated with risk factors having relatively small effect on the model outcome, 

such as gender, and finally (3) parameters associated with risk factors having significant 

effect on the outputs, such as distance to medical center. Similar grouping behaviors are also 

observed across other clinics and miss-opportunities. Another observation is similar 

shrinkage behavior of some of the risk factors across different miss-opportunities and/or 

clinics, such as “being divorced” which turn out to be insignificant for predicting no-shows 

at mental, ophthalmology, and dental care.

Table 3 illustrates the estimated parameters of the proposed multi-way multi-task learning 

approach for the optimal level tuning parameters, i.e. . The specific 

structure of  regularization exploits the correlation among different miss-opportunities 

and different clinics for influencing different dimensions of the array  of regression 

parameters. This enables automatic individual and group selection/deselection of risk factors 

across both clinics and miss-opportunities.

In addition, Table 3 shows correlation among selected risk factors across different types of 

miss-opportunities, i.e. no-show and cancellation. It also shows some degrees of similarity 

among selected risk factors across different clinics, i.e. dental care and dermatology clinics. 

Such observation supports the idea (hypothesis) of existence of association among risk 

factors, miss-opportunities and different clinics. Therefore, a multi-way multi-task learning 

approach that elicits such relationship can indeed advance the predictive accuracy of the 

results.

Figures 5.a and 5.b demonstrate the correct classification rate of the comparing methods 

across the four clinics of the study, i.e. mental health, ophthalmology, dental care, 

dermatology, for predicting no-show and cancellation events. As shown in the Figure the 

proposed approach performs superior to its counterparts across all clinics and miss-

opportunities. Meanwhile there is not much of a difference among the performance of other 

individual- and integrated- multinomial logistic models expect for the individual 

multinomial logistic model on predicting no-shows in clinic 3, i.e. dental care. In addition, 

the models with LASSO penalty perform on a par with the classical methods except for 

predicting no-show in clinic 4, i.e. dermatology, which has fewer records compared to other 

clinics.

Figure 2 in Online Appendix 2 provides the Receiver Operating Characteristic (ROC) curves 

of the comparing methods performance for no-show (blue), cancellation (green) and show-

up (red) predictions across four clinics of the study. Similar to Figure 5 results, the proposed 

multi-way multi-task learning approach shows a consistent superior performance across all 

types of miss-opportunities and clinics compared to classical methods. Meanwhile, the 

difference in the predictive performance of the proposed approach gets considerably more 

distinctive for mental and ophthalmology clinics.
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In addition, while for some classical methods the results supports better accuracy for 

prediction of show-up and no-show events compared to cancelation event, the results are 

more consistent across different types of miss-opportunities for the proposed approach. As 

discussed earlier in the paper, such improvement in the predictive performance is largely 

because of the information transfer between miss-opportunities and clinics using the specific 

structure of  regularization.

4.1.2. Comparison with other predictive models—Here, the performance of the 

proposed approach is compared against a number of other common classification algorithms, 

the details of which is provided in Table 4. Like earlier analysis all methods are tuned and 

evaluated using the same dataset described in Section 4.1 and based on five-fold cross 

validation.

Figures 6.a and 6.b illustrate the correct classification rate of the comparing methods across 

the four clinics of the study for predicting no-show and cancellation events. With an 

exception of predicting cancellations in clinic 4, i.e. dermatology, the proposed approach 

performs uniformly better than all other methods across all clinics and miss-opportunities. 

After that, support vector machine, Bayesian network and random forest demonstrate 

comparable performances. However, MLP does not compare well with the other classifiers 

for none of the clinics or miss-opportunities.

Finally, Figure 3 in Online Appendix 2 provides the ROC curves of the comparing methods 

for predicting no-show (blue), cancellation (green) and show-up (red) predictions across four 

clinics of the study. Similar to Figure 6, the proposed multi-way multi-task learning 

approach demonstrate a consistent superior performance across most of miss-opportunities 

and clinics.

4.2. Simulation study

The simulation study is based on a set of 3,000 computer generated records  to 

predict 4 types of events , i.e. show-up, no-show, cancellation, tardiness, and 30 

risk factors , i.e. age, gender, etc. The 3,000 records have been evenly distributed 

among 6 population groups , i.e. mental health, ophthalmology, etc., such that each 

population contains 500 records . The simulation dataset consists of three major 

elements: (1) the three-dimensional matrix of risk factors , (2) the three-

dimensional matrix of regression coefficients , and (3) the matrix of observed 

events (responses) . The matrix of risk factors  is generated based on 

independent and identically distributed (i.i.d.) random numbers from uniform distribution 

.

The individual elements of the matrix of regression coefficients  are initially generated 

from normal distribution . To add sparsity to the regression coefficients of each 

population,  distribution is used to randomly select some of the risk factors, 

an turn the associated regression coefficients to zero across all events in that population, i.e. 
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, where  denotes the index of regression coefficients 

associated with selected risk factors. To add sparsity to the regression coefficients across all 

populations,  distribution is used to randomly select some pairs of risk 

factors and events, then turn the associated regression coefficients to zero across all 

populations,  where  denotes the index of 

regression coefficients for selected pairs of risk factors and events.

To add correlation among risk factors at each population,  distribution is 

used to randomly select some of the risk factors, and scale the regression coefficients 

associated with each of them to have a sum of one across all events, i.e. 

, where  denotes the index of regression coefficients associated with 

selected risk factors. To add correlation among populations,  distribution is 

used to randomly select pairs of risk factors and events, and scale the regression coefficients 

associated with each of the pairs to have a sum of one across all populations, i.e. 

, where  denotes the index of regression coefficients for selected 

pairs of risk factors and events. Figure 4 in Online Appendix 2 shows the heat map of the 

matrix generated using above procedure.

Having X and  matrices generated, equation (1) is used to calculate the probability of each 

event occurrence for all records, i.e. . These probabilities are then turned into 

observed responses  using random number generation from 

distribution.

Next, we use the simulated dataset to evaluate the performance of the proposed multi-way 

multi-task learning approach in comparison with some of the best performing predictive 

models in the previous section, including support vector machine, random forest, Bayesian 

network, and individual multinomial logistic regressions with LASSO regularization for 

each population. The details of the comparing methods and the analysis procedure are kept 

the same as the previous section.

Figures 7.a and 7.b demonstrate the correct classification rate of the comparing methods 

across different populations and events. Similar to the previous section, the proposed 

approach clearly outperforms all of its counterparts across different populations and events. 

The proposed approach also provides the most consistent correct classification rates across 

different populations and events. Meanwhile, there is not much of a difference among the 

performance of other methods expect for individual multinomial logistic regressions with 

LASSO for population 6 and event 1. The result of simulation study further demonstrates the 

improvements made by the proposed multi-way multi-task learning approach by transferring 

information among events and populations using the specific structure of 

Regularization.
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5. Discussion

Most miss-opportunity prediction models focus on only one type of disruption, i.e. no-show, 

and one clinical population, i.e. primary care. They also require relatively large datasets for 

training the model parameters. This paper has focused on developing a joint model for both 

different types of disruptions and multiple clinics by: (1) Developing a multi-way multi-task 

learning approach for multinomial logistic regression based on extension of 

regularization, which takes into account the inter-relationships among, both various types of 

miss-opportunities as well as different clinics; and (2) Presenting a proximal algorithm for 

converting the non-smooth likelihood function of the multi-way multi-task learning model to 

a smooth optimization problem solvable via gradient descent algorithm. The model not only 

provides a single and compact framework for simultaneous estimation of no-show and 

cancellation across multiple clinics, but also offers better prediction accuracy compared to 

classical logistic regression models. Additionally, the transfer of information across different 

miss-opportunities and clinics which made possible by  regularization enables the 

proposed approach to alleviate possible cases of data scarcity for one or more types of 

disruptions and/or clinics.

Meanwhile, the proposed multi-task learning approach implicitly assumes that no-show and 

cancellation are associated with similar factors. Nonetheless, while initial analysis has 

verified such assumption in the dataset of the study, no-show and cancellation may not 

necessarily have same predictors. The proposed approach also requires identification and 

optimization of two tuning parameters, i.e.  using cross validation in order to 

achieve appropriate level of sparsity and accurately estimate the model parameters. 

However, because of large size of the shrinkage penalty terms , the tuning parameters 

 can be efficiently searched over a relatively small area. Finally, the computational 

complexity of the proposed multi-way multi-task learning algorithm is considerably larger 

than classical and LASSO based multinomial logistic regression, as it involves optimization 

of non-smooth likelihood functions. However, the use of proposed FISTA algorithm that 

converts the  regularized likelihood function into a convex and smooth optimization 

model can help to reduce the computational efforts and improve the estimated parameters. 

Besides, global optimization algorithms, such as simulated annealing [66] or pattern search 

[67], which don’t require transformation of non-smooth function like FISTA, can also be 

considered to further reduce the computational complexity. In our simulation studies, these 

algorithms provide slightly less accurate estimates, but better computational complexity 

compared to FISTA, which make them suitable for large scale problems.

6. Conclusion and future work

Various types of miss-opportunities such as no-show and cancellation may happen to 

medical appointments, with significant negative impact on the revenue, cost and resource 

utilization. This paper proposes a multi-way multi-task learning model based on multinomial 

logistic regression and an extension of  regularization to jointly predict the probability 

of different types of miss-opportunities across various clinics. It also presents a proximal 

algorithm to transform the likelihood function of the multi-way multi-task learning model, 
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into a convex and smooth optimization problem solvable using gradient descent algorithm. 

Based on real patient dataset, the effectiveness of the proposed approach is demonstrated for 

estimating no-show and cancellation events at four different clinics of a Veterans Affairs 

medical center, which includes mental health, ophthalmology, dental care and dermatology. 

To investigate more general data situations, the performance of the proposed multi-way 

multi-task learning approach is also compared against a number of common predictive 

models in the literature using a simulation study. The proposed approach provides an 

integrated structure to effectively transfer knowledge among different miss-opportunities and 

clinics to reduce model size, increase estimation efficacy, and more importantly improve 

predictions results. The proposed framework can be effectively applied to medical centers 

with multiple clinics, especially those suffering from information scarcity on some type of 

disruptions and/or clinics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The general scheme of the proposed approach
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Fig. 2. 

Illustration of the multinomial logistic regression coefficients for modeling 

correlation among different miss-opportunities and different clinics
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Fig. 3. 
Illustration of multi-way regularization terms on specific parameters of multinomial logistic 

regression
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Fig. 4. 
Contour plot of validation Mean Squared Error (MSE) for the proposed multi-way multi-

task learning approach

Alaeddini and Hong Page 22

Methods Inf Med. Author manuscript; available in PMC 2018 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.5. 
Correct classification rate of comparing methods across different clinics for: (a) no-show 

prediction, (b) cancellation. The correct classification rates of each method across the four 

clinics are connected to provide better visual distinction.
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Fig. 6. 
Correct classification rate of the comparing methods across different clinics for: (a) no-show 

prediction, (b) cancellation. The correct classification rates of each method across the four 

clinics are connected to provide better visual distinction.
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Fig. 7. 
Correct classification rate of comparing methods in the simulation study across: (a) different 

populations, and (b) different events. The correct classification rates of each method are 

connected to provide better visual distinction.
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Table 4

Comparing methods information

Row Method Parameters (estimated) Reference Note

1 Proposed multi-way multi-
task learning framework Regularization: 

Tuning par.: 

N/A • Data splitting strategy: Five-fold 
cross validation

2 Random Forest (RF) Confidence factor: 0.25 [70] • Algorithm: J48
• Data splitting strategy: Five-fold 
cross validation

3 Bayesian Net (BN)
Estimator: Simple ( .5)
Search algorithm : K2

[71,72] • Data splitting strategy: Five-fold 
cross validation
• Search algorithm: hill climbing

4 Multilayer Perceptron Neural 
Net (MLP)

Hidden layers: a
Learning rate: .3
Momentum: 0.2

[73] • Data splitting strategy: Five-fold 
cross validation

5 Support Vector Machine 
(SVM)

Kernel fun.: Polynomial
Filter type: Normalize training data
Tolerance par: 0.001
Optimization algorithm: John Platt’s 
Sequential Minimal Optimization

[74,75] • Data splitting strategy: Five-fold 
cross validation
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