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Recent findings show that the metabolic status of immune cells can determine immune responses. Metabolic reprogramming
between aerobic glycolysis and oxidative phosphorylation, previously speculated as exclusively observable in cancer cells, exists
in various types of immune and stromal cells in many different pathological conditions other than cancer. The
microenvironments of cancer, obese adipose, and wound-repairing tissues share common features of inflammatory reactions. In
addition, the metabolic changes in macrophages and T cells are now regarded as crucial for the functional plasticity of the
immune cells and responsible for the progression and regression of many pathological processes, notably cancer. It is possible
that metabolic changes in the microenvironment induced by other cellular components are responsible for the functional
plasticity of immune cells. This review explores the molecular mechanisms responsible for metabolic reprogramming in
macrophages and T cells and also provides a summary of recent updates with regard to the functional modulation of the
immune cells by metabolic changes in the microenvironment, notably the tumor microenvironment.

1. Introduction

Pleiotropic interactions between various cells are responsible
for the maintenance and disturbance of homeostasis in the
tissue microenvironment of physiological and pathological
conditions. For example, from early carcinogenesis to
progression and metastasis, cancer cells interact with various
types of stromal cells, for example, cancer-associated fibro-
blasts, endothelial cells, and immune cells in the tumor
microenvironment (TME). The TME is flooded with
cytokines and growth factors responsible for “smoldering
persistent inflammation.” This reactive stroma is a well-
characterized component of the TME that shows similarities
to the repair response in injured tissue [1]. Recent findings
revealed that various immune cell subsets are dominant
regulators of the delicate balance between homeostasis and
disturbance in the tissue microenvironment [2–5]. For exam-
ple, macrophages can form a major component of immune

cell infiltrate in the TME, constituting as much as half of a
tumor mass [6, 7]. Immune responses of M1 and M2 macro-
phages describe the opposing activities of killing or repairing.
The typical M1 macrophages drive inflammation and show
high antigen presentation, high production of inflammatory
cytokines such as IL-12 and IL-23, and high production of
nitric oxide (NO) and reactive oxygen intermediates. In con-
trast, M2-type responses are the “resting” phenotype and are
observed in the resolution of inflammation without infec-
tions, tissue remodeling, and repair. It has been widely
accepted that IFNγ alone or with microbial LPS or cytokines
such as GM-CSF and TNF induces classically activated M1
macrophages, and IL-4, IL-6, IL-10, IL-13, IL-21, IL-33,
immune complexes, and Notch can induce the M2 form of
macrophage activation [8, 9]. Notably, truly polarized
macrophages are rare [10–13] and tumor-associated macro-
phages (TAMs) can be also described as M(IL-4), M(Ig),
M(IL-10), M(GC: glucocorticoid), M(IFNγ), M(LPS), and
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so forth, according to a recently attempted nomenclature
based on specific activation standard [12]. Evidence supports
a tumor-promoting role of TAMs, and high frequencies of
TAMs are generally associated with poor prognosis in most
human cancers [2, 14, 15]. TAMs infiltrating established
tumors generally show the properties of an M2-like activated
anti-inflammatory, protumoral properties rather than M1-
like activated proinflammatory, antitumoral phagocytic
properties [16–18].

Macrophages can also form a major component of
immune cell infiltrate in obese adipose tissue (AT), constitut-
ing as much as 40% of all AT cells [19]. In the progression of
obesity, a switch from M2-like to M1-like activation of the
macrophage population occurs and inflammatory cyto-
kines such as tumor necrosis factor (TNF) contribute to
insulin resistance in adipocytes characterized by an
impaired insulin response such as hypertriglyceridemia
and elevated fasting glucose [20, 21]. In addition, lym-
phoid as well as myeloid cells infiltrates and expands in
the liver tissue and the obese AT and these immune cell
subsets are responsible for the development of obesity-
related metabolic dysregulation due to excessive nutrient
intake and exacerbation of low-grade inflammatory
changes in the microenvironment. CD8+ T cells also pro-
mote inflammation and metabolic disturbance in the AT
[22]. In addition to macrophages and T cells, neutrophils
and mast cells can also disturb the homeostasis in the
tissue microenvironment.

Many recent findings in the field of immunometabolism
now show that metabolic status in immune cells can deter-
mine various types of immune responses. Immune cells have
remarkably diverse functions and cellular activities that are
associated with distinct metabolic demands. The traditional
simple concept of production of cellular ATP is that glycoly-
sis generates two molecules of ATPs from one molecule of
glucose. Glycolysis metabolizes glucose to pyruvate first,
and the pyruvate is further metabolized to carbon dioxide,
NADH, and FADH2 in the mitochondria. The reducing
equivalents (NADH and FADH2) drive oxidative phosphor-
ylation (OXPHOS) for more ATP synthesis. In the 1920s, it
was demonstrated that cancer tissues can metabolize, even
in aerobic conditions, about tenfolds more glucose to
produce lactate than normal tissues can and this is known
as aerobic glycolysis or the Warburg effect [23]. Since pyru-
vate is metabolized to lactate and secrete, lactate appears to
be wasted in aerobic glycolysis. However, lactate secretion
out of cells allows increased continuous glucose influx
from the generation of NAD+ and resultant accumulation
of glycolytic intermediates facilitates biomass synthesis
for rapidly proliferating cells. Since the observation and
dramatic revitalization of the Warburg effect, the domi-
nant glycolysis and relatively reduced OXPHOS were
thought to be confined to cancer cells. However, recent
findings clearly show that the Warburg effect-like meta-
bolic reprogramming also exists in rapidly proliferating
cells including various types of immune cells, most notably
in macrophages and T cells, and determines the function
of the immune cell subsets in disease conditions such as
those in inflamed tissue or cancer [24–27].

2. Metabolic Regulation of
Macrophage Phenotypes

The function of macrophages is not limited to the mainte-
nance of homeostasis in the tissue microenvironment but
also includes many activities such as cytokine production
and phagocytosis upon their activation. Importantly, macro-
phages are famous for their plasticity and adoption of various
activation states in response to their functional requirements
signaled from their microenvironment. For example, an
innate arm of the immune system can have an important
capacity to adapt after challenged with pathogens [28].
This is known as innate immune memory or trained
immunity. Trained immunity from epigenetic reprogram-
ming of macrophages shows high glucose consumption
and a high ratio of NAD+ to its reduced form NADH,
reflecting a shift in metabolism with an increase in glycol-
ysis and M1-like activation of macrophages, dependent on
the activation of mTOR through the Akt-HIF-1α pathway
[29]. M2-like activated macrophages exploit fatty acid
oxidation (FAO) to fuel OXPHOS rather than aerobic gly-
colysis for ATP production [30–32].

Of note, HIF1α and NFκB drive the M1 phenotypes
[33, 34] and PGC1β, and peroxisome proliferator-activated
receptors and STAT6 drive the M2 phenotypes (Figure 1)
[35–38]. Phosphorylation and activation of a nutritional
sensor, AMPK, regulate mitochondrial biogenesis via deace-
tylation of regulating proteins, including SIRT1 with
NAD+, and suppress HIF1α and NFκB [38–40]. AMPK and
NAD+-SIRT1-PGC1β signaling are key factors for nutri-
tional state-dependent M1/M2-like activation of macro-
phages in inflammatory conditions [39, 41]. HIF-1α also
enhances the lactate dehydrogenase- (LDH-) mediated con-
version of pyruvate-to-lactate [42] and increases expres-
sion of GLUT1, GLUT3, and MCT4 to increase glucose
uptake and expression of pyruvate kinase M2 (PKM2),
resulting in an increase in the secretion of lactate and
uncoupled glycolysis and oxidative phosphorylation [43, 44]
(Figure 2). Pyruvate dehydrogenase (PDH) inactivation
from phosphorylation by pyruvate dehydrogenase kinases
(PDKs) prevents pyruvate from entering the mitochondrial
Krebs cycle [45]. HIF-1α transcriptionally activates the
PDKs [46, 47].

LPS-activated dendritic cells and M1-like activated mac-
rophages show enhanced aerobic glycolysis, flux through the
pentose phosphate pathway, and fatty acid synthesis but have
incomplete OXPHOS at the level of succinate dehydrogenase
(SDH) and isocitrate dehydrogenase, blocking the synthesis
of mitochondrial ATP. In these cells, glucose is used for the
biosynthesis of large quantities of cytokines and effector
molecules, and inactivation of OXPHOS directs metabolites
from the Krebs cycle for inflammatory reaction [32, 48].
Accumulation of succinate and citrate from the truncated
OXPHOS leads to stabilization of HIF1α by limiting prolyl
hydroxylase activity to maintain a proinflammatory, antitu-
moral response [49–51].

Recently, itaconic acid-mediated inhibition of SDH
has also been found as a driver for succinate accumula-
tion in LPS-stimulated M1-like activated proinflammatory
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macrophages [52]. Immunoresponsive gene 1 (Irg1) is highly
expressed in mammalian macrophages during inflammation
and Irg1 gene silencing in macrophages results in signifi-
cantly decreased intracellular itaconic acid levels as well as
significantly reduced antimicrobial activity during bacterial
infections [53].

High intracellular iron levels in M1-like activated mac-
rophages stabilize HIF1α through low levels of ferroportin
and high levels of H-ferritin, involved in iron export and
storage, respectively [54, 55]. Hemeoxygenase-1 (HO-1)
catabolizes heme to ferrous ion, biliverdin, and carbon
monooxide, and suppression of HO-1 results in M2-like
activation of TAMs [56].

HIF1α can also be stabilized from nitrosylation with
peroxynitrites from increased iNOS [57], favoring aerobic
glycolysis in M1 phenotypes. NFκB transcriptionally acti-
vates proinflammatory genes including iNOS, which forms
NO in the presence of arginine. Peroxynitrite, formed from
NO and superoxide anions in the mitochondria, nitrosylates
iron-sulfur proteins in the mitochondrial electron transport
chain, and the resultant nitrosylation can inhibit OXPHOS
[58], also favoring aerobic glycolysis in M1 phenotypes.
Unlike iNOS-mediated catabolism of arginine to NO in
M1-like activated macrophages, M2-like activated macro-
phages catalyze arginine to urea and ornithine by arginase 1
(ARG1); ARG1 is a representative marker for M2-like activa-
tion. As NO production is limited in M2-like activated mac-
rophages, the nitrosylation-mediated inhibition of OXPHOS
is dampened, now favoring M2 phenotypes [48]. Although
HIF1α drives the M1 phenotypes in hypoxic conditions,
lactate produced by cancer cells, as a by-product of aerobic
glycolysis, has an unexpected critical function in HIF1α-
dependent expression of ARG1 and resultant M2-like activa-
tion of TAMs in normoxic conditions [59] (Figure 3). These

findings clearly indicate highly interconnected signaling for
the conservation of HIF-1-centered metabolic phenotypes.

As stated, M2-like activated macrophages show lowered
glycolysis and enhanced FAO to fuel OXPHOS. Th2 cytokine
and IL-4-induced PGC1β increase mitochondrial biogenesis
and FAO in a STAT6-dependent manner [38, 41, 60].
PGC1β plays a key role in increasing mitochondrial biogen-
esis and OXPHOS by upregulating the expression of FAO-
involved genes [41]. IL-4-/IL-13-stimulated macrophages
express PFKFB1, which produces a low level of a glycolytic
activator, fructose 2,6 bisphosphate [61, 62]. In IL-4-
stimulated macrophages, fatty acid sources such as LDL
and VLDL are taken up via the scavenger receptor CD36
and metabolized in the lysosome. The CD36-mediated lyso-
somal lipolysis is essential for the M2-like activation [31].

An orphan nuclear receptor, estrogen-related receptor α
(ESRRα), is required for the increased mitochondrial biogen-
esis [63]. Importantly, ESRRα-deficient macrophages show a
decrease in phagosomal maturation and antimicrobial activ-
ity [64]. Another study reported an M1-like phenotype of
increased glycolysis but impaired mitochondrial respiratory
function and biosynthesis as a result of ESRRα deficiency
[65]. Interestingly, VLDLR expression is a determinant factor
in inflammation and in M1-like activation of macrophages in
AT [66].

In spite of our knowledge gained from macrophages in
inflammatory disease conditions, our understanding of the
metabolic regulations in TAMs is surprisingly limited and
the signals involved in communication between tumors
and macrophages are still poorly defined [67]. However,
emerging evidence strongly indicates that the metabolic
reprogramming of macrophages is closely related to the pro-
tumoral or antitumoral function of macrophages [68, 69] and
that unraveling the TAM phenotype might lead to the
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Figure 1: Regulation of metabolic rewiring in macrophages. PGC1 is important for FAO and mitochondrial biogenesis (shown in blue) and
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Figure 2: Metabolism of glucose and fatty acid at a glance. (a) Stabilization of HIF-1α upregulates GLUTs, HK2, PFK2, PKM2, LDH, PDK,
and MCT4 shown in red. ACC: acetyl-CoA carboxylase; ARG: arginase; CPT-1: carnitine palmitoyltransferase 1; FAT: fatty acid translocase;
G3P: glyceraldehyde 3-phosphate; GLUT: glucose transporter; HK2: hexokinase 2; IDH: isocitrate dehydrogenase; LCFacyl-CoAs: long-chain
fatty acyl-CoAs; MCT: monocarboxylate transporter; 2PG: 2-phosphoglycerate; 3PG: 3-phosphoglycerate; PEP: phosphoenolpyruvate; PDH:
pyruvate dehydrogenase; PDK: pyruvate dehydrogenase kinase; PFK: phosphofructokinase; PS: pyruvate symporter; SDH: succinate
dehydrogenase; TAG: triacylglyceride; TCAT: tricarboxylic acid transporter. (b) A schematic of the Krebs cycle and metabolites exported
out of the mitochondria. Arginine is metabolized to urea and ornithine in M2-like macrophages that do not express NOS. ARG: arginase;
NOS: nitric oxide synthase.
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identification of alternative, novel metabolic targets for
TAM-directed intervention. Recently, it was shown that lac-
tate produced by cancer cells has a critical function in induc-
ing M2-like activation of TAMs [59] (Figure 3). Acidification
of the TME by lactate increases level of ARG1, a representa-
tive M2 marker, in macrophages, which limits the proinflam-
matory, antitumoral response of TAMs and, importantly, the
proliferation and activation of T cells [59, 70]. Also, de novo
fatty acid synthesis in cancer cells increases fatty acid levels in
the TME to promote the generation of immunosuppressive,
regulatory T cells (Tregs) and M2-like TAMs, favoring
survival of cancer cells [71]. Expression level of vitamin D
receptor (VDR) negatively correlates with metastasis in
breast cancer, and suppression of VDR by TNFα can mediate
the prometastatic effects of TAMs through enhancement of
the β-catenin pathway [72].

3. Metabolic Regulation of T Cells

Multiple studies have shown that distinct metabolic pro-
grams in CD4+ T cell subsets can be manipulated in vivo to
control Treg and effector T cells (TEFF) development in
inflammatory diseases [73–76]. A transcription factor, Myc,
shows a dominant role in driving metabolic reprogramming
in activated T cells by promoting glycolysis and glutaminoly-
sis and suppressing FAO [75]. mTOR increases expression of
HIF-1α, which facilitates the expression of critical glycolytic
enzymes and promotes differentiation and activation of T
cells [76].

A “shift” from OXPHOS to aerobic glycolysis is a hall-
mark of T cell activation [25]. T cells, if not activated, show
low levels of metabolic requirements, use OXPHOS to maxi-
mize production of ATP as an energy source, and engage
scarcely in biosynthesis, while activated T cells use aerobic
glycolysis to produce effector molecules for rapid cellular
proliferation [32].

In order to facilitate proper immunological response
upon encounter of antigenic stimuli, it is vital that T cells
should differentiate into TEFF and clonally expand rapidly
to ensure prompt reaction. Glycolysis promotes the

differentiation of activated CD4+ T cells into TEFF [73]. Acti-
vated T cells also consume glutamine to fuel the Krebs cycle
to support the production of biomass and ATP [77]. Clonal
expansion is achieved from upregulation of glycolysis and
OXPHOS together. In addition to high level of glycolysis,
increased mitochondrial flux and production of ROS are also
required for initiation of the clonal expansion [78]. After dif-
ferentiation, TEFF cells, Th1, Th2, and Th17 cells, remain
highly glycolytic [73].

When the antigenic stimuli are eliminated, most TEFF
cells die, leaving behind a small antigen-specific T cell popu-
lation that becomes memory T cells (Tm). Quiescent Tm
with the CD8 coreceptor exploits FAO to fuel OXPHOS
rather than aerobic glycolysis for ATP production [32, 73].
Instead of utilizing extracellular lipids for energy generation,
Tm metabolizes de novo generated fatty acids, synthesized
from extracellular glucose and intracellularly stored during
the previous effector phase [79]. Enforcing FAO with activa-
tion of AMPK or inhibiting mTOR results in increased num-
bers of Tm [80–82]. Mitochondrial oxidative metabolism
supports immunosuppression and lineage commitment of
Tregs [83–85]. Tregs with increased glycolysis are more
proliferative yet have reduced ability to maintain FOXP3
expression and suppress inflammation [84].

4. Nonmetabolic Function of Glycolytic
Enzymes in Immune Cells

In addition to their canonical, metabolic functions in
glycolysis, recent studies uncovered nonmetabolic functions
of glycolytic enzymes such as hexokinase 2 (HK2), phospho-
glucose isomerase, and GAPDH, connecting metabolic states
to apoptosis, gene transcription, protein kinase activity, and
the mTOR signaling pathway [86]. Briefly, the interaction
between HK2 and voltage-dependent anion channel
(VDAC1) reduces the release of proapoptotic proteins and
prevents cancer cells from undergoing apoptosis [87];
phosphoglucose isomerase exerts its antiapoptosis effect by
suppressing the expression of Apaf-1 and caspase-9 genes,
thereby indirectly regulating the formation of the
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Figure 3: Metabolic changes in the TME-regulating immune cell function. (a) Lactate produced by cancer cells, as a by-product of aerobic
glycolysis, has a critical function in inducing M2-like activation of TAMs. (b) A low-glucose microenvironment via multiple signaling
pathways regulates activation state of macrophages and T cells. TCR: T cell receptor; VEGF: vascular endothelial growth factor.
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apoptosome [88, 89]. GAPDH exerts controversial pro- and
antiapoptotic effects through interaction with VDAC1 and
induction of autophagy, respectively [86, 90].

Other studies have shown that GAPDH, HK, and enolase
are also RNA-binding proteins [91–93] and the “REM
(RNA–enzyme–metabolite) hypothesis” proposes a regula-
tory interaction between gene expression and cellular metab-
olism by RNA-binding metabolic enzymes [94, 95]. It is
notable that many glycolytic enzymes, formerly known to
exclusively function in glycolytic metabolic events in the
cytoplasm or mitochondria, have now been shown to regu-
late transcription and translation [86, 91]. Indeed, numerous
metabolic enzymes that also function in glycolysis, fatty acid
synthesis, and the Krebs cycle are also RNA-binding proteins
[96], although the significance for immune response is not
clearly known except for that of GAPDH [95] and enolase
[32, 83]. Recently, a REM connection with GAPDH was
proven in T cell activation [25]. GAPDH is diverted to glycol-
ysis and translation of IFNγ and IL-2 is not perturbed in
highly glycolytic T cells. However, when aerobic glycolysis
is blocked, GAPDH binds to IFNγ and IL-2 mRNA in
CD4+ T cells to suppress their translation [25]. In myeloid
cells, GAPDH is a component of the IFNγ-activated inhib-
itor of translation (GAIT) complex that controls transla-
tion of inflammatory genes [97, 98]. High glycolytic flux
suppresses the interaction between GAPDH and Rheb
and thus allows Rheb to activate mTORC1 and stimulate cell
growth [99]. By modulating expression of Foxp3-splicing
variants with exon 2(Foxp3-E2), enolase-1-mediated glycoly-
sis controls induction of human Tregs with a potent immu-
nosuppressive function [83]. When glycolysis is inhibited,
enolase-1 translocates to the nucleus and represses expres-
sion of the Foxp3-E2 splice variant in Tregs and suppresses
Treg induction.

The level of the glycolytic intermediate phosphoenolpyr-
uvate (PEP) is controlled by a balance between enolase-
mediated formation of PEP and pyruvate kinase-mediated
conversion to pyruvate. PKM2 exists either as an inactive
dimer or as more active tetramer, and the transition between
the two conformations is subject to posttranslational mod-
ifications [100]. Dimeric PKM2, previously regarded as
crucial for metabolic reprogramming exclusively in cancer
cell, is also important in promoting aerobic glycolysis in
immune cells [101, 102]. Enhanced expression of dimeric
PKM2 reduces the rate of PEP conversion to pyruvate
and results in an accumulation of glycolytic products that
can be otherwise metabolized in biosynthetic pathways
[32]. Importantly, PEP enhances antitumor effector func-
tions in activated T cells by regulating Ca2+ import into
the endoplasmic reticulum, thus sustaining translocation
of nuclear factor of activated T cells (NFAT) into the
nucleus and the expression of a set of genes that are
required for T cell activation [103].

These findings imply that a direct and strong interaction
exists between the nonmetabolic function of glycolytic
enzymes and the generation of immune responses and also
that enhanced glycolysis sustains antitumoral and proinflam-
matory functions via highly interconnected signaling in
immune cells.

5. Metabolic Changes in the TME Influencing
Immune Cell Functions

The microenvironment determines the metabolism of
immune cells, which in turn adjust to a broad spectrum of
configurations to meet the demands of various cellular activ-
ities. For example, changes in the metabolic profiles of
immune cells by cancer cells can alter the function of the
immune cells [103, 104]. A protracted aerobic glycolysis
acidifies and destabilizes the TME and this is consistent
with the view of the tumor as an unhealed wound [105].
Similarities of utilizing nutrients and engaging metabolic
regulation to sustain cellular proliferation and survival
are shared by cancer and immune cells. Notably, nutri-
tional competition between cancer cells and antitumoral
immune cells in the TME shifts the activation and differ-
entiation status of T-cells to favoring the survival of cancer
cells [103, 104, 106, 107].

Recently, it was shown that lactate produced by cancer
cells, as a by-product of aerobic glycolysis, has a critical func-
tion in signaling that induces M2-like activation of TAMs
[59] (Figure 3). Interestingly, lactate-induced M2-like activa-
tion was fromHIF1α-dependent expression of ARG1. Deple-
tion of glucose and a glucose-rich hypoxic ROS environment
favor M2-like activation and M1-like activation of TAMs,
respectively, and depletion of glucose can disarm T cells in
the TME [27, 104]. Low levels of ATP from dietary
restrictions or energy consumption induces nicotinamide
phosphoribosyltransferase that generates NAD+, which is
a key factor for SIRT1 activation. SIRT1 acetylates and acti-
vates PGC1β to increase OXPHOS [35, 67, 108]. Pyruvate
is metabolized by LDH-A, producing lactate and NAD+.
NAD+ acts as an electron acceptor in the Krebs cycle
and the electron transport system in mitochondria. It
appears feasible from these findings that glucose-depleted,
low ATP, and NAD+-rich states (in cachexic patient with
advanced cancer) may drive the M2-like activation of
macrophages, while the macrophage population still
retains its phagocytic activity in maintaining biosynthesis
with molecules acquired from their microenvironment
[32]. For the identification of alternative, novel targets
for TAM-directed intervention, it would be necessary to
show whether these events can predominantly happen in
TAMs of the TME.

A recent study observed that hypoxia-induced upregula-
tion of the immunosuppressive programmed death ligand-
1(PD-L1) is directly mediated by HIF1α [109]. In the TME,
cancer cells, macrophages, and dendritic cells express PD-
L1, a notable ligand for immune checkpoint, programmed
cell death-1(PD-1) in TEFF. The interaction of PD-1 and
PD-L1 directly inhibits glycolysis and promotes lipolysis
and FAO in T cells, resulting in failure of the antitumoral
function of T cells [110] (Figure 1). The lessons that applica-
tion of immune checkpoint blockade antibodies against cyto-
toxic T lymphocyte antigen-4 (CTLA-4), PD-1, and PD-L1,
which are used clinically, restore glucose in the TME, permit-
ting T cell glycolysis and IFNγ production clearly show that
nutrient availability in the microenvironment can change
the metabolic status of immune cells. Another study also
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revealed that PD-1 expression by TAMs correlates with
protumoral activity, and blockage of PD-1–PD-L1 in vivo
increases phagocytosis, reduces growth of cancer cells,
and increases the survival of mice in mouse models of
cancer in a macrophage-dependent way [111]. In addition,
blocking PD-L1 directly on cancer cells decreases glycoly-
sis and restores glucose in the TME, resulting in allowance
of antitumoral function of T cells from glycolysis and
IFNγ production [104].

In conclusion, these findings indicate that signals such as
cytokines, growth factors, hypoxia, and nutrient availability
that emanate from the microenvironment can induce
metabolic changes in immune cell subsets, resulting in
changes in immune functions and pathological responses.
An interesting perspective is whether immune cells can sup-
ply their microenvironment with lactate and antioxidative
resources as stromal cells in the TME are able to (the reverse
Warburg effect). Considering their preponderance in the
TME, there is an ample possibility that metabolic changes
in a large subgroup of macrophages or T cells may also affect
the metabolic state of their microenvironment and functions
of other cellular components.

6. Potential Metabolic Targets for the
Manipulation of Immune Cell Function

Since the function of immune cells is dependent on a delicate
metabolic balance, results of many clinical trials performed
with inhibitors of metabolic enzymes and oncogenes will
provide valuable insights for the prospect of immunomodu-
lation by specific metabolic regulation [112]. Of note, results
from targeting cancer metabolism in vivo have been disap-
pointing and less prominent than results from targeting
immune cell metabolism [85]. The PKM2 inhibitor, TLN-
232, was tested in a clinical trial for refractory renal cell
carcinoma (NCT00422786). Inactive dimeric PKM2 acti-
vates the mTORC1 signaling pathway by phosphorylating
the mTOR inhibitor, AKT1S1, and leads to an accelerated
oncogenic growth and autophagy inhibition of cancer cells
[113]. In line with this, increase in the tetrameric, active form
of PKM2, attenuated the LPS-induced proinflammatory M1-
like macrophage phenotypes while promoting M2-like mac-
rophage phenotypes [114]. Many AMPK activators are now
tested in clinical and preclinical studies for diabetes, cancer,
and cardiovascular disease [115]. Importantly, AMPK stimu-
lation inhibiting mTORC1 was sufficient to decrease Glut1
and increase generation of Tregs in an animal model, imply-
ing AMPK activation as a potential manipulable checkpoint
for immune response [73]. REDD1, an inhibitor of mTOR,
is highly expressed in M2-like TAMs. Inhibition of REDD1
stimulates glycolysis in the TAMs and competition of glucose
between TAMs and endothelial cells prevents vascular hyper-
activation and promotes the formation of quiescent vascular
junctions in the TME [69]. Suppression of REDD1 was
attempted in phase 2 clinical trial (NCT00713518) for the
treatment of neovascularization in AMD patients. Nitrosyla-
tion of HIF1α prevents its degradation. If denitrosylation of
HIF1α is observed, its modulation may be potentially

applicable for the inhibition of glycolytic enzymes and the
alleviation of M1-like phenotypes.

Isoprenylation of ubiquinone is important for OXPHOS
and isoprenylation of Ras, Rho, and Rab guanosine tripho-
sphatases is involved in immunological synapse formation,
migration, proliferation, and cytotoxic effector response of
T cells. The intracellular availability of sterols is crucial for
isoprenylation modification of proteins for plasma mem-
brane attachment and represents a checkpoint for metabolic
reprogramming that modulates T cell responses [116]. Statin
and other chemical inhibitors of the mevalonate pathway can
suppress isoprenylation of Rho proteins [117] and have been
tested in many clinical trials.

Clinical trials involving agents that inhibit PD-L1 and
PD-1 are now being performed. Atezolizumab is the sole
member of this class currently approved for the treatment
of bladder cancer, but approvals for avelumab, durvalumab,
nivolumab, and pembrolizumab in the treatment of various
cancer are anticipated in the near future [118]. Therefore, it
appears possible that the combined use of metabolism-
targeting reagents with immune checkpoint inhibitors can
alter the activation and differentiation of T cells.

7. Conclusions

Immunity and metabolism advance together. Considering
the significant contribution of immune cell functions in pro-
moting and suppressing various types of disease progression,
repolarization of immune cells from the potential targets
stated above shows an ample possibility to become novel
therapeutic approaches. Extension of our knowledge of the
functional plasticity of macrophages and T cells spanning
from inflammation biology to cancer immunology and the
persistent reprogramming effect achievable from stable epi-
genetic changes in the metabolic pathways of macrophages
[29] and potentially T cells by potential modulators may
provide new information for immune therapeutic strategies
applicable for different disease conditions. Importantly, can-
cer cells and host primary cell constituents such as immune
cells and stromal cells can form microanatomical compart-
ments within the cancer tissue to regulate metabolic needs,
immune surveillance, survival, invasion, and metastasis.
Indeed, different signals from particular locations in the
TME seem to influence activation of TAMs and T cells and
overall tumor prognosis [119]. TAMs can be diverse within
the microanatomical compartments, including the accumu-
lation of M1-like activated cells with protumoral properties
in hypoxic areas [120] and differences in inflammatory com-
ponents and pathways between tumors originating in distinct
anatomical sites [120, 121]. The notion that metabolic
competition between cancer cells, immune cells, and other
stromal cells can determine function and fate of each cell sub-
set proposing that identification of which of specific niches in
the microenvironment can impede immune cells from
proper metabolic engagement will encourage significant
contributions to this research field. Generation of metaboli-
cally fit T cells prior to adoptive cell transfer will improve T
cell-based immunotherapy against cancer by surviving the
unfavorable, hostile TME. Furthermore, successful therapies
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targeting the function of macrophages and T cells will require
identification of targets that specifically allow metabolic
reprogramming of immune cells while, at the same time,
not causing an increase in proliferation and survival of cancer
cells or systemic inflammatory changes or autoimmunity.
Our understanding of the metabolic regulations in B cells is
surprisingly limited, and the mechanisms about how cellular
metabolism supports and regulates function of B cells are still
poorly defined. B cell immunometabolism is anticipated to
become an exciting research field.
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