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Dihydropyrimidinase, a dimetalloenzyme containing a carboxylated lysine within the active site, is a member of the cyclic
amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. Unlike all known dihy-
dropyrimidinases, which are tetrameric, pseudomonal dihydropyrimidinase forms a dimer at neutral pH. In this paper, we report
the crystal structure of P. aeruginosa dihydropyrimidinase at pH 5.9 (PDB entry 5YKD). ,e crystals of P. aeruginosa dihy-
dropyrimidinase belonged to space group C2221 with cell dimensions of a� 108.9, b� 155.7, and c� 235.6 Å. ,e structure of
P. aeruginosa dihydropyrimidinase was solved at 2.17 Å resolution. An asymmetric unit of the crystal contained four crystal-
lographically independent P. aeruginosa dihydropyrimidinase monomers. Gel >ltration chromatographic analysis of puri>ed
P. aeruginosa dihydropyrimidinase revealed a mixture of dimers and tetramers at pH 5.9. ,us, P. aeruginosa dihydropyr-
imidinase can form a stable tetramer both in the crystalline state and in the solution. Based on sequence analysis and structural
comparison of the dimer-dimer interface between P. aeruginosa dihydropyrimidinase and )ermus sp. dihydropyrimidinase,
di@erent oligomerization mechanisms are proposed.

1. Introduction

Dihydropyrimidinase is a key enzyme for pyrimidine catab-
olism [1, 2]. Dihydropyrimidinase catalyzes the reversible
cyclization of dihydrouracil to N-carbamoyl-β-alanine in the
second step of the pyrimidine degradation pathway (Figure 1).
Dihydropyrimidinase can also detoxify xenobiotics with an
imide functional group, ranging from linear imides to het-
erocyclic imides [3–9]. Homologous enzymes from micro-
organisms are known as hydantoinase, used as biocatalyst for
hydrolysis of 5-monosubstituted hydantoins in the synthesis of
D- and L-amino acids [10, 11]. Optically pure amino acids have
been widely used as intermediates for semisynthesis of anti-
biotics, active peptides, hormones, antifungal agents, pesti-
cides, and sweeteners. Dihydropyrimidinase and hydantoinase
generally possess a similar active site, but their overall se-
quence identity and substrate speci>city may di@er [3, 12]. For
example, hydantoinase puri>ed from Agrobacterium species
has no 5,6-dihydropyrimidine amidohydrolase activity [13].
Dihydropyrimidinases from the yeast Saccharomyces kluyveri

and the slimemoldDictyostelium discoideum do not hydrolyze
hydantoin [14]. ,us, several bacterial hydantoinases are
still named and identi>ed as dihydropyrimidinase because
of their catalytic activity toward natural substrates, namely,
dihydrouracil and dihydrothymine. ,ese bacterial en-
zymes include Pseudomonas aeruginosa and )ermus sp.
dihydropyrimidinases [15, 16].

Dihydropyrimidinase, hydantoinase, imidase, allantoi-
nase, and dihydroorotase belong to the cyclic amidohy-
drolase family because of their functional and structural
similarities [17]. Members of this enzyme family catalyze the
ring-opening hydrolysis of the cyclic amide bond of each
substrate in either >ve- or six-membered rings. Even if these
enzymes have similar functions, they have relatively low
amino acid sequence identity. In addition, the substrate
selectivity and speci>city of these enzymes highly di@er
[18, 19]. Most of the active sites of dihydropyrimidinases,
hydantoinases, allantoinases, and dihydroorotases contain
four histidines, one aspartate, and one carboxylated lysine
residue, which are required for metal binding and catalytic
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activity [8, 15, 18, 20, 21]. ,e presence of a carboxylated
lysine in hydantoinase is also required for the self-assembly
of the binuclear metal center [12, 20, 22] and increases the
nucleophilicity of the hydroxide for catalysis [23].,e global
architecture of the dihydropyrimidinase monomer consists
of two domains, namely, a large domain with a classic (β/α)8-
barrel structure core embedding the catalytic dimetal center
and a small β-sandwich domain [16, 22, 24, 25].

All known dihydropyrimidinases are tetramers except
pseudomonal enzymes. Hydantoinase from P. putida YZ-26
functions as a dimer [26, 27]. Recently, we identi>ed that
dihydropyrimidinase from P. aeruginosa PAO1 also forms
a dimer [28]. In addition, the crystal structure of P. aeruginosa
PAO1 dihydropyrimidinase indicated that several residues
crucial for tetramerization are not found in P. aeruginosa
dihydropyrimidinase [28]. In this study, we found that the
oligomerization of P. aeruginosa PAO1 dihydropyrimidinase
is a pH-dependent process. At pH 5.9, P. aeruginosa PAO1
dihydropyrimidinase mainly formed a tetramer. To con>rm
this result and determine how this enzyme can also form
a tetramer, we also determined the crystal structure of
P. aeruginosa PAO1 dihydropyrimidinase at 2.17 Å resolution
at acidic environment. Structural comparison indicated that
although P. aeruginosa PAO1 dihydropyrimidinase can also
form a tetramer, the residues being crucial for tetramerization
are di@erent from those in)ermus sp. dihydropyrimidinases.

2. Materials and Methods

2.1.Cloning,ProteinExpression,andPuri/cation. Construction
of the P. aeruginosa dihydropyrimidinase expression plas-
mid has been reported [15]. Recombinant P. aeruginosa
dihydropyrimidinase was expressed and puri>ed using the
protocol described previously [15].,e protein puri>ed from
the soluble supernatant by Ni2+-aLnity chromatography
(HiTrap HP; GE Healthcare Bio-Sciences, Piscataway, NJ,
USA) was eluted with Bu@er A (20mM Tris-HCl, 250mM
imidazole, and 0.5M NaCl, pH 7.9) and dialyzed against
a dialysis bu@er (20mM HEPES and 100mM NaCl, pH 7.0;
Bu@er B). Protein purity remained>97% as determined by SDS-
PAGE (Mini-PROTEAN Tetra System; Bio-Rad, CA, USA).

2.2. Gel Filtration Chromatography. Gel >ltration chro-
matography was carried out by the AKTA-FPLC system
(GE Healthcare Bio-Sciences, Piscataway, NJ, USA). In brief,
puri>ed protein (5mg/mL) in Bu@er C (20mM MES and

100mM NaCl, pH 5.9) was applied to a Superdex 200 prep
grade column (GE Healthcare Bio-Sciences, Piscataway, NJ,
USA) equilibrated with the same bu@er [29]. ,e column
was operated at a Now rate of 0.5mL/min, and the proteins
were detected at 280nm. ,e column was calibrated with
proteins of known molecular weight: thyroglobulin (670 kDa),
c-globulin (158 kDa), ovalbumin (44 kDa),myoglobin (17 kDa),
and vitamin B12 (1.35 kDa).

2.3. Crystallography. Before crystallization, P. aeruginosa
dihydropyrimidinase was concentrated to 20mg/mL in
Bu@er C. Crystals were grown at room temperature by
hanging drop vapor di@usion in 10% PEG 8000, 100mM
HEPES, 200mM calcium acetate, pH 5.9. Data collection
and re>nement statistics for the crystal of P. aeruginosa
dihydropyrimidinase are shown in Table 1. Data were col-
lected using an ADSC Quantum-315r CCD area detector at
SPXF beamline BL13C1 at NSRRC (Taiwan, ROC). All data
integration and scaling were carried out using HKL-2000
[30]. ,ere were four P. aeruginosa dihydropyrimidinase
monomers per asymmetric unit. ,e crystal structure of
P. aeruginosa dihydropyrimidinase was solved at 2.17 Å reso-
lution with the molecular replacement software AMoRe [31]
using the dihydropyrimidinase (PDB entry 5E5C) [28] as

Dihydrouracil

N N

O

O O

N

COOH

NH2

N-carbamoyl-β-alanine

+ H2O

Figure 1: ,e physiological reaction of dihydropyrimidinase.
Dihydropyrimidinase catalyzes the reversible cyclization of dihy-
drouracil to N-carbamoyl-β-alanine in the second step of the
pyrimidine degradation pathway.

Table 1: Data collection and re>nement statistics.

Data collection
Crystal P. aeruginosa dihydropyrimidinase
Wavelength (Å) 0.975
Resolution (Å) 30–2.17
Space group C2221

Cell dimension (Å)
a� 108.9, α� 90
b� 155.7, β� 90
c� 235.6, c� 120

Completeness (%) 99.8 (100)∗

<I/σI> 15.13 (3.7)
Rsym or Rmerge (%) 0.122 (0.599)
Redundancy 7.1 (7.3)
Re>nement

Resolution (Å) 30–2.17
Number of reNections 100197
Rwork/Rfree 0.1759/0.2312
Number of atoms

Protein 1912
Water 312

RMS deviation
Bond lengths (Å) 0.0151
Bond angles (°) 1.6495

Ramachandran plot
In preferred regions 1345 (94.19%)
In allowed regions 68 (4.76%)
Outliers 15 (1.05%)

PDB entry 5YKD
∗Values in parentheses are for the highest resolution shell.
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model. After molecular replacement, model building was
carried out using XtalView [32]. CNS was used for molecular
dynamics re>nement [33]. ,e >nal structure was re>ned to
an R-factor of 0.1759 and an Rfree of 0.2312. Atomic co-
ordinates and related structural factors have been deposited
in the PDB with accession code 5YKD.

3. Results and Discussion

3.1. Structure of the P. aeruginosa Dihydropyrimidinase
Monomer. Crystals of P. aeruginosa dihydropyrimidinase

were grown at room temperature by hanging drop vapor
di@usion in 10% PEG 8000, 100mM HEPES, 200mM cal-
cium acetate, pH 5.9. ,e crystals of P. aeruginosa dihy-
dropyrimidinase grown under this condition belonged to
space group C2221 with cell dimensions of a � 108.9,
b� 155.7, and c� 235.6 Å.,e crystal structure of P. aeruginosa
dihydropyrimidinase was solved at 2.17 Å resolution (Table
1). ,e unit cell contained eight molecules. An asymmetric
unit of the crystal contained four crystallographically in-
dependent P. aeruginosa dihydropyrimidinase monomers,
in which two zinc ions were found in the active site per
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Figure 2: Crystal structure of P. aeruginosa dihydropyrimidinase. (a) Ribbon diagram of a P. aeruginosa dihydropyrimidinase tetramer.
Each P. aeruginosa dihydropyrimidinase monomer is color-coded. Two zinc ions in the active site are presented as black spheres. (b) Ribbon
diagram of a P. aeruginosa dihydropyrimidinase monomer with the secondary structures labeled.

D316
H239

H61

H59

H183

K150

(a)

D316 H239

H61

H59

H183

K150

(b)

Figure 3: Structural comparison. (a) Superposition of the active site of dihydropyrimidinases. ,eir active sites contain four histidines, one
aspartate, and one carboxylated lysine residue, which are required for metal binding and catalytic activity. Dihydropyrimidinases from
P. aeruginosa (PDB entry 5E5C; green),)ermus sp. (PDB entry 1GKQ; salmon), Tetraodon nigroviridis (PDB entry 4H01; pale yellow), and
the structure (PDB entry 5YKD; purple blue) in this study are shown.,e architecture of these active sites is similar. (b) Superposition of the
active site of members of the amidohydrolase family. ,eir active sites contain four histidines, one aspartate, and one carboxylated lysine
residue, which are required for metal binding and catalytic activity. P. aeruginosa dihydropyrimidinase (PDB entry 5YKD; purple blue),
Escherichia coli allantoinase (PDB entry 3E74; bright orange), Burkholderia pickettii hydantoinase (PDB entry 1NFG; aquamarine), and
E. coli dihydroorotase (PDB entry 1J79; brown) are shown. ,e architecture of these active sites is similar.
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monomer (Figure 2(a)). ,e majority of the electron density
for P. aeruginosa dihydropyrimidinase exhibited good
quality, and no discontinuity was observed. BrieNy, the
overall structure of each P. aeruginosa dihydropyrimidinase
unit consists of 17 α-helices, 19 β-sheets, and two zinc ions
(Figure 2(b)). At pH 5.9, the architecture of the P. aeruginosa
dihydropyrimidinase monomer consists of two domains,
namely, a large domain with a classic (β/α)8-barrel struc-
ture core embedding the catalytic dimetal center and a small
β-sandwich domain.

3.2. Structural Comparison. ,e overall structure and ar-
chitecture of the active site of P. aeruginosa dihydropyr-
imidinase are similar to those of other dihydropyrimidinases
(Figure 3(a)) and other members of the amidohydrolase
family of enzymes, such as hydantoinases, dihydroorotases,

and allantoinases (Figure 3(b)). ,e active sites of these
enzymes contain four histidines, one aspartate, and one
carboxylated lysine residue, which are required for metal
binding and catalytic activity [12, 14, 15, 19, 20, 34, 35].

3.3. pH-Dependent Oligomerization of P. aeruginosa
Dihydropyrimidinase. It was noted that the crystals of the
dimeric P. aeruginosa dihydropyrimidinase belonged to
space group P3121 grown at the condition of 28% PEG 6000,
100mM HEPES, 200mM lithium acetate, pH 7.5 [28]. Due
to the di@erent crystallization condition, we attempted to
test whether the oligomerization of P. aeruginosa dihy-
dropyrimidinase is pH-dependent. All known dihydropyr-
imidinases are tetramers. However, pseudomonal
dihydropyrimidinase/hydantoinase forms a dimer at neu-
tral pH [26–28]. Given that the structure implies that
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Figure 4: Gel >ltration chromatographic analysis. Gel >ltration chromatography was carried out by the AKTA-FPLC system in Bu@er C
(20mM MES and 100mM NaCl, pH 5.9). ,e corresponding peaks show the eluting P. aeruginosa dihydropyrimidinase. ,e column was
calibrated with proteins of known molecular weight: thyroglobulin (670 kDa), c-globulin (158 kDa), ovalbumin (44 kDa), myoglobin
(17 kDa), and vitamin B12 (1.35 kDa).
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Figure 5:,e structure of P. aeruginosa dihydropyrimidinase tetramer. An asymmetric unit contains four crystallographically independent
P. aeruginosa dihydropyrimidinase monomers B-A-C-D. Crystallographically related tetramer B-A-C′-D′was formed and further stabilized
via many hydrogen bonds and salt bridges. ,is tetramerization structure was similar to that of)ermus sp. dihydropyrimidinase
(PDB entry 1GKQ).
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P. aeruginosa dihydropyrimidinase may also form a tetramer
in the crystalline state at pH 5.9 (Figure 2(a)), we performed
biochemical veri>cation to con>rm the oligomerization
state. To con>rm whether or not the oligomerization of
P. aeruginosa dihydropyrimidinase is pH-dependent, we
conducted gel >ltration chromatography at pH 5.9. As
shown in Figure 4, the results revealed that two species with

elution volume of 63.25 and 69. 26mL did coexist. ,e
molecular mass of a P. aeruginosa dihydropyrimidinase
monomer, as calculated from the amino acid sequence, is
53 kDa. Assuming that these two forms of P. aeruginosa
dihydropyrimidinase have a shape and partial speci>c vol-
ume similar to the standard proteins, the native molecular
masses of P. aeruginosa dihydropyrimidinase were estimated
to be 105 and 180 kDa, approximately 1.9 and 3.5 times the
molecular mass of a P. aeruginosa dihydropyrimidinase
monomer, respectively. In comparison at pH 7.5, gel >l-
tration chromatographic analysis of P. aeruginosa dihy-
dropyrimidinase revealed a single peak; the native molecular
mass was estimated to be 117 kDa [28]. ,e two forms of this
enzyme obtained from the gel >ltration chromatography at
pH 5.9 had similar speci>c activity (data not shown). ,us,
P. aeruginosa dihydropyrimidinase did exist as a mixture of
dimers and tetramers at pH 5.9.

3.4. Structural Insights into Dimer of Dimer (Tetramer)
Formation of Dihydropyrimidinase. In this study, we have
identi>ed that P. aeruginosa dihydropyrimidinase did exist
as a mixture of dimers and tetramers at pH 5.9. To assess
how P. aeruginosa dihydropyrimidinase can form a stable
tetramer, the dimer-dimer interface was analyzed. In the

Table 2: ,e formation of hydrogen bonds at the dimer-dimer
interface of P. aeruginosa dihydropyrimidinase.

Subunit 1 Distance [Å] Subunit 2
A: K374 [NZ] 3.00 B: E14 [OE1]
A: H13 [NE2] 2.88 B: E14 [OE1]
A: R386 [NH2] 3.86 B: E14 [OE2]
A: R386 [NH1] 2.81 B: E15 [OE2]
A: R386 [NH2] 2.83 B: E15 [OE2]
A: R468 [NH2] 3.61 B: Q306 [OE1]
A: R253 [NH1] 3.27 B: S307 [O]
A: R253 [NH2] 3.13 B: S307 [O]
A: R467 [NH1] 2.92 B: V354 [O]
A: R468 [NE] 2.95 B: G357 [O]
A: R468 [NH2] 3.09 B: G357 [O]
A: R468 [NH2] 3.40 B: R358 [O]
A: R467 [NH1] 3.24 B: L359 [O]
A: E14 [OE1] 3.09 B: K374 [NZ]
A: E14 [OE1] 2.47 B: H13 [NE2]
A: E15 [OE2] 2.70 B: R386 [NH1]
A: S307 [O] 3.30 B: R253 [NH1]
A: S307 [O] 3.55 B: R253 [NH2]
A: V354 [O] 2.91 B: R467 [NH1]
A: G357 [O] 2.94 B: R468 [NH2]
A: G357 [O] 2.94 B: R468 [NE]
A: R358 [O] 3.56 B: R468 [NH2]
A: L359 [O] 3.16 B: R467 [NH1]
C′: H13 [NE2] 2.79 D′: E14 [OE1]
C′: K374 [NZ] 3.25 D′: E14 [OE1]
C′: R386 [NH1] 2.85 D′: E15 [OE1]
C′: R386 [NH2] 2.59 D′: E15 [OE2]
C′: R468 [NH2] 3.26 D′: Q306 [OE1]
C′: R253 [NH1] 3.13 D′: S307 [O]
C′: R253 [NH2] 3.16 D′: S307 [O]
C′: R468 [NE] 2.71 D′: G357 [O]
C′: R468 [NH2] 3.11 D′: R358 [O]
C′: E14 [OE1] 2.88 D′: H13 [NE2]
C′: E14 [OE1] 2.89 D′: K374 [NZ]
C′: E15 [OE2] 2.88 D′: R386 [NH1]
C′: E15 [OE2] 2.73 D′: R386 [NH2]
C′: Q306 [OE1] 3.53 D′: R468 [NH2]
C′: S307 [O] 3.21 D′: R253 [NH1]
C′: S307 [O] 3.59 D′: R253 [NH2]
C′: G357 [O] 2.65 D′: R468 [NE]
C′: R358 [O] 3.33 D′: R468 [NH2]

Table 3: ,e formation of salt bridges at the dimer-dimer interface
of P. aeruginosa dihydropyrimidinase.

Subunit 1 Distance [Å] Subunit 2
A: K374 [NZ] 3.00 B: E14 [OE1]
A: H13 [NE2] 2.88 B: E14 [OE1]
A: R386 [NH2] 3.86 B: E14 [OE2]
A: H13 [NE2] 3.75 B: E14 [OE2]
A: R386 [NH1] 3.55 B: E15 [OE1]
A: R386 [NH1] 2.81 B: E15 [OE2]
A: R386 [NH2] 2.83 B: E15 [OE2]
A: E14 [OE1] 3.09 B: K374 [NZ]
A: E14 [OE1] 2.47 B: H13 [NE2]
A: E14 [OE2] 3.93 B: H13 [NE2]
A: E15 [OE1] 3.69 B: R386 [NH1]
A: E15 [OE2] 3.00 B: R386 [NH2]
A: E15 [OE2] 2.70 B: R386 [NH1]
C′: H13 [NE2] 2.79 D′: E14 [OE1]
C′: K374 [NZ] 3.25 D′: E14 [OE1]
C′: H13 [NE2] 3.86 D′: E14 [OE2]
C′: R386 [NH1] 2.85 D′: E15 [OE1]
C′: R386 [NH2] 3.84 D′: E15 [OE1]
C′: R386 [NH1] 2.96 D′: E15 [OE2]
C′: R386 [NH2] 2.59 D′: E15 [OE2]
C′: E14 [OE1] 2.88 D′: H13 [NE2]
C′: E14 [OE1] 2.89 D′: K374 [NZ]
C′: E14 [OE2] 3.78 D′: H13 [NE2]
C′: E15 [OE1] 3.34 D′: R386 [NH1]
C′: E15 [OE2] 2.88 D′: R386 [NH1]
C′: E15 [OE2] 2.73 D′: R386 [NH2]
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crystal of P. aeruginosa dihydropyrimidinase, the four
molecules formed two pairs of dimers, B-A and C-D, re-
spectively (Figure 5). Since the two dimers of P. aeruginosa
dihydropyrimidinase associate via few contacts to create the

tetramer, it was thought that the tetrameric state may be
possibly due to crystal packing forces. We noted that in the
crystal, another crystallographically related tetramer B-A-
C′-D′ (Figure 5) was formed and further stabilized via many

(a) (b)

Figure 6: Comparison of the tetrameric structures of )ermus sp. dihydropyrimidinase and P. aeruginosa dihydropyrimidinase.
(a) Structural analysis of the dimer-dimer interface of P. aeruginosa dihydropyrimidinase. ,e distance (Å) of the residues is shown.
(b)Many residues crucial for forming hydrogen bonds at the dimer-dimer interface of P. aeruginosa dihydropyrimidinase were not found in
the dimer-dimer interface of )ermus sp. dihydropyrimidinase.
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Figure 7: Sequence alignment of dihydropyrimidinases from P. aeruginosa and)ermus sp. ,e amino acids that are involved in dimer-
dimer interface of P. aeruginosa and )ermus sp. dihydropyrimidinase are boxed, respectively.

6 Bioinorganic Chemistry and Applications



hydrogen bonds and salt bridges (Tables 2 and 3). ,is
tetramerization structure was similar to that of)ermus sp.
dihydropyrimidinase (PDB entry 1GKQ).

We also compared the residues important for tetrame-
rization located at the B-A-C′-D′ dimer-dimer interface
with those of )ermus sp. dihydropyrimidinase (Figure 6).
Although their overall structures are similar, the important
residues for tetramer (dimer B-C′ with dimer A-D′) for-
mation are quite di@erent. For the tetramer formation of
P. aeruginosa dihydropyrimidinase, many hydrogen bonds
with close distance were found: these bonds (<3 Å) include
K374(A)–E14(B), H13(A)–E14(B), R386(A)–E14(B), R386
(A)–E15(B), R467(A)–V354(B), R468(A)–G357(B), E14(A)–
H13(B), E15(A)–R386(B), V354(A)–R467(B), G357(A)–R468(B),
H13(C′)–E14(D′), R386(C′)–E15(D′), R468(C′)–G357(D′),
E14(C′)–H13(D′), E14(C′)–K374(D′), E15(C′)–R386(D′), and
G357(C′)–R468(D′); however, these residues were not found
for the tetramer formation of)ermus sp. dihydropyrimidinase
(Figure 6). Only A13–D14 hydrogen bond was found
in )ermus sp. dihydropyrimidinase (i.e., H13–E14 in
P. aeruginosa dihydropyrimidinase). ,us, the dimer-dimer
interface between P. aeruginosa dihydropyrimidinase and
)ermus sp. dihydropyrimidinase was signi>cantly di@erent
(Figure 7). Comparison by superimposition indicated that
many Arg residues (R253, R358, R386, R467, and R468)
found in P. aeruginosa dihydropyrimidinase, but not in
)ermus sp. dihydropyrimidinase, may play a crucial role
for the pH-dependent oligomerization. If consider the pKa,
a much better candidate is His13, which is involved in
intermolecular interactions and, dependent on the envi-
ronment of its side chain, which may easily change pro-
tonation state between pH 5.9 and pH 7.5. However, this
speculation needs to be con>rmed by further biochemical
experiments.

3.5. Di;erent Mechanisms for Tetramer Formation of
Dihydropyrimidinases. In this study,we identi>edP. aeruginosa
dihydropyrimidinase can be a tetramer both in the crys-
talline state and in solution (Figure 4). ,e structure of the
tetrameric)ermus sp. dihydropyrimidinase and P. aeruginosa
dihydropyrimidinase was compared (Figure 6).Many important
residues for )ermus sp. dihydropyrimidinase tetramer for-
mation are di@erent from those for P. aeruginosa dihy-
dropyrimidinase (Figure 7). On the basis of these results,
we concluded that P. aeruginosa dihydropyrimidinase could
form a tetramer, but its oligomerization mechanism di@ered
from those of other dihydropyrimidinases such as )ermus
sp. dihydropyrimidinase.
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