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Abstract

Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are

widespread. This opens new prospects to use such existing computational and imaging

resources to perform medical diagnosis in developing countries at a very low cost. Many rel-

evant samples, like biological cells or waterborn parasites, are almost fully transparent. As

they do not exhibit absorption, but alter the light’s phase only, they are almost invisible in

brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or

sample staining often are not available. Dedicated illumination approaches, tailored to the

sample under investigation help to boost the contrast. This is achieved by a programmable

illumination source, which also allows to measure the phase gradient using the differential

phase contrast (DPC) [1, 2] or even the quantitative phase using the derived qDPC

approach [3]. By applying machine-learning techniques, such as a convolutional neural net-

work (CNN), it is possible to learn a relationship between samples to be examined and its

optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to

enable real-time applications. For the experimental setup, we developed a 3D-printed

smartphone microscope for less than 100 $ using off-the-shelf components only such as a

low-cost video projector. The fully automated system assures true Koehler illumination with

an LCD as the condenser aperture and a reversed smartphone lens as the microscope

objective. We show that the effect of a varied light source shape, using the pre-trained CNN,

does not only improve the phase contrast, but also the impression of an improvement in opti-

cal resolution without adding any special optics, as demonstrated by measurements.

1 Introduction

In recent years the field of smart microscopy tried to enhance the user-friendliness as well as

the image quaility of a standard microscope. Since then, the final output of the instrument

thus can be more than what the user sees through the eyepiece. Taking a series of images and

extract the phase information using the transport of intensity equation (TIE) [4], extracting

the amplitude and phase from a hologram [5, 6] or capture multi-mode images such as dark-

field, brightfield and qDPC [3, 7, 8] at the same time are just some examples.
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Translating those concepts to field-portable devices for use in developing countries or edu-

cation, where cost-effective devices like smartphones are widely spread, brings powerful tools

for diagnosis or learning to the masses.

Most biological organisms have only low amplitude contrast, thus are hardly visible in com-

mon brightfield configurations. Interferometric or the already mentioned holographic

approaches are able to reconstruct the phase in a computational post process. Other methods

like the well known differential interference contrast (DIC) or Zernike Phase contrast use spe-

cial optics to convert the phase into amplitude contrast to visualize these objects.

In the year 1899 Siedentopf [9] suggested a set of rules which can be used to enhance the

contrast of an object by manipulating the design of the illumination source. Best contrast for a

2-dimensional sinusoidal grating e.g. can be achieved using a dipole configuration, where two

illumination-spots perpendicular to the grating vector are placed in the condenser aperture.

Since all objects can be modelled as a sum of an infinite number of sine/cosine patterns, there

will always be an optimized source shape, which is, however, not always easy to find by just

trial-and-error.

In computational lithography this principle is known as source-mask optimization (SMO)

which reduces the critical dimension (CD), defined by the smallest feature size of the mask

which can be imaged, by optimizing a freeform light source using e.g. a DMD [10] with an

inverse problem. In lithography the subject of optimization is the mask which is well known,

whereas in light microscopy the object, more precisely, its complex transmission function is

unknown, which can be estimated using methods mentioned above and described below.

We present here an optimization-procedure for the illumination shape. The starting point

of the algorithm is given by the estimated complex object transmission function t(x), which is

given by inverse filtering of multiple intensity images using the weak-object transfer function

(WOTF) developed by Tian et al. [3].

The paper is organized in four parts, where we start with a short introduction into the the-

ory of image formation in an incoherent optical system and how it depends on the shape of

the light source in section two. The third part shows methods for optimizing a light source

shape which is then used in two different experimental systems described in part four. The

experimental results taken with the lab-microscope which is equipped with a home-made low-

cost SLM made by a smartphone Display and the smartphone microscope which derives from

a low-cost LED-projector are shown in the fourth and fifth section.

2 Theory

2.1 Contrast formation in partially coherent imaging systems

To optimize the contrast of an object at a given illumination configuration, a forward model

has to be defined which is used by the optimization routine in order to evaluate the effect of

changes in the light source.

A common way to simulate a partially coherent imaging system in Koehler configuration,

is to compute the system’s transmission cross coefficient (TCC) introduced by Hopkins [11]

and processes the spectrum of the object-transmission function with this 4D transfer function,

visualized for the 2D case in Fig 1. Abbes approach [12] discretizes the effective light source

into a sum of infinitesimal small point sources s(νs). Each of these point-emitters shifts the

object’s spectrum in Fourier-space. After summing all intensities of the inverse-Fourier trans-

form with the objecitve’s PSF h(x) filtered spectrum over the area of the spatially extended con-

denser pupil NAc following [13, 14], one gets the partially-coherent image (in lithography

often called aerial image).
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To simplify the derivation of the image formation process, we limit calculus only to fre-

quencies in x-direction. The same holds true if one extends the problem to two dimensions.

The intensity then computes to

I ¼
Z

NAc

jsðnsÞj
2

|fflfflffl{zfflfflffl}
intensity of condenser

�

�
�
�
�
�

Z1

� 1

tðx0Þhðx � x0Þ � ei2p n0 �x0 dx0
�
�
�
�
�

2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intensity as iFT psf � convolved object� spectra

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
summing intensities over all source points

� dns:

ð1Þ

where NAc = n � sin(αc) represents the numerical aperture of the condenser. After interchang-

ing the integration boundaries one gets the TCC following Hopkins [11]

IðxÞ ¼
1

Cn

Z1

� 1

Tðn1ÞT
�ðn2Þ

Z1

� 1

jSðnsÞj
2
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5 ð2Þ

� ei2p ðn1 � n2Þ�x dn1dn2
ð3Þ

¼
1

Cn

Z1

� 1

Tðn1ÞT
�ðn2Þ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

bilinear object� spectra

TCCðn1; n2Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
system description

� ei2p ðn1 � n2Þ�xdn1dn2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F � 1

;
ð4Þ

where the object spectrum is given by a Fourier transform of the tranmission-function

TðnÞ ¼ FftðxÞg.H(ν) and S(ν) represent the two-dimensional pupil functions from the objec-

tive and the condenser respectively. Detailed investigation can be found in [15].

Fig 1. Symmetry properties of the TCC at different illumination configurations. In (a) the TCC at p = q = 0 gives the partially coherent transfer function for a

brightfield and in (b) for a DPC system (b). The green line shows the axis of symmetry. The DPC setup offers odd symmetry which enables phase-contrast.

https://doi.org/10.1371/journal.pone.0192937.g001
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Following [11] the so-called Transmission-Cross-Coefficient TCC(ν1, ν2) or sometimes par-

tial coherent transfer function PCTF [13], can be extracted from Eq (4) which then describes

the imaging properties of a partially coherent imaging system and contains all information

about illumination and aberration:

TCCðn1; n2Þ ¼
1

Cn
�

Z

jSðnsÞj
2
� Hðn1 þ n0ÞH�ðn2 þ n0Þ dn0; ð5Þ

where Cn is the normalization-factor, that is usually the maximum value of the transfer func-

tion [15].

This filter function can be understood as the geometrical overlap of the 2D objective pupil

H, its conjugateH� and the effective illumination source S. The shift of theH andH� corre-

sponds to a spatial frequency caused by the bilinear object spectrum. Thus the TCC(ν1, ν2)

gives the attenuation of an object frequency pair at a certain spatial frequency.

The main advantage of this method is, that the TCC, once computed, can be stored in

memory for later reuse, thus it represents a very computationally efficient way to see how the

contrast is modulated by the microscope.

A simplification introduced by Cobb et al. [16] and later further developed by Yamazoe

et al. [17, 18] reduces this 4D matrix into a set of 2D-filter kernels by applying the singular-

value decomposition (SVD). The result will be a set of eigenvectors which acts as filter kernels

and its eigenvalues which gives the weights. It was shown, that the eigenvalues decrease rap-

idly, thus it’s possible to use only the first 2 Eigenvectors to simulate an image by keeping the

error below 10%.

2.2 Partially coherent image formation

It can be shown, that without adding any additional optics, such as phase masks in Zernike

phase contrast or prisms in DIC, the object’s phase contrast can be enhanced by an iterative

optimization process which manipulates the shape of the condenser aperture.

A mathematical motivation of this phenomena can be found in Sheppard/ Wilson [1]

which claims that a symmetric and real-valued optical system, such as the perfect brightfield

microscope, is not capable to image the phase of an object. To make phase variations visible

one can make the TCC asymmetric by illuminating the object asymmetrically (e.g. DPC) or

adding a phase factor in the pupil plane (e.g. introducing a phase mask or defocus the object).

This can be proved by a simple example, where we define a sinusoidal phase grating visual-

ized in Fig 2 tðxÞ ¼ A0 � exp i m
2
sin x

kg

� �� �
. Its direction is defined by the k-vector, which can be

represented as a scalar in the one-dimensional case kg,m� [0, 1] defines its modulation depth.

Its Fourier-transform is given by a Taylor series expansion

FftðxÞgðnÞ ¼ TðnxÞ ¼
P1

� 1
Jq
m
2

� �
� d nx � q �

1

kg

 !

; ð6Þ

where J is the Bessel function of the 1-st order. The aerial image (Fig 2) is given by

IðnxÞ ¼
R1
� 1
TCCðnx þ n1; n2ÞTðnx þ n1ÞT�ð n2Þdn2: ð7Þ
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Taking the q = 0, q = ±1 diffraction order into account only (indicated as red/blue dots in

Fig 1) and inserting Eq (6) into Eq (7), the formula reduces to 2 cases:

1: nx ¼ 0 ð8Þ

IðnxÞ ¼ C1 � TCCð0; 0Þ þ C2
2
TCC

1

kg
;

1

kg

 !

� TCC �
1

kg
; �

1

kg

 ! !

ð9Þ

2: nx ¼ �
1

kg
ð10Þ

IðnxÞ ¼ C1C2 � TCC
1

kg
; 0

 !

� C1C2 � TCC 0;
1

kg

 !

ð11Þ

The TCC of a “perfect” brightfield microscope has even symmetry and has a real-valued

pupilshape, which means, that no phase factors e.g. aberrations are present. Inserting TCC(m,

p) = TCC(−m, −p) into the two cases show, that the phase term vanishes and only a DC-term

predominates the aerial image.

By sequentially shading both sides of the condenser aperture and subtracting the resulting

two images from one another gives an odd-symmetric TCC as can be seen in the 2D-TCC plot

in Fig 1(b). Inserting TCC(m, p) = −TCC(−m, −p) into Eq (11), one can see, that the intensity

follows the phase gradient plus a DC-term (I1 + I2) which can also be removed [19]

IDPC ¼ ðI1 � I2Þ=ðI1 þ I2Þ: ð12Þ

Fig 2. Asymmetric illumination source enables phase-contrast. (a) shows the transmission-function t(x) of the sinusoidial phase object and its spectrum which

gets filtered in (b) by the WOTF of the brightfield microscope and in (c) by the DPC-system. One clearly sees, that an odd symmetric optical system is capable of

transmitting phase information and images the phase-gradient.

https://doi.org/10.1371/journal.pone.0192937.g002
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This brief mathematical description shows, that an appropriate light source shape enables to

image phase contrast by manipulating the condenser’s aperture plane which can conveniently

be done with an SLM, also shown in [20] and [21].

3 Optimization of the light source

According to the illumination principle introduced by Siedentopf [22] it is best practise in

order to enhance the contrast in the object plane, by leaving out the illumination direction

which do not contribute to the image formation.

This gives a huge degree of freedom which can be reduced by simplifying the effective area

by a finite number of parameters which represent a pattern, when trying to optimize am × n
pixel grid of a freeform light source. In [23] this has been done by by a set of Zernike Coeffi-

cients which reduces the number of parameters considerably. An alternative is to divide the

circular condenser aperture in ring segments and weigh each of them with a specific value.

A generalized light source can be described as a superposition of individual sub-illumina-

tion functions Zs(m, n), where each can be weighted with a factor Cl:

Zsðm; nÞ ¼
XP

l¼1

Cl � Sl ¼ S �C; ð13Þ

and the latter one represents the source in matrix notation with C = [C1C2. . .CP]
T andm, n,

p, q give the discrete pixel coordinates. S holds the light patterns, e.g. i-th Zernike polynomial

or circular segment.

Inserting Eq (13) in Eq (5) gives a TCC whose imaging properties now depend on the

parameter-set C multiplied with the precomputed four-dimensional TCCS(m, n;p, q), which

allows the computation of two-dimensional images

TCCsysðm; n; p; qÞ ¼
1

Cn

X

m;n;p;q
Z2

Sðm; n; p; qÞ � Hðmþm0; nþ n0Þ � H�ðpþ p0; qþ q0Þ ð14Þ

¼ TCCs;i
|fflffl{zfflffl}

precalculated TCC

� C|{z}
vector with P� coefficients

ð15Þ

Separating the TCCZ into its Eigenvalues λi and Eigenfunctions Ci using the SVD gives

TCCSVDðm; n; p; qÞ ¼
PP

j

Pk
i¼1

lifCjgFiðm; nÞfCngF
�

i ðp; qÞfCjg; ð16Þ

thus the intensity of the aerial image reduces to

Isimðx0; y0Þ ¼
PP

j

Pk
i¼1

lifCjgjFfTðm; nÞ � Fiðm; nÞfCjggj
2

ð17Þ

¼
PP

j

Pk
i¼1

lifCjgjtðx; yÞ 
 �iðm; nÞfCjgj
2
: ð18Þ

where k is the maximum number of used filter kernels (e.g. SVD-Eigenvectors).

Varying the source parameters has an influence on contrast, but also on intensity in the

specimen plane or spatial resolution, where each image’s quality criterion can be measured by

a tailored cost function. One example for a possible cost function can be derived following the

Enhance phase contrast using machine-learning
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so-called fidelity [15], which is defined as

F ¼ jjI � Iidealjj
2 ð19Þ

IidealðxÞ ¼ jtðxÞj
2 bzw: IidealðxÞ ¼ argðtðxÞÞ when using phase objects ð20Þ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x

IðxÞ � jtðxÞj2
r

: ð21Þ

This gives a quality measure how similar the intensity measurement, e.g. on the camera, fol-

lows the quantitative phase estimate by the qDPC image. Another approach could be to maxi-

mize the standard deviation of the simulated pixels and thus maximize the phase contrast, by

changing the pixels inside the aperture plane. The next step would be to create a cost function

using Eqs (21) and (18).

FðCÞ ¼ jjIsimfCg � Iidealjj
2 ð22Þ

¼
Xx;y

i¼1

ðIsimfCg � IidealÞ
2

ð23Þ

using Eq (18)

¼
Xx;y

i¼1

XP

n

Xk

i¼1

li|{z}
SVD

fCg

�
�
�
�tðx; yÞ 
 �i|{z}

SVD

ðm; nÞfCng

�
�
�
�

2

� Iideal

0

@

1

A

2

ð24Þ

¼
Xx;y

i¼1

XP

n

Xk

i¼1

SVD½TCCðCnÞ�li

�
�
�tðx; yÞ 
 SVD½TCCðCnÞ��iÞðm; nÞ

�
�
�
2

� Iideal

 !2

: ð25Þ

3.0.1 Particle swarm algorithm optimization

The simplification in the previous step, to accelerate the computation of an aerial image by

using the SVD, complicates the calculation of the analytical gradientr{F(C)} to feed e.g. a gra-

dient-descent algorithm. Using genetic algorithms, like the so-called particle swarm optimiza-

tion algorithm (PSO) [24], bypasses the lack of the analytical gradient.

The PSO finds its analogy in the behaviour of a swarm, such as a flock of birds, where the

direction and velocity of its centre depends on the movement of each single individual as well

as the whole swarm. In our approach, each individual of the swarm evaluates one possible illu-

mination situation using the parameter-vector C. The swarm size was empirically chosen to

be 15 � lmax, where lmax corresponds to the maximum numbers of variable parameters, as sug-

gested by Montgommery [25].

The iteration was stopped, once the movement of the swarm slows down to a specific

amount or by reaching a maximum number of iterations [24]. The algorithm developed in

Matlab 2015a (The MathWorks, Inc., Massachusetts, USA) and Tensorflow [26] is available on

Github [27, 28].

3.0.2 Gradient descent optimization

Alternatively we used the auto-differentiation functionality of the open-source ML library

Tensorflow [26] which enables a gradient based optimization using different optimizers (i.e.

Enhance phase contrast using machine-learning
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Gradient-Descent, Adadelta, etc.). We used the precomputed eigenfunctions and eigenvalues

from Eq (16) to predict the intensity of the aerial image in Eq (18) following Eq (18). Different

error-norms can be introduced, while the so called uniform-norm, which tries to maximize

the absolute difference between the minimum and maximum Intensity value of the simulated

image

FðCÞ ¼ � jjmaxðIsimfCgÞ � minðIsimfCgÞjj; ð26Þ

was chosen as the best error measure for the given situation. In both cases, the initial values of

the illumination source were set to one.

4 Using machine learning to optimize the light source

Even after optimizing the code by replacing the 4D-TCC with only two convolution-kernels

following Eq (16) to simulate one intensity image, the process of finding an optimized set of

the parameters takes about 20 s on a quadcore computer, which is not reasonable for biologists

or high throughput-applications, such as drug screening or industrial metrology, who needs

results in real-time.

Recent years gave rise to computational power and brought the field of Big Data in combi-

nation with neural networks back to focus. The field of machine learning has been applied to

many tasks in microscopy such as automated cell-labelling [29] or learning approaches in opti-

cal tomography [30]. In our approach we show, that a neural network is capable to learn an

optimized light source shape from a set of prior generated input-output-pairs. A major advan-

tage of a neural network is, once it is trained, the learned weights can be used on devices with

low computational power, such as cellphones.

4.1 Generating a dataset for machine learning

For training the network, we generated a data-set of microscopic-like objects. We exploit the

self-similarity of biological objects [31], especially in its ultrastructure and overall shape, to

maximize the generality of our application by building a universal dataset. This is possible,

because an optimized illumination source rather depends on the object’s structure, than its

type.

Therefore we included about 1.000 randomly chosen microscopy images (i.e. epithelial

cells, bacteria, diatoms, etc.) from public databases [32, 33] as well as from acquired images

using the qDPC approach. To expand the dataset, we added artificially created patterns from a

2D discrete cosine transformation (DCT) which mimic grating-like structures, such as mus-

cle-cells or metallurgical objects, very well.

The datasets also includes the optimized illumination-parameters to enhance the phase-

contrast of the complex object transfer function, generated with the algorithms explained in

section 2.2. The transfer function itself was derived by generating pseudo phase maps from the

intensity images.

Augmentation of the samples to avoid overfitting in the learning process of the NN was

done by adding noise and rotation to the images. In case of the segment-illumination, the

parameters have to be rotated likewise, due to the Fourier-relationship, which states, that a

rotation around the zero-position corresponds to a rotation in frequency-space, thus no

reevaluation of the parameters using the algorithm is necessary.

To overcome possible phase ambiguities, the complex object was split into real and imagi-

nary part rather than amplitude and phase, which then creates a 2-layer 2D image and can be

converted into a N ×N × 2 matrix, where N corresponds to the number of pixels along x or y.

Enhance phase contrast using machine-learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0192937 March 1, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0192937


4.2 Architecture and training of the CNN

The cost function was defined as the mean-squared error (MSE) of the predicted m̂ and mea-

sured valuesm of the output intensities in the condenser aperture plane as

MSE ¼
Xn

i¼1

ðm̂ � mÞ2: ð27Þ

It turned out, that the criteria to predict the CNN’s accuracy, by simply comparing the exact

matches of the continuous output and the dataset values would be too strict. Therefore the

continuous output in the range of ŷ � ½0::1� was quantized by rounding the first decimal

place. Thus the accuracy is calculated by summing over all equal output-pairs and then nor-

malizing it by dividing by the number of samples to get the relative accuracy

ACC ¼
1

n

Xn

i¼1

ðroundðm̂i � 10Þ ¼ roundðm � 10ÞÞ: ð28Þ

The dataset was separated into a train-, validation- and test-set by the fractions 80/10/10%.

A batch-size of 128 training-samples was feed into the CNN, where the error was optimized

using the ADAM [34] update rule with a empirically chosen learning rate of 10−2. The archi-

tecture was derived from the standard fully supervised convolutional neural network (convnet)

by LeCun et al. [35]) and Krizhevsky et al [36] and implemented in the open-source software

Tensorflow [26] which works also on mobile devices with Android or iOS.

The complex 2D input image (two channels) xi is followed by a series of two 2D-conv-layers

including a maxpool-layer with a feature size of 128 and kernel size of 9 × 9 and 7 × 7 respec-

tively as shown in Fig 3. As activation function the tanh-function was chosen as this, compared

e.g. to the linear relu-activation function, is better suited for continuous output values sug-

gested in [36]. The top few layers of the network are conventional fully-connected networks

with using dropout of 0.5 probability while training.

Fig 3. Basic architecture of the used CNN. CNN which takes the complex 2-channel input images and the generated optimized light source parameters as the

training data. The learned filters can then be exported to mobile devices i.e. Android smartphones.

https://doi.org/10.1371/journal.pone.0192937.g003
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The calculation was carried out on a Nvidia GTX TitanX, where the relative accuracy con-

verged after about 10k iterations to a value of 67% in the testing phase, where we used the dis-

cretized error-norm described earlier.

The output of the training procedure is a set of filters, where each corresponds to object fea-

tures which can be enhanced by using an appropriate source shape.

As mentioned earlier, there are always many possible solutions that could increase the

phase contrast of an object, thus the output describes only a certain probability of an optimized

parameter-set C. Therefore we calculated the optimized illumination source for the 2D com-

plex images from the test-set using the iterative algorithm in Sec 3.0.2. We compared it to the

intensity simulations acquired with the illumination source generated using the trained CNN.

The learned source-parameters even improved the overall contrast, defined as the difference of

the min/max pixel-value improvement of the cost-function, in this case the uniform norm

average, was about 2.5%.

The optimization procedure now reduces to a simple convolution, multiplication and sum-

mation of the input-vectors with the learned weights and the application of discriminator

functions. Thus it can easily be performed by a mobile device such as a cellphone. The evalua-

tion of the new output values resulting from the learned weights takes now tcomp = 30ms on a

computer and tcomp� 430ms on a cellphone, whereas the original algorithm in section 3 took

more than tcomp = 20 s.

5 Methods

For proving, that the numerical optimization enhances the phase-contrast of a brightfield

microscope, a standard upright research microscope ZEISS Axio Examiner.Z1 equiped with

home-made SLM using a high-resolution smartphone display (iPhone 4S, Apple, USA) in the

condenser plane, was used for the first tests. In comparison to LED-condensers, as presented

in [37], a ZEMAX simulation of the koehler-illumination using an LCD in the aperture plane

shows two-times better light-efficiency, which also improves the SNR and allows lower expo-

sure times of the camera.

The higher pixel-density compared to the LED-matrix also allows the calculation using the

TCC without introducing large errors or artefacts in the acquired intensity images and avoids

artifacts due to missing sampling points.

5.1 Setup of a portable smartphone microscope

The effect of using the trained neural network shows its full potential, when it comes to devices

with low computational power such as modern cellphones. The Tensorflow library [26] allows

to train the network on a desktop-machine and exploit the trained weights/filters on mobile

hardware. Low Cost smartphone microscopes were shown in [37, 38] with single LED as well

as LED-matrix illumination and in a holographic on-chip configuration [39].

Here the Koehler illumination of a standard microscope is adapted to the mobile device,

where a low-cost LED video projector (Jiam UC28+, China) was slightly modified by adding

two additional lenses. To limit the spectral bandwidth of the illumination, necessary for getting

the estimated phase from the DPC measurement, a green color filter (LEE HT 026, λ =

530nm ± 20nm) was chosen to keep the system’s efficiency as high as possible.

5.1.1 Optical and mechanical design. Following the approach by using a reversed smart-

phone lens (f# = keff = 2.0) of an iPhone 6 (Apple, USA) in [40] as the microscope objective,

one can ensure a diffraction limited -1:1 imaging at a numerical aperture of

NAcellphone ¼
1

2keff
¼ 1

2�2:0
¼ 0:25.
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The pattern of the projector which itself has an LC-Display (ILI9341), with a transmission

of about 3% at 530 nm and a pixel size of 16 μm, illuminated by a high-power white light LED

equipped with a ground glass diffuser can easily be controlled by the HDMI-port (MPI) of the

smartphone. To guarantee a time-synchronized capturing while manipulating the pattern, a

customized App [41] was written to trigger the camera-frame with the HDMI-signal using

Google’s Presentation API.

The housing of the video-projector does not allow an appropriate arrangement of the lenses

to form even illumination in the sample plane which is mandatory to realize Koehler Illumina-

tion. Therefore a new optical design was developed with commercially available lenses.

To ensure Koehler condition the LCD is imaged into the entrance pupil of the cellphone-

camera which falls into the back focal plane (BFP) of the reversed cell-phone lens. At the same

time, the field diaphragm, which confines the visible field of view and reduces stray light, has

to be imaged to infinity. Unlike most conventional microscope schemes, the optical setup is

Fig 4. Optical Design of the illumination system. (a) shows the microscope setup using an inversed camera-lens, the location of the sample-/slide- plane and

the LCD from the video-projector. (b) shows the enlarged imaging path from (a), where the objects gets imaged onto the sensor. (c) shows, that the

illumination system images the condenser aperture (e.g. the LCD) into the BFP of the microscope objective.

https://doi.org/10.1371/journal.pone.0192937.g004
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not telecentric and the cellphone-lens has a large field-angle of about 70˚. The developed opti-

cal design in Fig 4 composed by two injection molded aspherical (Thorlabs ACL3026U) and

the two cellphone lenses (microscope-objective: iPhone 6 lens, tube lens: LG Nexus 5 lens) sat-

isfies these two requirements. It has to be said, that even though the active area of the LCD

which forms the effective light source uses only a fraction of the LCD, thus only few pixels con-

tribute to the image formation.

An open-source 3D-printed case (Fig 5, available at [42]) was built to maintain the relation-

ship between all optical components as well as to make the microscope portable. To adjust the

Koehler condition the housing of the condenser has a 3D printed outer threading, which

allows to change the z-position by simply rotating the lenses. Therefore it is possible to setup

the optical distances even if the cellphone is not in the correct position or another phone is

used. To ensure optimal centring of the optical axis, the reversed cellphone lens was brought

into position with a customized magnetic snap-fit adapter.

The focussing of the object was also migrated by a 3D-printed linear stage which uses dry

linear bearing (IGUS Drylin, Germany) on polished chrome-rods in order to achieve a precise

linear moving. The adjustment is ensured by a micrometer screw (Mxfans, Micrometer 0-

25mm, China).

5.1.2 Electrical and software design. The camera used in our experiments is provided by

a LG D850/Google Nexus 5 [43] which is, by now, the only smartphone camera on the market

which fully supports Androids Camera2 API, thus allows the readout of the raw pixel values of

the sensor before post-processing e.g. demosaicing [44].

Camera-control settings like the ISO-value and exposure time, as well as the focus position

can be manipulated manually, which gives rise to ensure a linear relationship between the illu-

mination pattern and gray value necessary to satisfy the model requirements in [44]. A

gamma-calibration is performed, by taking an image sequence of 256 gray patterns displayed

on the projector, and estimating the look up table (LUT) by fitting the pixel average of each

image to a Sigmoid-function, which characterizes the display of the LCD appropriately.

Fig 5. Rendering and 3D printed model of the microscope. In (a) CAD rendering of the microscope, where the lens-distances were exported from

the ZEMAX raytracing software to assure correct optical relationships. In (b) the fully automated microscope which uses a low-cost projector to

quantitatively image the object’s phase. The location of the LCD is visualized as a white chessboard before a fold-mirror couples the light into the

condenser.

https://doi.org/10.1371/journal.pone.0192937.g005
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From the acquired images, an algorithm adapted from Tian et al. calculates an estimate of

the quantiative phase using the OpenCV4Android framework [45] and then feeds the pre-

trained neural network. The final result is a parameter vector which represents the intensity

weights of the selected illumination pattern (e.g. circular segments).

The optimized result is then displayed on the LCD (e.g. the condenser aperture) using the

MPI interface. Thus the entire microscope can work completely autonomous.

6 Results and discussion

The proposed methods to improve the phase contrast by manipulating the condenser aperture

was first tested on a standard research microscope (ZEISS Axio Examiner.Z1) with a magnifi-

cationM = 20×, NA = 0.5 in air (ZEISS Plan-Neofluar) at a center-wavelength of λ =

530nm ± 20nm to give a proof-of-principle before the method was evaluated on the cellphone

microscope.

The relatively low transmission and extinction, which is usually defined as the ratio of pixel

on-/off-state tex ¼
Ion
Ioff

, coming from the iPhone (ttrans = 6%, tex = 1: 800 at λ0 = 530nm) and the

projector (ttrans = 3%, tex = 1: 250 at λ0 = 530nm) result in a low signal-to-noise ratio (SNR)

and also in longer exposure times (e.g. >10× higher) compared to a mechanical condenser

aperture. This effect was compensated by the high-power LED in the low-cost setup, where it

was possible to get exposure times below texp< 10ms.
An LCD can only approximate a continuous aperture shape such as a circular aperture, but

in contrast to the LED-illumination shown in [3, 37], the pixel density is still higher and results

in a better approximation of the fundamental imaging theory to calculate e.g. the quantitative

DPC.

6.1 Improvement in phase contrast on the cellphone microscope

The method presented here allows for increasing the phase contrast by varying the illumina-

tion source and has some major advantages compared to computational post-processing,

where phase contrast is enhanced. The SNR of the acquired images can always be maximized

in the acquisition process by adjusting the exposure time and per-pixel gain, once the best

light source is found, which also results in the optimal dynamic range of the camera sensor.

Further advantages of the incoherent light source are, that no speckle patterns in the image

are visible and that it gives two times the optical resolution compared to coherent imaging

methods [46].

6.1.1 Quantitative results of microscopic objects. In order to improve the phase contrast

of an object, both, the iterative and machine-learning based version of our algorithm, need

information about the complex object transmission function. Therefore the open-sourced

algorithm by Tian et al. [3] that allows to reconstruct the phase using the formalism of the

WOTF from a series of image was implemented in the cellphone’s framework. It acquires a

series of images while varying the illumination source.

To test it’s accuracy we mounted a commercially available glass fiber (Thorlabs SMF 28-

100, n(λ = 530nm) = 1.42) in an immersion medium with n(λ = 530nm) = 1.46 and compared

it with the expected value of the optical path-difference shown in the graph in Fig 6(a).

The processing of the DPC images (Fig 6(e))gives the quantitative phase map shown in (a).

The phase jump at the edges of the fiber are due to the discontinuous phase gradient of the

object, which is then not satisfying the model of the WOTF anymore. It has to be said, that the

optical setup is very robust against misalignments in the optical path such as the position of

the cellphone and the condenser relative to each other. A routine helped to automatically

“koehler” the setup by centering the illumination aperture by searching for the max. intensity
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while varying its position on the LCD. Precise quantitative phase reconstructions were possible

in almost all cases.

The different acquisition-modes (BF, DPC, qDPC, DF and the optimized illumination-

source) are shown in Fig 6(b)–6(h), where a series of background and flatfield-images were

acquired, prior to the data acquisition, to get rid of possible inhomogeneities in the illumina-

tion arrangement given by an incorrect alignment of the projector setup, by simply doing a

flatfield-correction. The images are cropped to illustrate smaller details of the object. A non-

technical object with a more complicated object structure is shown in Fig 7.

6.1.2 Results of the optimized light source. Giving a quantitative measure of the images

quality cannot be defined clearly, because the best contrast remains in the eye of the beholder.

Nevertheless we quantized the contrast improvement by computing the error norms which

were also used to train the network. Results for the fiber (Fig 6) and the biological sample

(Fig 7) are shown in Tables 1 and 2 respectively. The images contrast was calculated by mea-

suring the min/max pixel value and computing C ¼ Imax � Imin
ImaxþImin

, the StDv was calculated using

Matlabs stdfiltmethod. It has to be said, that comparing the two images is degraded by the fact,

Fig 6. Quantitative and qualitative results produced by the portable microscope. Quantitatively measured phase of a glass fiber immersed in oil using qDPC mode

in (a); Intensity measurements and their corresponding illumination sources using brightfield mode with NAC = 0.1 (b), NAC = 0.2 (c), NAC = 0.5 (d); The computed

DPC image in (e), a measurement in Darkfield mode (NAo<NAC) in (f), oblique illumination in (g) and the optimized light-source (NAC = 0.3; magnified for better

visualization) using the CNN in (h) using (a) as the input image.

https://doi.org/10.1371/journal.pone.0192937.g006
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Fig 7. Quantitative and qualitative results produced by the portable microscope. Quantitatively measured phase of Taste-buds of a rabbit using qDPC mode in (a);

the computed DPC image in (b); the intensity measurement and their corresponding illumination sources using brightfield mode with NAC = 0.2 (c) and the optimized

light-source (NAC = 0.3; magnified for better visualization) using the CNN in (h) using (a) as the input image.

https://doi.org/10.1371/journal.pone.0192937.g007

Table 1. Contrast measurements of intensity acquisitions of the fiber differently illuminated.

Fig 6 Method and NA PSNR Fidelity StDv Contrast

(b) BF; NAc = 0.1 53,83 490,35 0,64 0,55

(c) BF; NAc = 0.2 59,84 15383,45 0,42 0,18

(d) BF; NAc = 0.5 58,05 14835,30 0,51 0,04

(f) DF; NAc = 0.4 54,18 8419,68 0,65 0,74

(g) DPC; NAc = 0.5 49,47 1350,69 0,68 0,49

(h) Opt. Illu.; NAc = 0.3 55,95 303,77 0,65 0,49

Comparison of reference and non-reference image measurements of the intensity acquisitions done with different illumination shapes from the fiber. The qDPC image

was chosen to act as the reference image.

https://doi.org/10.1371/journal.pone.0192937.t001

Table 2. Contrast measurements of intensity acquisitions of the fiber differently illuminated.

Fig 7 Method and NA PSNR Fidelity StDv Contrast

(b) BF; NAc = 0.2 46,359 0,106 0,0034 0,27

(c) DPC; NAc = 0.5 50,93 0,0257 0,0053 0,99

(d) Opt. Illu.; NAc = 0.3 51,63 0,023 0,008 0,39

Comparison of reference and non-reference image quality measurements of the intensity acquisitions done with different illumination shapes from the taste bud of a

rabbit. The qDPC image was chosen to act as the reference image.

https://doi.org/10.1371/journal.pone.0192937.t002
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that the objects, even though very thin, show multiple-scattering effects, which shift i.e. the

intensity information along x/y, once illuminated from oblique.

These results suggest, that the fidelity (Eq (25)) improves compared to the brightfield mode,

while it is not necessary to acquire multiple images and post process them, like in DPC-mode.

To demonstrate the effect of the optimized source using the algorithm in Sec 4 we imaged a

histological thin-section of taste-bud cells from a rabbit which show almost no amplitude con-

trast in BF-mode NAc = 0.2 Fig 7(c). The resulting optimized light source NAc = 0.3 is illus-

trated in Fig 7(d). The dark-field-like aperture, where the frequencies which do not contribute

to the image formation are damped by lowering the intensity of the proper segments improve

the contrast compared to BF-mode. Introducing the oblique illumination results in a higher

coherence factor S ¼ NAc
NAo

> 1, where NAo gives the numerical aperture from the objective lens.

This makes it possible to resolve object structures above the limit given by the typical Ray-

leigh-criterion Dmin ¼ 0:61 �
l0

NAeff
, where NAeff = NAc + NAo and Dmin defines the diameter of

the smallest resolvable object structure.

Resulting from this, the highest possible frequency is given by kmax ¼
2�NAeff

l
, thus the pixel

pitch for Nyquist sampling must be less than or equal to
NAeff
2�l

which results into a maximum

optical resolution of Dmin � 2.44� pixel size. Following the theoretical investigation in [40], the

theoretical Nyquist-limited resolution of the LG Nexus 5 with a pixel pitch of 1.9 μm, results

into a resolution of�4.4 μm at λ = 550 nm, where the Bayer pattern was already taken into

account.

Because we used an implicit way to model our optimization procedure using a machine

learning approach, one can hardly judge, what the neural network really learned. From the

experiments it seems, that the algorithm “liked” to give a higher weight to the outer segments

of the circular segmented source. This reduces the zeroth order and can eventually increase

the contrast because less “false” light is used for the image formation as already mentioned ear-

lier. Besides that, it appears, that the method promotes the major diffraction orders of a sample

by illuminating the vertically oriented fiber from left/right. This illumination-scheme is also

explicitly represented by the so called Archels-Method [47].

Not all of the quality measures mentioned in Table 1 are verifying a better contrast of the

optimized illumination source, thus it is dare to say, that the effort really improves the images

quality. The complexity and large number of parameters of the algorithm can degrade the

result of the method. From the experimental results it is clearly visible, that one can see a better

phase-contrast, without the use of expensive optics, the drawback of having the phase-gradient

like in DPC or only higher order scattering when using DF. The newly introduced method is

capable to use the full numerical aperture of the condenser and requires no post-processing of

the images once the source-pattern was created.

Conclusion

In most cases the computational and imaging potential of a cellphone is not fully exhausted.

They serve an integrated framework with an already existing infrastructure for image acquisi-

tion and hardware synchronization, as well as for rapid development of user-defined image

processing applications.

Taking advantage of the widespread availability of high-quality cellphone cameras which

are mass-produced in well controlled production process gives a tool at hand which can be fur-

ther enhanced by adding external hardware, such as the presented automated brightfield-

microscope.
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The field of computational imaging is then able to use the hardware in a way, that new

image techniques, such as the qDPC, can be deployed on low-cost devices with high precision.

Techniques to surpass the optical resolution limit, e.g. the SMO, that are around for long time

can take advantage of new machine-learning applications which gives the opportunity to carry

out those, usually computational expensive calculations, on embedded devices as shown in this

study.

In recent years, the idea of making the sources for hard- and software available to the pub-

lic, became widely accepted and it enables faster development cycles. Techniques such as the

rapid prototyping then offer ways to produce cost effective microscopes e.g. for the use in 3rd-

world countries and educational systems.

Further studies e.g. in [37, 38, 40, 44] show that quality and characteristic of cellphone cam-

eras improve in each iteration of new hardware. The optical quality of the injection molded

cellphone lenses can be used to diffraction limited microscopic imaging with an NA = 0.25 at

price of less then 5 $ which opens opportunities to democratize health care or microscopic

imaging in general. The results presented here show an optical resolution limit of up to 2 μm
with the ability to measure the phase quantitatively at high accuracy, as well as imaging adap-

tive phase contrast methods using an actively controlled illumination source, for a price well

below 100$.

The here created platform enables to integrate other imaging techniques, such as the Fou-

rier Ptychography (FPM) [48–50] or include further image processing in the cellphone’s soft-

ware such as tracking and classification of biological cells [51].
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25. Chen S, Montgomery J, Bolufé-Röhler A. Measuring the curse of dimensionality and its effects on parti-

cle swarm optimization and differential evolution. Applied Intelligence. 2015; 42(3):514–526. https://doi.

org/10.1007/s10489-014-0613-2

26. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems. 2015;.

27. Diederich B. Beamerscope Matlab Github Repository; 2017. Available from: https://github.com/

bionanoimaging/Beamerscope_MATLAB

28. Diederich B. Beamerscope Tensorflow Github Repository; 2017. Available from: https://github.com/

bionanoimaging/Beamerscope_TENSORFLOW

29. Sommer C, Gerlich DW. Machine learning in cell biology—teaching computers to recognize pheno-

types. Journal of Cell Science. 2013; 126(24). https://doi.org/10.1242/jcs.123604 PMID: 24259662

30. Kamilov US, Papadopoulos IN, Shoreh MH, Goy A, Vonesch C, Unser M, et al. Learning approach to

optical tomography. Optica. 2015; 2(6):517. https://doi.org/10.1364/OPTICA.2.000517

31. Losa GA, Losa, Angelo G. Fractals in Biology and Medicine. In: Encyclopedia of Molecular Cell Biology

and Molecular Medicine. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. Available

from: http://doi.wiley.com/10.1002/3527600906.mcb.201100002

32. Brandner D and Withers G. The Cell Image Library; 2010. Available from: http://www.cellimagelibrary.

org/

33. Larry Page SB. Google Bilder;. Available from: https://www.google.de/imghp?hl = de&tab = wi

34. Kingma D, Ba J. Adam: A Method for Stochastic Optimization. 2014;.

35. Le Cun Jackel, B Boser, J S Denker, D Henderson, R E Howard, W Hubbard, et al. Handwritten Digit

Recognition with a Back-Propagation Network. Advances in Neural Information Processing Systems.

1990; p. 396–404.

36. Krizhevsky A, Sutskever I, Geoffrey E H. ImageNet Classification with Deep Convolutional Neural Net-

works. Advances in Neural Information Processing Systems 25 (NIPS2012). 2012; p. 1–9.

37. Phillips ZF, D’Ambrosio MV, Tian L, Rulison JJ, Patel HS, Sadras N, et al. Multi-Contrast Imaging and

Digital Refocusing on a Mobile Microscope with a Domed LED Array. PLOS ONE. 2015; 10(5):

e0124938. https://doi.org/10.1371/journal.pone.0124938 PMID: 25969980

38. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy

for global health applications. PloS one. 2009; 4(7):e6320. https://doi.org/10.1371/journal.pone.

0006320 PMID: 19623251

39. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on

a cellphone. Lab on a chip. 2010; 10(14):1787–92. https://doi.org/10.1039/c003477k PMID: 20445943

40. Switz NA, D’Ambrosio MV, Fletcher DA, Petti C, Polage C, Quinn T, et al. Low-Cost Mobile Phone

Microscopy with a Reversed Mobile Phone Camera Lens. PLoS ONE. 2014; 9(5):e95330. https://doi.

org/10.1371/journal.pone.0095330 PMID: 24854188

41. Diederich B. Beamerscope Android Github Repository; 2017. Available from: https://github.com/

bionanoimaging/Beamerscope-ANDROID

42. Diederich B. Beamerscope CAD Github Reopository; 2017. Available from: https://github.com/

bionanoimaging/Beamerscope_CAD

43. Electronics L. LG Consumer & Business Electronics | LG Deutschland;. Available from: http://www.lg.

com/de

44. Skandarajah A, Reber CD, Switz NA, Fletcher DA. Quantitative imaging with a mobile phone micro-

scope. PLoS ONE. 2014; 9(5). https://doi.org/10.1371/journal.pone.0096906 PMID: 24824072

45. 3 0 O. OpenCV | OpenCV;. Available from: http://opencv.org/

46. Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array micro-

scope. Optica. 2015; 2(2):104–111. https://doi.org/10.1364/OPTICA.2.000104

Enhance phase contrast using machine-learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0192937 March 1, 2018 19 / 20

https://doi.org/10.1117/1.JBO.18.2.026015
http://www.ncbi.nlm.nih.gov/pubmed/23392383
https://doi.org/10.1364/OE.22.003924
http://www.ncbi.nlm.nih.gov/pubmed/24663713
https://doi.org/10.1007/s10489-014-0613-2
https://doi.org/10.1007/s10489-014-0613-2
https://github.com/bionanoimaging/Beamerscope_MATLAB
https://github.com/bionanoimaging/Beamerscope_MATLAB
https://github.com/bionanoimaging/Beamerscope_TENSORFLOW
https://github.com/bionanoimaging/Beamerscope_TENSORFLOW
https://doi.org/10.1242/jcs.123604
http://www.ncbi.nlm.nih.gov/pubmed/24259662
https://doi.org/10.1364/OPTICA.2.000517
http://doi.wiley.com/10.1002/3527600906.mcb.201100002
http://www.cellimagelibrary.org/
http://www.cellimagelibrary.org/
https://www.google.de/imghp?hl=de&tab=wi
https://doi.org/10.1371/journal.pone.0124938
http://www.ncbi.nlm.nih.gov/pubmed/25969980
https://doi.org/10.1371/journal.pone.0006320
https://doi.org/10.1371/journal.pone.0006320
http://www.ncbi.nlm.nih.gov/pubmed/19623251
https://doi.org/10.1039/c003477k
http://www.ncbi.nlm.nih.gov/pubmed/20445943
https://doi.org/10.1371/journal.pone.0095330
https://doi.org/10.1371/journal.pone.0095330
http://www.ncbi.nlm.nih.gov/pubmed/24854188
https://github.com/bionanoimaging/Beamerscope-ANDROID
https://github.com/bionanoimaging/Beamerscope-ANDROID
https://github.com/bionanoimaging/Beamerscope_CAD
https://github.com/bionanoimaging/Beamerscope_CAD
http://www.lg.com/de
http://www.lg.com/de
https://doi.org/10.1371/journal.pone.0096906
http://www.ncbi.nlm.nih.gov/pubmed/24824072
http://opencv.org/
https://doi.org/10.1364/OPTICA.2.000104
https://doi.org/10.1371/journal.pone.0192937


47. Granik Y. Source optimization for image fidelity and throughput. Journal of Microlithography, Microfabri-

cation, and Microsystems. 2004; 3(4):509.

48. Tian L, Li X, Ramchandran K, Waller L. Multiplexed coded illumination for Fourier Ptychography with an

LED array microscope. Biomedical optics express. 2014; 5(7):2376–89. https://doi.org/10.1364/BOE.5.

002376 PMID: 25071971

49. Ou X, Horstmeyer R, Zheng G, Yang C. High numerical aperture Fourier ptychography: principle, imple-

mentation and characterization. Optics express. 2015; 23(3):5473–5480. https://doi.org/10.1364/OE.

23.003472

50. Zheng G, Horstmeyer R, Yang C. Ptychographic Microscopy; p. 1–15.

51. Angermueller C, Pärnamaa T, Parts L, Oliver S. Deep Learning for Computational Biology. Molecular

Systems Biology. 2016;(12):878. https://doi.org/10.15252/msb.20156651 PMID: 27474269

Enhance phase contrast using machine-learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0192937 March 1, 2018 20 / 20

https://doi.org/10.1364/BOE.5.002376
https://doi.org/10.1364/BOE.5.002376
http://www.ncbi.nlm.nih.gov/pubmed/25071971
https://doi.org/10.1364/OE.23.003472
https://doi.org/10.1364/OE.23.003472
https://doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
https://doi.org/10.1371/journal.pone.0192937

