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Abstract

Advances in recent genome wide association studies (GWAS) suggest that pleiotropic

effects on human complex traits are widespread. A number of classic and recent meta-anal-

ysis methods have been used to identify genetic loci with pleiotropic effects, but the overall

performance of these methods is not well understood. In this work, we use extensive simula-

tions and case studies of GWAS datasets to investigate the power and type-I error rates of

ten meta-analysis methods. We specifically focus on three conditions commonly encoun-

tered in the studies of multiple traits: (1) extensive heterogeneity of genetic effects; (2) char-

acterization of trait-specific association; and (3) inflated correlation of GWAS due to

overlapping samples. Although the statistical power is highly variable under distinct study

conditions, we found the superior power of several methods under diverse heterogeneity. In

particular, classic fixed-effects model showed surprisingly good performance when a variant

is associated with more than a half of study traits. As the number of traits with null effects

increases, ASSET performed the best along with competitive specificity and sensitivity.

With opposite directional effects, CPASSOC featured the first-rate power. However, caution

is advised when using CPASSOC for studying genetically correlated traits with overlapping

samples. We conclude with a discussion of unresolved issues and directions for future

research.

Introduction

Pleiotropy refers to a biological phenomenon where a single variant or a gene affects multiple

phenotypes.[1] In recent years, a startling level of genome-wide genetic correlation has been

revealed between various complex traits and disorders.[2–5] Moreover, a growing number of

genetic loci have shown pleiotropic effects on multiple, sometimes seemingly distinct traits,[6]

providing an intriguing opportunity to enhance our understanding of the shared genetic

mechanisms.[7–11] The identification, characterization, and potential clinical translation of
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pleiotropic genetic effects present immense opportunities for genomic medicine, of which the

major focus includes the development of new drugs and therapeutic targets with broad effi-

cacy, while minimizing the unexpected side effects.

To identify genetic variants with pleiotropic effects, cross-phenotype genome-wide associa-

tion studies (GWAS) have employed a range of classic and recently developed meta-analysis

methods. Typically, summary statistics of distinct but potentially related traits are combined in

a meta-analysis framework to detect specific loci with shared association. Such univariate

approaches do not require access to individual-level genotype data, and thus are readily appli-

cable to existing GWAS results. Combining results across studies of different traits can also

improve the power of detecting modest cross-phenotype genetic effects, which may not reach

genome-wide significance for any single trait.

Cross-phenotype GWAS however incur several unique challenges compared to a tradi-

tional meta-analysis of a single trait. First, the biological impact of a shared causal variant

often varies among different traits,[12,13] yielding additional heterogeneity to effect size.

Second, genetic variants at a particular locus may affect only a subset of study traits;[14–16]

for instance, in a recent GWAS meta-analysis of three cancers, two risk loci, SMC2 and

RCCD1, showed association with breast and ovarian cancer but no effect on prostate cancer.

[17] Some genomic loci have even showed antagonistic effects in which the same allele

appears to increase the risk of one disease while protecting against another disease.[18–20]

Distinguishing genuine heterogeneous effects from statistical noise is a nontrivial task espe-

cially when multiple traits of different power and study designs are evaluated together.

Another unique challenge of using meta-analysis in cross-phenotype GWAS is that currently

available methods do not formally test pleiotropic effects. Instead, a null hypothesis is set up

such that a target variant is associated with none of the study traits. Significant meta-analysis

results thus may arise even when a single trait drives the association. Most meta-analysis

methods however provide statistical evidence for overall association, without indicating spe-

cific traits that drive the pleiotropic signal. Finally, it is common in the studies of related

traits to encounter the use of shared controls or even overlapping cases of distinct diseases.

Such overlap induces artificial correlation among association test statistics, resulting in

inflated false positive findings.[16] A series of new meta-analysis methods were introduced

to address some of these challenges, but major questions related to their behavior and perfor-

mance remain unanswered.

The aim of this study is to evaluate the performance of seven recently developed meta-

analysis methods in various contexts of cross-phenotype GWAS: (1) One-sided Association

analysis based on SubSETs (ASSET1)[15], (2) Two-sided Association analysis based on Sub-

SETs (ASSET2)[15], (3) Binary Effect (BE)[21], (4) Han and Eskin Random Effect meta-

analysis (HE-REMA)[22], (5) Cross Phenotype Association (CPASSOC)[16], (6) Weighted

Inverse Chi-Sqaure (WICS)[23], and (7) Cross Phenotype Meta-Analysis (CPMA)[14].

These methods build upon three classic meta-analysis approaches, which are also included

in this study as base models: (1) the fixed-effects meta-analysis (FEMA) model[24], (2) the

random-effects meta-analysis (REMA) model[25], and (3) Fisher’s method (Fisher)[26].

Table 1 summarizes the major characteristics of the ten meta-analysis methods we evaluate

in this study. Using a series of simulations and case studies of GWAS data, we investigate

the power and type-I error rates of these methods and illustrate how their performance

changes under various scenarios particularly relevant to cross-phenotype studies. We

conclude this study with a discussion of methodological issues that demand further

improvements.
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Methods

Cross-phenotype meta-analysis methods

We examined the performance of ten published meta-analysis methods: (1) FEMA; (2)

ASSET1; (3) ASSET2; (4) BE; (5) CPASSOC; (6) REMA; (7) HE-REMA; (8) Fisher; (9) WICS;

(10) CPMA. We summarized the major characteristics of ten meta-analysis methods in

Table 1. For further details of the methods, we refer to S1 Note and original publications[14–

16,21–26].

Simulation studies to assess power and type I error rates

We generated 10,000 sets of association summary statistics for K study traits (K = 5, 8, 10),

assuming causal SNPs in Hardy-Weinberg equilibrium with the population minor allele fre-

quency (MAF) f (f = 0.1). We refer to the number of traits with non-null effects as Ta (2�

Ta� K). To examine a list of scenarios with various heterogeneous effects, we tested three

types of effect size distributions: (1) normal distribution, (2) bimodal normal distribution, and

(3) uniform distribution. For the normal distribution, the effect size βi was selected from N (ln

(μ), (kln(μ))2) where μ = 1.1 and k = 0.5 (i 2 {1,2,. . .,K}). When a trait was not associated with

an SNP, the effect size βi was drawn from N (0, (kln(μ))2) where k = 0.25. For traits with oppo-

site directional effects, we assigned a negative sign once the effect size βi is randomly selected

for the trait. For the scenario of bimodal normal distribution, the effect size βi of each trait was

generated from one of two independent normal distributions, N (0.5ln(μ), (kln(μ))2) and N
(1.5ln(μ), (kln(μ))2), with equal probabilities. Under the uniform distribution, we chose the

effect size β in the range of 0 to 2ln(μ). We assumed an equal number of subjects for K traits,

setting N cases and N controls (N = 1,000). Given a randomly selected effect size and N, the

MAF of a variant in cases was calculated assuming the control MAF f, and the 1-degree-of-

freedom chi-square test was conducted for assessing association with each trait. This proce-

dure was repeated 10,000 times for K traits under each setting. We repeated the same proce-

dure assuming the odds ratios (ORs) μ of 1.2.

The empirical power of each method was calculated as the proportion of the simulation

runs using non-null effects where the meta-analysis p-value was significant at a designated α
level (α = 0.05). The type I error rate was estimated as the proportion of the simulation runs

showing significant p-value when the null hypothesis was true at α = 0.05, 0.01, and 0.001.

Table 1. Summary of ten meta-analysis methods evaluated in this study.

Category Methods Effect Size

Estimation

Control of Shared

Subjects

Agnostic to Effect

Direction

Prediction of Associated

Trait

Reference Software

Fixed-Effects FEMA yes no no no Greenland et al.[24] PLINK

ASSET1 yes yes no yes Bhattacharjee et al.

[15]

ASSET

ASSET2 yes yes yes yes Bhattacharjee et al.

[15]

ASSET

BE no no no yes Han et al.[21] METASOFT

CPASSOC no yes yes no Zhu et al.[16] R code

Random-

Effects

REMA yes no no no DerSimonian et al.

[25]

PLINK

HE-REMA yes no no no Han et al.[22] METASOFT

P-value Fisher no no yes no Fisher[26] R code

WICS no yes yes no Zaykin et al.[23] R code

CPMA no no yes no Cotsapas et al.[14] R code

https://doi.org/10.1371/journal.pone.0193256.t001
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Prediction of trait-specific associations

For the methods ASSET1, ASSET2, CPASSOC, and BE we calculated the sensitivity and the

specificity of each method under the same simulation settings we described in the previous

section. The ASSET and CPASSOC output the predicted list of associated traits. We calculated

the average proportion of detected associated traits (i.e., sensitivity) and the average propor-

tion of discarded null traits (i.e., specificity) using the predicted lists. The BE method outputs

the posterior probability m-value for each trait instead of binary classification of traits. We

thus calculated the sensitivity and the specificity of the BE method using the m-value thresh-

olds as suggested in the original publication[21]: the minimum m-value of 0.9 for non-null

effects and the maximum of 0.1 for null effects. This prediction mode was referred to as

BEm.0.9/0.1. This classification however left many traits indeterminate. For comparison with

other methods, we thus used the m value of 0.5 to divide all traits into either non-null (m>0.5)

or null (m�0.5) effects. We referred to this classification mode as BEm.0.5/0.5.

In addition to simulation, we empirically examined the performance of ASSET, CPASSOC,

and BE using the genome wide association summary statistics of five neuropsychiatric disor-

ders.[8] The GWAS statistics were obtained from the Psychiatric Genomics Consortium

(https://www.med.unc.edu/pgc). The study subjects included a total of 27,888 controls and

33,332 cases with either autism spectrum disorder (ASD), attention deficit hyperactivity disor-

der (ADHD), bipolar disorder (BIP), major depressive disorder (MDD), or schizophrenia

(SCZ). All subjects were of European ancestry and no overlapping subject existed across the

five studies. Summary statistics for each disorder included about 1.2 million SNPs obtained

from imputation using HapMap III data. In our evaluation, we included 1,105,533 SNPs with

imputation quality score R2� 0.6 and minor allele frequency� 1% in all five studies. The orig-

inal cross disorder study identified four genome-wide significant loci with pleiotropic effects

using the inverse-variance-weighted fixed-effects meta-analysis method.[8] For the three

methods—ASSET, CPASSOC, and BE—we performed meta-analyses of the five disorders and

compared the nominated lists of associated traits with those reported in the original publica-

tion using log-linear modeling[27] of individual-level genotype data.

Investigation of study correlations due to overlapping samples

To examine how each method deals with sample overlaps, we used the GWAS data of individ-

uals with doctor-diagnosed asthma or allergic diseases obtained from the UK Biobank (data-

field 6152)). Among 152,249 participants with genotype data, a total of 112,551 of European

ancestry with high-quality genotyping and complete phenotype/covariate data were used in

this study. After excluding subjects with both allergic diseases and asthma, the study sample

included 19,508 subjects with allergic diseases (hay fever/allergic rhinitis or eczema), 7,908

subjects with asthma, and 76,768 controls without the two conditions. Detailed genotyping

and QC procedures of UK Biobank were described previously (http://biobank.ctsu.ox.ac.uk/)

and elsewhere.[28] After standard QC procedures, the imputed genotype dosage data con-

tained 7,489,529 SNPs. For each disorder, we performed three genome-wide association stud-

ies with the same cases but varying the number of overlapping controls between the two

disorder datasets from 0%, to 50%, and to 100%. First, for the no overlapping scenario (0%),

76,768 controls were randomly divided into two groups A and B, each with 38,384 individuals.

Subjects in A and B were used as controls in the association study of allergic diseases and

asthma, respectively. Secondly, for the 50% overlapping scenario, 76,768 controls were ran-

domly divided into three groups, each with 25,586 individuals. The first two groups were com-

bined and referred to as A, while the second and third groups were combined as B, yielding a

half of individuals in A and B are shared. Subjects in A and B were used as controls in the

Meta-analysis methods for cross-phenotype genome-wide association studies
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association study of allergic diseases and asthma, respectively. Thirdly, for the 100% overlap-

ping scenario, all 76,768 controls were used in the association study of both disorders. To

assess association of an SNP variant with each disorder, additive logistic regression was con-

ducted, adjusting for age, sex, genotyping array, and ten ancestry principal components using

PLINK.[29] After meta-analysis of the two GWAS, the numbers of genome-wide significant

loci (Pmeta� 5 x 10−8) were compared among FEMA, ASSET, CPASSOC, and WISC.

We also examined the type I error rates occurring from overlapping samples for the four

methods FEMA, ASSET, CPASSOC, and WISC. Using 120,000 samples from the UK Biobank

data, we generated two artificial GWAS samples, each with randomly selected 30,000 cases.

The remaining 60,000 subjects were splitted into the two GWAS samples as controls by vary-

ing the percentage of their overlapping (0%, 50%, and 100%) as described in the previous sec-

tion. Meta-analyses of the three pairs of GWAS samples were performed using FEMA, ASSET,

CPASSOC, and WISC. We repeated this procedure 1,000 times, and counted the proportion

of meta-analysis results where genome-wide significant loci were identified (Pmeta� 5 x 10−8).

Note that in all settings, simulated GWAS samples A and B have no heritability due to a ran-

dom assignment of phenotypes.

Results

Discovery of pleiotropic effects in the presence of heterogeneity

We first investigated the type I error and power of ten meta-analysis methods in the presence

of various heterogeneous effects. Specifically, we considered three study settings: (1) different

distribution models for effect sizes, (2) a subset of traits with null effects, and (3) existence of

opposite directional effects. Fig 1 summarizes the power of ten meta-analysis methods we eval-

uated assuming that all associated variants carry effects in the same direction across eight

study traits (S2–S13 Figs for five and ten traits under various simulation settings). Panels (A),

(B), and (C) illustrate the results under the normal, bimodal normal, and uniform distributions

of effect sizes, respectively. For clarity, we grouped the ten methods we evaluated into three

groups. The first group includes five methods based on the fixed-effects model: FEMA,

ASSET1, ASSET2, CPASSOC, and BE. The second group includes two methods based on the

random-effects model: REMA and HE-REMA. The third group includes three methods that

utilize p-value-based integration: Fisher, WICS, and CPMA. The Y-axis shows the power of

each method, while the X-axis displays the number of associated traits varying from one to five

in the order of decreased heterogeneity.

The simulation results showed that the ASSET1 method, which conducts an exhaustive

search of all subset-based fixed-effects models, performs the best when less than a half of traits

carry effects. As the number of associated traits increased, ASSET1 however lost its edge,

revealing the substantial burden of multiple testing corrections arising from its exhaustive

search. In contrast, FEMA, BE, and HE-REMA showed much improved power when a variant

is associated with more than a half of traits (Fig 1). It is notable that the classic fixed-effects

model, FEMA, featured the highest performance under various heterogeneous scenarios we

tested along with the increased number of traits with non-null effects. P-value-based methods

show in general inferior performance to the methods based on random or fixed-effects-based

models.

Fig 2 illustrates the simulation results when some of associated traits include opposite direc-

tional effects. The three panels (A), (B), and (C) on the left side represent the power of the ten

methods under three effect distributions when 25% of effects are in the opposite direction. The

panels (D), (E), and (F) shows the same results when 50% of traits carry effects in the opposite

direction. In many settings, we found CPASSOC shows the best performance among the

Meta-analysis methods for cross-phenotype genome-wide association studies
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compared methods. The advanced performance of CPASSOC was somewhat expected as the

method is agnostic to the direction of the effects. The ASSET2 method, which examines all

association models including opposite directional effects, followed CPASSOC by a narrow

margin, revealing again the substantial burden of its multiple testing corrections. P-value-

based meta-analysis methods do not take into account the direction of effects, displaying

much enhanced power in this setting; the WICS method in particular showed comparable

power to CPASSOC or ASSET2 in multiple cases. The classic random-effects model, REMA

showed the least performance, while HE-REMA demonstrated noticeably improved power

compared to REMA. The relative performance of the ten methods was largely stable under dif-

ferent distributions (normal, bimodal normal, and uniform), sizes of effects (Odds Ratio of

Fig 1. Power (K = 8, all effects in the same direction). In each simulation, a total of 10,000 summary association statistics were generated for eight traits. The

numbers of subjects were 1,000 cases and 1,000 controls. The minor allele frequency (MAF) of each causal variant was 0.1. The three panels from the top to the bottom

represent when the effect of the variant was drawn from a normal distribution, a bimodal normal distribution, and a uniform distribution. In each graph, the Y-axis

denotes the power of each method at an alpha level of 0.05 while the X-axis shows the number of truly associated traits. All associated traits shared the effects in the

same direction. Ten meta-analysis methods were separated into three groups each based on: (1) the fixed-effects model (blue hue), (2) the random-effects model (red

hue), and (3) the p-value-based model (green hue).

https://doi.org/10.1371/journal.pone.0193256.g001
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Fig 2. Power (K = 8, some effects in the opposite direction). The same simulation was conducted as previously

except that the direction of some effects was opposite. The three panels (A), (B), and (C) from the top to the bottom

represent when 25% of associated traits carry effects in the opposite direction and effect sizes were drawn from a

normal distribution, a bimodal normal distribution, and a uniform distribution, respectively. In each graph, the Y-axis

denotes the power of each method at an alpha level of 0.05 while the X-axis shows the number of truly associated traits.

The panels (D), (E), and (F) summarize the power of the ten methods when 50% of effects are in opposite direction.

https://doi.org/10.1371/journal.pone.0193256.g002
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1.1, 1.2), trait numbers (K = 5, 8, 10), and significance levels (α = 0.05, 0.001). S2–S13 Figs dis-

play the performance results under major simulation settings.

We also examined the estimated type I error rates of the ten meta-analysis methods. S1

Table summarizes the results based on 10,000 simulated datasets with only null effects. All

methods provided well controlled type I error rates at the tested significance levels of α = 0.05,

0.01, and 0.001.

Characterization of pleiotropic effects

We next evaluated the performance of four meta-analysis methods that prioritize a subset of

study traits with which a genetic variant is most likely to be associated: ASSET1, ASSET2,

CPASSOC, and BE. Table 2 summarizes the sensitivity (i.e., the average proportion of detected

associated traits) and the specificity (i.e., the average proportion of discarded null traits)

calculated over 10,000 replicates in each simulation setting under the bimodal normal distribu-

tion (S2 Table for all three distributions). When all effects occur in the same direction, the

BEm.0.5/0.5 method exhibited the best sensitivity, followed by ASSET1/2, CPASSOC, and the

conservative m-value threshold model BEm.0.9/0.1. All methods tended to show improved sensi-

tivity as more traits show non-null effects, but CPASSOC disposed of an opposite trend. When

some effects occur in the opposite direction, ASSET2 showed superior sensitivity to other

methods in all conditions. ASSET1 featured the best specificity while the other methods

showed comparable performance in multiple settings. The BEm.0.9/0.1 approach assigned a

Table 2. Sensitivity and specificity of ASSET, BE, and CPASSOC for predicting trait-specific association.

Bimodal normal Sensitivity Specificity

ASSET1 ASSET2 BE(m> = 0.9) BE(m>0.5) CPASSOC ASSET1 ASSET2 BE(m< = 0.1) BE(m< = 0.5) CPASSOC

Ta 100% effects in the same direction

3 0.34 0.335 0.21 0.374 0.326 1 1 0.127 0.907 0.999

4 0.539 0.514 0.259 0.704 0.289 1 1 0.069 0.972 1

5 0.479 0.422 0.235 0.792 0.264 1 1 0.032 0.892 0.999

6 0.554 0.535 0.406 0.866 0.262 1 1 0.033 0.816 0.999

7 0.51 0.49 0.376 0.929 0.269 1 1 0.011 0.64 0.994

8 0.542 0.541 0.477 0.972 0.214 NA NA NA NA NA

Ta 75% effects in the same direction

3 0.38 0.707 0.331 0.348 0.433 1 0.973 0.896 0.995 1

4 0.322 0.658 0.187 0.287 0.433 1 1 0.785 0.999 1

5 0.457 0.656 0.367 0.464 0.353 1 0.975 0.799 1 1

6 0.356 0.59 0.161 0.337 0.275 1 0.999 0.265 0.988 0.999

7 0.336 0.546 0.131 0.325 0.29 1 0.999 0.135 0.981 0.993

8 0.413 0.579 0.256 0.491 0.229 NA NA NA NA NA

Ta 50% effects in the same direction

3 0.337 0.669 0.317 0.32 0.33 1 0.887 0.671 0.956 0.999

4 0.251 0.573 0.25 0.25 0.289 1 0.999 0.941 1 1

5 0.202 0.538 0.2 0.2 0.251 1 0.998 0.667 1 0.998

6 0.308 0.619 0.292 0.331 0.304 1 0.998 0.741 1 0.999

7 0.304 0.578 0.167 0.287 0.275 1 0.998 0.425 0.998 0.994

8 0.266 0.593 0.216 0.251 0.244 NA NA NA NA NA

Ta: the number of associated traits

https://doi.org/10.1371/journal.pone.0193256.t002
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considerable number of traits to an ambiguous group (0.1<m-value< 0.9), resulting in a sub-

stantial loss of its prediction accuracy.

We also investigated the prediction performance of the three meta-analysis methods

ASSET1, BE, and CPASSOC using actual GWAS summary statistics of five neuropsychiatric

disorders.[8] In terms of the detected number of genome-wide significant loci, the three

methods showed comparable power with FEMA, the meta-analysis method that was

employed in the original publication.[8] None of the methods showed indication of genomic

inflation (QQ and Manhattan plots in S14 and S15 Figs). In sum, we identified a total of six

LD-independent regions with genome-wide significance (Pmeta� 5 x 10−8; LD-clumping—

clump-p1 5e-8—clump-p2 1e-5—clump-r2 0.2—clump-kb 500; S3 Table). These loci

include four regions reported in the original publication by the FEMA—3p21.1, 10q24.32,

12p13.33, and 10p12.33—and two regions on 10q21.2 and 6p21.33 additionally detected by

ASSET1, ASSET2, BE, and CPASSOC. In the original study,[8] log-linear modeling of

pooled genotype data[27] were used to characterize disorder-specific association models

for the top GWAS loci. We compared the reported results with those of ASSET1, ASSET2,

BE, and CPASSOC in Table 3. All methods unanimously chose the region 10q21.2 as a risk

locus specific to bipolar disorder. However, for the other loci, nominated disorder models

by each meta-analysis method differed in multiple cases. Log linear modeling and the BE

method tend to select parsimonious models, while the ASSET1 method predicts broader

effects for the same loci. However, the loci 10q24.32 and 12p13.33 are not predicted by

ASSET2.

After the publication of the original meta-analysis study,[8] larger datasets of ADHD

(N = 20,183 cases and 35,191 controls),[30] ASD (N = 16,539 cases and 157,234 controls),[31]

BIP (N = 13,902 cases and 19,279 controls),[32] and SCZ (N = 36,989 cases and 113,075 con-

trols)[33] became available. We thus examined whether the association of the top six loci are

replicated in the expanded datasets. Except for the 10q21.2 region predicted as a specific BIP

risk locus, we confirmed that all five pleiotropic loci retained or strengthened their association.

Moreover, the gene-rich region on 10q24.32, CACNA1C on 12p13.33, and the MHC region on

6p21.33 feature a substantially increased level of pleiotropic association.

Table 3. Characterization of disorder-specific association for the top genome-wide significant loci from the meta-analysis of five neuropsychiatric disorders.

Index SNP rs2535629 rs11191454 rs1024582 rs2799573 rs10994359 rs2517614

Locus 3p21.1 10q24.32 12p13.33 10p12.33 10q21.2 6p21.33

Heterogeneity (I2) low (22.86) low (15.26) considerable

(72.52)

low (0) high

(89.60)

high (81.10)

Associated Genes many many CACNA1C CACNB2 ANK3 many

Prioritized Lists of

Associated Disorders

Log-linear

modeling

BIP/MDD/SCZ BIP/MDD/SCZ BIP/SCZ ADHD/BIP/MDD/

SCZ

BIP MDD/SCZ

ASSET1 ADHD/ASD/BIP/

MDD/SCZ

ADHD/ASD/BIP/

MDD/SCZ

ADHD/BIP/

SCZ

ADHD/ASD/BIP/

MDD/SCZ

BIP BIP/MDD/SCZ

ASSET 2 ADHD/ASD/BIP/

MDD/SCZ

None None ADHD/ASD/BIP/

MDD/SCZ

BIP BIP/MDD/SCZ

BE BIP/MDD/SCZ BIP/MDD/SCZ BIP/SCZ ADHD/BIP/MDD/

SCZ

BIP MDD/SCZ

CPASSOC ADHD/ASD/BIP/

MDD/SCZ

ADHD/ASD/BIP/

MDD/SCZ

BIP ADHD/ASD/BIP/

MDD/SCZ

BIP ADHD/BIP/

MDD/SCZ

ADHD: attention deficits hyperactivity disorder; ASD: autism spectrum disorders; BIP: bipolar disorder; MDD: major depressive disorder; SCZ: schizophrenia;

https://doi.org/10.1371/journal.pone.0193256.t003
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Impact of overlapping subjects in the meta-analysis

When studying related traits or disease phenotypes, it is not uncommon to encounter the use

of overlapping subjects across different GWAS datasets. Among the ten methods studied here,

ASSET, CPASSOC, and WICS are best suited for this situation. We empirically investigated

the power of the three methods using GWAS summary statistics of two traits, allergy and

asthma, that share genuine genetic correlation (rg = 0.55; P = 9.07x10-13).[28] While the cases

in each dataset stayed the same, we varied the number of overlapping controls between the

two datasets to 0%, 50%, and 100%.

Fig 3 shows the numbers of genome-wide significant loci detected by the four methods—

ASSET1/2, CPASSOC, and WICS—along with those of the classic fixed-effects model, FEMA.

When two GWAS datasets were independent from each other (i.e., sharing no overlapping

subjects), ASSET1 and ASSET2 identified the highest number of genome-wide significant loci

(N = 35), followed by CPASSOC (N = 33), FEMA (N = 32), and WICS (N = 29). When con-

trols were shared between the two GWAS, it was apparent that FEMA, which does not take

into account artificially induced correlation due to shared subjects, produced markedly

increased numbers of genome-wide significant loci that were proportional to the levels of over-

lapping subjects between the datasets (N = 32 with 0% shared controls; N = 42 with 50% shared

controls; N = 51 with 100% shared controls). CPASSOC, which adjusts potential correlation

between studies using GWAS summary statistics, also showed an inflated number of genome-

wide significant loci proportional to the level of overlapping controls (N = 33 with 0% shared

controls; N = 35 with 50% shared controls; N = 43 with 100% shared controls). In contrast,

WICS and ASSET presented a similar number of genome-wide significant association findings

regardless of the level of shared subjects: ASSET (N = 33~35) and WICS (N = 29~31).

Fig 3. Meta analysis results of GWAS data with shared controls. Three control sample overlapping scenarios (0%,

50%, 100% overlapping) were set up to be used in the association study of both disorders. Total of four methods

(ASSET1, ASSET2, CPASSOC, WICS) that are able to control overlapping samples between studies were compared

with standard fixed-effect method (FEMA) for their performance in this analysis. The Y-axis denotes number of

genome–wide significant loci.

https://doi.org/10.1371/journal.pone.0193256.g003
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Using simulations, we also examined how the four methods—ASSET1, ASSET2, CPAS-

SOC, and WICS—control falsely induced correlations when two arbitrary traits with no

genetic correlation share study samples. S4 Table summarizes the analysis results under three

levels of overlapping controls (0%, 50%, and 100%). As with the previous meta-analysis of

asthma and allergy, the FEMA, which does not control overlapping controls, produced a

markedly increased level of false positive findings in proportion to the raised level of shared

subjects; false positive rates were 27% when a half of controls are shared, and the rates rose to

65% when 100% of controls are shared. In contrast, ASSET, CPASSOC, and WICS showed

properly controlled rates of type I errors regardless of the proportion of shared controls.

Discussion

Cross-phenotype GWAS have opened a wide field of genomics research in pleiotropy, but

little attention has been put into the evaluation and comparison of analytic methods used in

the field. In this study, we aimed to fill this gap by evaluating the performance and the prop-

erties of ten meta-analysis methods for GWAS, especially in the context of cross-phenotype

studies.

Extensive simulation indicates that the selection of proper analytic methods has important

effects on the statistical power and inference of the study findings in cross-phenotype GWAS.

Unlike a traditional meta-analysis of a single trait, heterogeneity of genetic effect is inevitable

in cross-phenotype GWAS and thus calls into question the use of the fixed-effects model, the

most commonly used meta-analysis method in GWAS. In practice, we found that despite the

assumption of constant effect sizes, fixed-effects-based methods consistently outperformed the

other methods under the presence of diverse heterogeneity. The superior power of the fixed-

effects method has previously shown for GWAS meta-analysis of a single trait,[34] which

explains its popular use in the field even when the assumption of the constant effect is not

appropriate. Our study shows for the first time that even with the existence of multiple traits

with null effects, the fixed-effects approach had the largest power. The improved performance

of the fixed-effects model in GWAS could also be explained in part because genetic effect sizes

are typically very modest (as we employed in our simulation) [35,36]. P-value-based meta-

analysis methods provide an alternative strategy to detecting heterogeneous or antagonistic

effects but have often been avoided due to a lack of the summary estimate of effect sizes. Our

study also indicates that the power of p-value-based integration methods we examined is in

general not superior to other methods. It is though clear that when effect sizes of individual

studies are not available, the use of p-value-based meta-analysis is inevitable. Further work is

warranted to evaluate more p-value-based meta-analysis methods [37–39] in the context of

cross-phenotype GWAS.

Characterizing trait-specific association is another important issue in cross-phenotype

GWAS because most meta-analysis methods do not nominate specific traits that drive the

pleiotropic signal. Manual examination of forest plots is thus often necessary in order to clarify

trait-specific association. Three fixed-effects-based methods—ASSET, BE, and CPASSOC—

address this limitation by prioritizing the list of most likely associated traits via a model selec-

tion procedure. In contrast to the similar level of specificity, sensitivity of the methods varied

substantially depending on the direction and the distribution of non-null effects, signifying the

need for further method development.

We also investigated how meta-analysis methods deal with artificially inflated correlation

among study traits due to overlapping subjects. When individual-level genotype data are avail-

able, overlapping subjects are typically split across different studies, making each GWAS inde-

pendent from each other. Here we looked into an alternative approach that statistically adjusts
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artificially inflated correlation within the meta-analysis framework. Given the exact numbers

of overlapping samples, we confirmed that ASSET and WICS can properly accommodate arti-

ficially induced correlation. If such information is not available, CPASSOC is the only usable

method, but our study shows that when traits with genuine correlation are meta-analyzed,

CPASSOC’s empirical adjustment strategy may not adequately control increasing false positive

findings. Caution is thus warranted for the use of CPASSOC in the cross-phenotype studies of

potentially overlapping samples.

While we found the superior performance and utility of three fixed-effects-based methods,

ASSET, BE, and CPASSOC (as summarized in Table 4), it is clear that several advances are

crucial in further methods development. Ideally, the new methods should allow for effect het-

erogeneity (including the identification of opposite direction allelic effects) and existence of

subset-specific association while providing greater power than currently available methods.

Another key improvement will be to account for possibly unknown sample overlap between

studies, which may lead to potential false positives. A recently proposed method called

MTAG [40] describes a promising strategy to address the problem by using bivariate linkage

disequilibrium (LD) score regression. The method is however applicable when all variants

share the same genetic correlation across all traits (i.e., no subset specific effect is assumed),

which is violated in most circumstances of cross-phenotype studies. In addition, misleading

results can arise when using inadequately fitted meta-analysis models, thus it is recom-

mended to perform the goodness-of-fit test before conducting meta-analysis [41]. Finally,

integration of external genomic information in cross-phenotype meta-analysis is a largely

unexplored territory. We note that the posterior probability framework on which BE is based

has the advantage that flexible priors can be used to incorporate various functional informa-

tion, such as biological impacts of mutations. Little effort however has been put into explor-

ing the direction. We anticipate further method developments that address these limitations

will enable a more in-depth investigation of pleiotropy and its implications for genomic

medicine.

Supporting information

S1 Fig. Three distributions of effect sizes under odds ratios of 1.1 and 1.2.

(PDF)

S2 Fig. Power of ten meta analysis methods for five traits when all effects are in the same

direction (alpha = 0.05, OR = 1.1, K = 5).

(PDF)

Table 4. Summary of performance comparison for top fixed-effects models.

Methods Comparative Power Control of Type

I Error

Control of Overlapping Sensitivity Specificity

ASSET best when Ta is small adequate adequate best when opposite

directional effects exist

best under most settings

BE performs well when Ta is not

small

adequate adequate depends on m-value

thresholds

depends on m-value

thresholds

CPASSOC best when opposite

directional effects exist

adequate Caution needed when traits with significant

genetic correlation are analyzed

intermediate comparable to ASSET in

many settings

Ta: number of traits with non-null effects;

https://doi.org/10.1371/journal.pone.0193256.t004
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S3 Fig. Power of ten meta analysis methods for five traits when 25% effects are in the oppo-

site direction (alpha = 0.05, OR = 1.1, K = 5).

(PDF)

S4 Fig. Power of ten meta analysis methods for five traits when 50% effects are in the oppo-

site direction (alpha = 0.05, OR = 1.1, K = 5).

(PDF)

S5 Fig. Power of ten meta analysis methods for ten traits when all effects are in the same

direction (alpha = 0.05, OR = 1.1, K = 10).

(PDF)

S6 Fig. Power of ten meta analysis methods for ten traits when 25% effects are in the oppo-

site direction (alpha = 0.05, OR = 1.1, K = 10).

(PDF)

S7 Fig. Power of ten meta analysis methods for ten traits when 50% effects are in the oppo-

site direction (alpha = 0.05, OR = 1.1, K = 10).

(PDF)

S8 Fig. Power of ten meta analysis methods for five traits when all effects are in the same

direction (alpha = 0.001, OR = 1.2, K = 5).

(PDF)

S9 Fig. Power of ten meta analysis methods for five traits when 25% effects are in the oppo-

site direction (alpha = 0.001, OR = 1.2, K = 5).

(PDF)

S10 Fig. Power of ten meta analysis methods for five traits when 50% effects are in the

opposite direction (alpha = 0.001, OR = 1.2, K = 5).

(PDF)

S11 Fig. Power of ten meta analysis methods for ten traits when all effects are in the same

direction (alpha = 0.001, OR = 1.2, K = 10).

(PDF)

S12 Fig. Power of ten meta analysis methods for ten traits when 25% effects are in the

opposite direction (alpha = 0.001, OR = 1.2, K = 10).

(PDF)

S13 Fig. Power of ten meta analysis methods for ten traits when 50% effects are in the

opposite direction (alpha = 0.001, OR = 1.2, K = 10).

(PDF)

S14 Fig. QQ plots of meta analysis results for five neuropsychiatric disorders.

(PDF)

S15 Fig. Manhattan plots of meta analysis results for five neuropsychiatric disorders.

(PDF)

S1 Note. Summary of evaluated methods.

(PDF)

S1 Table. Type I error rates of ten meta analysis methods.

(XLSX)
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