Skip to main content
. 2017 Dec 27;6:e32054. doi: 10.7554/eLife.32054

Figure 2. Impact of thalamic drive on firing rates and alpha power without stimulation.

Figure 2.

(A) Sample spiking activity of five randomly selected excitatory cortical cells in the resting state, which is defined as a regime of minimal thalamic drive (DLGN=1x10-4). The firing activity of those neurons is highly correlated, and synchronized to the phase of simulated EEG alpha oscillations (top). (B) Activity of the same cortical neurons in the task state, where thalamic drive is high (DLGN=1). The spiking activity is now irregular and asynchronous, leading to a flat EEG activity where alpha oscillations have been suppressed. (C) Effect of gradual increase in thalamic drive on alpha power and mean firing rates for both cortical (grey) and sub-cortical (green) neurons.