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Abstract
In the last few years, increased emphasis has been devoted to understanding the contribution of mitochondria-
associated endoplasmic reticulum (ER) membranes (MAM) to human pathology in general, and neurodegenerative
diseases in particular. A major reason for this is the central role that this subdomain of the ER plays in metabolic
regulation and in mitochondrial biology. As such, aberrant MAM function may help explain the seemingly unrelated
metabolic abnormalities often seen in neurodegeneration. In the specific case of Alzheimer disease (AD), besides
perturbations in calcium and lipid homeostasis, there are numerous documented alterations in mitochondrial behavior
and function, including reduced respiratory chain activity and oxidative phosphorylation, increased free radical
production, and altered organellar morphology, dynamics, and positioning (especially perinuclear mitochondria).
However, whether these alterations are primary events causative of the disease, or are secondary downstream events
that are the result of some other, more fundamental problem, is still unclear. In support of the former possibility, we
recently reported that C99, the C-terminal processing product of the amyloid precursor protein (APP) derived from its
cleavage by β-secretase, is present in MAM, that its level is increased in AD, and that this increase reduces
mitochondrial respiration, likely via a C99-induced alteration in cellular sphingolipid homeostasis. Thus, the metabolic
disturbances seen in AD likely arise from increased ER-mitochondrial communication that is driven by an increase in
the levels of C99 at the MAM.

Facts

● Mitochondrial bioenergetic function is decreased in
AD, but the reason for this decline is unknown.

● A “mitochondrial cascade hypothesis” has been put
forward to explain AD pathogenesis.

● ER-mitochondrial communication and MAM
function are increased significantly in AD.

● C99 is present in MAM, and accumulates above

normal levels in AD cells and animal models.
● Increased C99-mediated MAM activity induces

bioenergetic dysfunction in AD cells.

Open questions

● How does C99 modulate MAM function in general
and bioenergetic output in particular?

● What is the mechanism of mitochondrial dysfunction
due to alterations in MAM behavior?

● How do these alterations occur in sporadic AD, in
which APP processing is presumably normal?
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Introduction
Alzheimer disease (AD) is the most common adult

neurodegenerative disorder1. Pathologically, it is char-
acterized by progressive neuronal loss in the hippocampus
and cortex, with the accumulation in the brain of extra-
cellular neuritic plaques and intracellular neurofibrillary
tangles. Prominent among the proteins deposited in the
plaques is β-amyloid (Aβ), which is produced by cleavage
of the amyloid precursor protein (APP) by presenilin-1
(PS1) and/or presenilin-2 (PS2), both of which are active

components of the γ-secretase complex2. Notably, dom-
inantly inherited mutations both in the presenilins and in
APP are currently the only known causes of the familial
form of AD (FAD), which has led to the most widely
accepted hypothesis to explain the pathogenesis of AD,
namely, the “amyloid cascade,” which proposes that
deposition of Aβ in the brain is the precipitating patho-
logical event in AD3. However, while the amyloid cascade
hypothesis helps explain the development of the plaques
and perhaps also the tangles, it sheds little light on the

Fig. 1 a Representative mitochondrial morphology in AD-mutant cells. Human fibroblasts were stained with MitoTracker (red) and anti-tubulin
(green). Note the relatively dispersed distribution of the mitochondria in the control, whereas they are more perinuclear in the FAD-PS1M146L and
FAD-PS1A246E cells. b MEFs in which PS1 was knocked down (by small hairpin RNA). Cells were stained as in a. Note relatively dispersed distribution of
the mitochondria in the control, whereas they are more perinuclear in the PS1-knockdown cells. This phenotype could be rescued by overexpression
of WT human PS1, but not by expression of a human pathogenic PS1 mutation (A246E)
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impact of other aspects of the disease, some of which
occur years before the appearance of those plaques and
tangles4–6. Those other aspects include altered metabo-
lism of phospholipids and fatty acids7,8, increased levels of
circulating cholesterol9, the deposition of lipid droplets
within cells10–12, alterations in glucose levels13, aberrant
calcium homeostasis14, increased ER stress15, and mito-
chondrial dysfunction16,17, the focus of our discussion
here.

Mitochondrial alterations in AD
In the last few decades, many reports have demon-

strated the impairment of mitochondrial function in AD.
Moreover, a number of lines of biochemical and cell
biological evidence have been marshaled in support of a
“mitochondrial cascade hypothesis” for the pathogenesis
of AD, which proposes that mitochondrial alterations
initiate the cascade of pathologies characteristic of the
disease18–25. However, while this possibility is intriguing,
it is currently unclear whether the impairment of mito-
chondrial function in AD26–33 is the cause, the con-
sequence, or merely a “bystander effect” of the
biochemical and morphological changes seen in AD34,35.
While mitochondria are clearly altered in AD, we believe
that the mitochondrial cascade hypothesis has a number
of flaws, discussed in greater detail below, that have led us
to the conclusion that mitochondrial dysfunction is an
early disturbance in the pathogenesis of AD but is not the
driver of the pathogenesis.

Mitochondrial biochemical and dynamic alterations
As alluded to above, mitochondrial bioenergetic func-

tion is reduced in AD. Specifically, AD patients and ani-
mal models of AD exhibit reduced respiratory chain
activity and lower ATP production26,28,31,36–39. Addition-
ally, many reports have described a significant decrease in
enzymes of the mitochondrial tricarboxylic acid cycle in
AD patients40–42. Moreover, the levels of free radicals and
reactive oxygen species, which are produced mainly by
mitochondria, are elevated in AD cells38,43–46.
Besides the effects on bioenergetics, there are also sig-

nificant changes in mitochondrial dynamics and locali-
zation in AD cells, namely, dysfunctional mitochondrial
axonal transport19,47–49, deregulated organellar dynamics
(e.g., mitochondrial fission and fusion)17,50–53, and a more
perinuclear distribution of the organelles17,50,54,55. On this
latter point, we too have observed perinuclear mito-
chondria in AD patient cells (Fig. 1a) and were also able to
reproduce the perinuclear phenotype in mouse embryonic
fibroblasts (MEFs) in which endogenous PS1 mRNA was
knocked down (Fig. 1b). Equally important, we observed a
reversal of the perinuclear phenotype upon over-
expression of the wild-type allele of human PS1, but not a
pathogenic AD-mutant allele (A246E) (Fig. 1b). Con-
sistent with this, we obtained a similar result in the most
clinically relevant tissue, namely human brain. Specifi-
cally, we used immunohistochemistry to detect mito-
chondria in the hippocampal CA1 region of an autoptic
brain from an AD patient with a pathogenic PS1 mutation

Fig. 2 Immunohistochemistry to detect mitochondria (FeS subunit of complex III of the mitochondrial respiratory chain) in the
hippocampus (CA1 region) from a FAD patient with a PS1 mutation (A434C). (Upper panels) Control subject (left), with four indicated neurons
(a–d) magnified at right. Note relatively uniform stain (brown), indicating a homogeneous distribution of mitochondria in the cell body. (Lower
panels) FAD-PS1A434C patient. Notation as in upper panel. Note the perinuclear distribution of immunostain (brown rings; arrowheads), with a relative
paucity of immunostain in the distal regions of the cell body (asterisks)
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(A434C)56. Mitochondria were uniformly distributed in
the cytosol of control hippocampus, as expected. In
contrast, we detected a “ring” of mitochondria around the
nucleus of the patient neurons, and depletion of the
organelles in the distal region of hippocampal cell bodies
(Fig. 2). Thus, we believe that the observation of peri-
nuclear mitochondria in patient cells in vitro likely
reflects what is occurring clinically in vivo. Moreover, it
appears that γ-secretase activity and/or APP
processing play a role in the altered distribution of
mitochondria in at least some forms of AD17,50, but the
relationship, if any, of mitochondrial maldistribution to
altered APP processing has been obscure; this issue is
addressed below.
Taken together, it is clear that there are numerous

functional alterations in mitochondrial behavior
in both familial and sporadic AD. However, even though
many of these mitochondrial phenotypes are evident
before the appearance of plaques57–59, we believe that
mitochondrial dysfunction likely will not be found to be
the underlying cause of the disease, for a number of
reasons.
First and foremost, patients with authentic mitochon-

drial diseases (by which we mean diseases where bioe-
nergetic deficits are the initiating cause of the pathology),
whether due to mutations in the mitochondrial or nuclear
genomes, do not evince the symptomatology of AD, even
in those patients who live into their fourth and fifth
decades. Generally speaking, mitochondrial diseases are
characterized by numerous defects (e.g., encephalopathy,
myopathy, endocrinopathy, retinopathy, and gastro-
intestinal and kidney disorders) that are simply not seen
with any frequency in AD.
Second, mitochondrial deficiency is a common con-

sequence of other insults, such as tissue injury. In fact, the
altered mitochondrial function and dynamics seen in AD
are also seen in a number of other neurodegenerative
disorders that are distinct from AD. For example, peri-
nuclear mitochondria are seen in Huntington disease60,61

and in amyotrophic lateral sclerosis62–65, and was seen in
a patient with a mutation in the mitochondrial fission
protein DRP166.
Finally, perinuclear mitochondria can be induced by

overexpression of the mitochondrial fission protein FIS167

and also, notably, by tau68. Thus, these findings imply
minimally that mitochondrial dysfunction and altered
mitodynamics, while occurring early, are probably
downstream consequences of other specific primary
events in AD progression, and are not a fundamental
cause of pathogenesis.

Mitochondria and genetics
Genetically, alterations in mitochondrial DNA

(mtDNA) have been found in AD cells and tissues69.

These include both qualitative changes, such as the
association of specific mtDNA haplogroups with the risk
of developing AD70–73 and the presence of mtDNA
deletions74,75 and point mutations76–78 in patient cells and
tissues, and quantitative changes, such as reduced
mtDNA levels in AD cerebrospinal fluid79. At the gene
expression level, one study showed that the transcription
of a number of nuclear-encoded oxidative phosphoryla-
tion (OxPhos) subunits was reduced in AD blood,
whereas transcription of most mtDNA-encoded subunits
was elevated in AD blood80.
Nevertheless, from the genetic point of view, in spite of

the implication that mtDNA mutations, and especially
point mutations, should result in maternally inherited AD,
only a tiny number of mtDNA variants have been ascribed
specifically to the development of the disease76, and even
this is controversial81–83; in fact, there is little evidence for
maternal inheritance in AD at all84,85.
Finally, genetic association studies have identified

numerous nuclear loci associated with increased risk for
developing AD86. Along with the three FAD-linked genes
(APP, PSEN1, and PSEN2), the most commonly accepted
sporadic AD (SAD) risk loci (i.e. linkage to mutations
either near or within known genes) are ABCA7, APOE,
BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, EPHA1,
FERMT2, INPP5D, MEF2C, MS4A, NME8, PICALM,
PLD3, PTK2B, SLC24A4, SORL1, TREM2, and ZCWPW1.
Notably, none of the proteins encoded by these genes are
targeted to mitochondria. Of course, this lack of correla-
tion does not prove that mitochondria are not involved in
AD pathogenesis, but by the same token it provides little
genetic support to the mitochondrial cascade hypothesis.

Mitochondria and γ-secretase
In support of the mitochondrial cascade hypothesis,

there is an intriguing connection between mitochondria
and the γ-secretase complex. First, APP and/or Aβ44,46,87–
94, as well as components of the γ-secretase complex95–98,
have been reported to be at or in mitochondria, pre-
sumably implicating the organelle directly in AD. Second,
there are mitochondria-mediated alterations in APP
processing in AD cells and tissues39. Third, PS1 enhances
the expression of PGC-1α, the master regulator of mito-
chondrial biogenesis, and this effect is reduced in PS1-
mutated cells99. Finally, incubation of cultured cells and/
or isolated mitochondria with Aβ has been shown to have
deleterious effects on mitochondrial functions, including
effects on respiration100–104, protein import105, organellar
transport19,47–49, organellar localization106, and organellar
dynamics (e.g., mitochondrial fission and fusion)17,50–53.
These and other reported data reveal an intriguing asso-
ciation between mitochondrial regulation and γ-secretase
activity, but whether this link is direct or is mediated by
some other, more indirect, mechanism, is not clear.
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Regarding the localization studies, it is true that com-
ponents of the γ-secretase complex can be found on
mitochondria, but their relative concentration is very low
compared to that in other membranes, such as ER.
Moreover, data from our laboratory107 and others108

showed that presenilins are not imported into mito-
chondria, implying that while presenilins and γ-secretase
exert direct effects on mitochondria, they do not behave
as canonical mitochondrial proteins. Another argument in
opposition to APP or γ-secretase activity being localized
to mitochondria is that this protein complex is only
activated in lipid raft domains109–112, which do not exist
on mitochondrial membranes113.
Regarding the toxic effects of Aβ on mitochondria,

previous studies showing inhibitory effects of Aβ treat-
ment on mitochondrial function could have been due to
the use of unphysiological concentrations of Aβ101.
Indeed, inhibitory effects on mitochondria were observed
with Aβ concentrations that were 10–100 times higher
than those found in the entorhinal cortex or cerebrospinal
fluid from AD patients114.
We therefore think that the pathogenesis of AD

cannot be explained as resulting from those alterations
in mitochondrial function that are similar to those
seen in authentic mitochondrial disorders. Nevertheless,
mitochondrial dysfunction is an undeniable early symp-
tom of the disease that needs to be investigated and
understood if we are to understand better the course of
AD pathogenesis. How might this conundrum be
reconciled?

Mitochondria-associated ER membranes, APP
processing, and bioenergetics in AD
Some years ago we hypothesized that the phenotypes

seen in AD, including the mitochondrial disturbances,
were the downstream consequences of some primary
insult in AD arising prior to plaque and tangle formation,
and triggered by mutations in PS1, PS2, and APP in the
case of FAD, and by unknown causes in the case of
SAD115,116.
With that in mind, we first tried to clarify the sub-

cellular localization of presenilins and γ-secretase activity
and its spatial relationship to mitochondria. Intriguingly,
our group found107, and others confirmed117–119, that
presenilins and γ-secretase activity, while localized at the
ER, as described previously120, are enriched in
mitochondria-associated ER membranes or MAM. MAM
is a specialized subdomain of the ER that, as opposed to
the rest of the ER, has the features of a lipid raft and is rich
in cholesterol and sphingomyelin121,122. MAM is critical
for processes that occur at the interface between mito-
chondria and ER, including phospholipid biosynthesis,
cholesterol esterification, calcium transport, and com-
munication between the two organelles123.

After this initial finding, our group (and subsequently
others124–126) became interested in the potential role that
MAM might play in the pathogenesis of AD115,116,127,128.
We therefore measured MAM activity and ER-
mitochondrial connectivity in AD cell models and in
cells from AD patients, and found both to be increased
significantly compared to controls122.
This connection between MAM and AD, at least on

theoretical grounds, is appealing, because besides its close
apposition to mitochondria, many of MAM’s known
functions are among the functions that are perturbed in
AD beyond the accumulation of amyloid plaques and
tangles129,130. These include the regulation of phospholi-
pid, cholesterol, and calcium homeostasis123, increased ER
stress131–133, and perturbed calcium homeostasis, driven,
in part, by interactions between p53 and the sarco-ER
calcium pump at the MAM132. In addition, at least one
known MAM-localized enzyme, acyl-CoA:cholesterol
acytransferase (ACAT1; gene SOAT1)134 appears to be
required for the production of Aβ135,136. Moreover,
altered mitochondrial function might somehow be con-
nected to APP processing137, at least in the familial form
of the disease where APP processing is clearly perturbed2.
Finally, given the physical proximity of ER to mitochon-
dria123,134,138, it is possible that the mitochondrial dis-
turbances that are found in AD might also be due to
perturbed MAM morphology and behavior133,139–141. For
example, given the fact that the subcellular localization of
the majority of ER is perinuclear, the increased apposition
between ER and mitochondria in AD122 could help
explain why mitochondria accumulate in the perinuclear
region in the disease. In order to address whether per-
turbations in MAM are responsible for mitochondrial
dysfunction in AD, we focused on the relationships
among APP processing, MAM behavior, and mitochon-
drial regulation.
In the non-amyloidogenic pathway, full-length APP

(~700 amino acids (aa) in length) is first cleaved by α-
secretase at the plasma membrane to produce a long
soluble N-terminal fragment (sAPPα) and a short
membrane-bound 83-aa C-terminal fragment, called C83;
C83 is cleaved by the γ-secretase complex to produce two
peptides, P3 and the APP intracellular domain (AICD)142.
In the alternative amyloidogenic pathway, full-length APP
is first cleaved by β-secretase (BACE1) within endosomes
to produce a slightly shorter soluble N-terminal fragment
(sAPPβ) and a slightly longer 99-aa membrane-bound C-
terminal fragment, called C99. C99 is then delivered to
the ER, via a currently unknown mechanism, to be cleaved
by the γ-secretase complex, producing two peptides, Aβ
and AICD. In unaffected individuals, C99 is cleaved
rapidly to Aβ40, which is ~40 aa in length. In AD, C99 is
cleaved to Aβ42, which is ~42 aa in length, and there is an
increase in the ratio of Aβ42:Aβ40. Since Aβ has been
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found to be produced in MAM107,118, it was logical to
assume that the substrate for MAM-localized γ-secretase,
namely C83 and/or C99, must be present in this com-
partment. In agreement with this supposition, we found
that C99 (but not C83) was present not only in endo-
somes, as expected, but in MAM as well, both in cells and
in tissues143, where it undergoes cleavage by γ-secretase to
generate Aβ107,117,118.
Our data further showed that in cellular models of AD, in

cells and tissues from AD animal models, and in cells from
FAD and SAD patients, there were significant increases in
C99 in MAMs that correlated with alterations in MAM
structure and function143. Specifically, we found that the
accumulation of C99 at MAM resulted in the upregulation
of sphingomyelin hydrolysis by sphingomyelinases (SMa-
ses) within this ER subdomain, but the identity of the
specific SMases that are upregulated (there are at least five)
is currently unknown. We were also able to replicate the
increase in SMase activity at MAM domains in SH-SY5Y
cells by inhibiting γ-secretase activity (thereby promoting
the accumulation of C99). Supporting this result, the
inhibition of BACE1 activity (which reduces C99 forma-
tion) resulted in an attenuation of SMase activity143.
This increase in SMase activity resulted not only in

reductions in the content of sphingomyelin but also in a
notable elevation of the sphingomyelin hydrolysis pro-
duct, ceramide143. This finding was noteworthy because
ceramide is not only a pro-apoptotic molecule144 but is
also an inhibitor of mitochondrial respiration145–149.
Indeed, we found that in our presenilin-mutant and AD
patient cells, ceramide levels were elevated and respiratory
chain function was decreased, as was respiratory super-
complex formation and function143. Importantly, manip-
ulation of the ceramide pathway (both pharmacologically
and genetically) to reduce ceramide levels in these cells
reversed the bioenergetic defects143. In addition, reduc-
tion of C99 levels, either via inhibition of BACE1 activity
(again, both pharmacologically and genetically) or via
ablation of the APP gene, also reversed the bioenergetic
deficits, concomitant with a renormalization of the
sphingolipid profiles143. Importantly, these phenotypes
could not be replicated by the addition of physiological
concentration ratios of Aβ42:Aβ40, physiological con-
centrations of Aβ42 oligomers, or by the overexpression of
AICD. We therefore believe that the bioenergetic defects
in AD are likely to be the consequence of upregulated
sphingolipid turnover and increased ceramide content
triggered by the accumulation of C99 at the MAM. This
elevation in ceramide levels alters mitochondrial mem-
brane properties, hindering the assembly and activity of
respiratory supercomplexes, resulting or exacerbating, at
least in part, in bioenergetic deficiencies. Importantly,
these findings implicating C99 are consistent with the
findings of others, who showed that altered APP

processing, especially via MAM-localized PS2126,150,
decreased bioenergetics. Interestingly, deletion of a por-
tion of the C99 transmembrane region altered mito-
chondrial morphology and function in HeLa cells,
including decreased ATP levels and decreased membrane
potential151.
These findings are particularly important because the

sphingolipid and mitochondrial phenotypes that we found
in PS-mutant cells and in cells from FAD patients were also
observed in cells from SAD patients143, in which the PSEN1,
PSEN2, and APP genes are normal. This latter result implies
that from a mitochondrial point of view, both the familial
and sporadic forms of the disease have a common patho-
genetic origin. In this regard, we note that the most
important genetic risk factor for developing SAD is a variant
of apolipoprotein E (ApoE), a protein required to ferry
cholesterol within lipoprotein particles: the ε4 allele (ApoE4)
confers a significantly higher risk of developing AD than
does the ε3 allele (ApoE3)152. It is noteworthy, therefore,
that ER-mitochondrial communication and MAM function
were increased significantly in fibroblasts and neurons
treated with ApoE4-containing astrocyte-conditioned media
as compared to those treated with ApoE3-containing
astrocyte-conditioned media153. Moreover, in spite of no
obvious qualitative defect in the APP or presenilin genes in
SAD, C99 is nevertheless elevated in these patients154–156.
In summary, previous data and our own results point to

a direct connection between APP processing and OxPhos
deficiency via C99, both in FAD and SAD. Moreover, these
data imply that at least from the mitochondrial point of
view, it is C99, and not Aβ (nor any other APP processing
product (e.g., sAPPα, C83, or P3)137), that is the key APP-
processing intermediate that is required for pathogenicity.

Concluding remarks—the “MAM hypothesis”
We believe that while mitochondrial dysfunction is an

early and significant defect in AD, it is not a primary insult
in the pathogenesis of the disease, but rather is a con-
sequence of MAM dysfunction that is driven by an
increased presence of C99 at MAM.
These results also imply that from the genetic stand-

point, dominant mutations in PS1 likely result in hap-
loinsufficiency157–159 or behave in a dominant-negative
manner160 rather than resulting in a gain of function161,
with the reduced PS1 activity as the likely cause of the
increased levels of C99. In turn, increased MAM-localized
C99 promotes the various features of the disease,
including the calcium and lipid dyshomeostasis, the
mitochondrial perturbations, and ultimately the plaque
and tangle formation. In agreement with this view, the
accumulation of C99 in mitochondrial fractions, and
mitochondrial respiratory chain deficiency, has been
detected in brains from animal models of AD162, and was
reversed following deletion of BACE1 (thereby preventing
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the formation of C99)162. Finally, the idea that mitochondrial
dysfunction is the result of the accumulation of C99 in the
MAM rather than being a consequence of higher levels of
Aβ42 helps explain previous results showing that mito-
chondrial alterations occur early in the pathogenesis of the
disease58, well before any pathophysiological hallmark of
AD becomes apparent57. Nevertheless, we believe that even
though mitochondrial dysfunction is an early event
upstream of plaque and tangle formation, we do not con-
sider the organelle to be a reasonable target for therapeutic
intervention, as the mitochondrial perturbations observed
in AD are themselves consequences of an even earlier
precipitating process, namely elevated C99 and altered lipid
homeostasis (Fig. 3). Thus, it is possible that increased ER-
mitochondrial connectivity and upregulated MAM beha-
vior underlie the metabolic disturbances (and probably the
other phenotypes) seen in AD122,143,163 (the “MAM
hypothesis”115,116,127,128). We are currently actively engaged
in deducing the mechanism(s) underlying these changes.
Finally, alterations in ER-mitochondrial communication

and in MAM behavior may not be confined to AD. Other
neurodegenerative disorders, such as Parkinson disease
and amyotrophic lateral sclerosis, also evince altered
mitochondrial function and disturbances in calcium and
lipid homeostasis164. Notably, alterations in MAM beha-
vior have also been found in both of these disorders, and
are especially prominent in the familial form of these
diseases, where a connection between the culprit gene and
altered MAM behavior can be drawn165,166. Thus, altered
ER-mitochondrial communication has the potential to
play a critical, and hitherto unappreciated, role in the
pathogenesis of many of the most common and devas-
tating diseases of advanced age129.
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