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Abstract

While protective, the acute inflammatory response when uncontrolled can lead to further tissue 

damage and chronic inflammation that is now widely recognized to play important roles in many 

commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, 

metabolic syndrome, and many other diseases of significant public health concern. The ideal 

response to initial challenges of the host is complete resolution of the acute inflammatory 

response, which is now recognized to be a biosynthetically active process governed by specialized 

pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, 

protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and 

complete stereochemical assignments of the major SPM are established, and new profiling 

procedures have recently been introduced to document the activation of these pathways in vivo 

with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, 

where we’ve recently identified new molecules that communicate during resolution of 

inflammation to activate tissue regeneration in model organisms. This review presents an update 

on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel 

mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The 

identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), 

protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration 

(RCTR), are reviewed here. The identification, structural elucidation and the pathways and 

biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect 

from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue 

regeneration via endogenous pathways and molecules in the resolution metabolome.
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Introduction

While Galileo Galilei (1564-1642) was fighting for data arguing for a new view of our solar 

system, his body’s leukocytes were engaged in a fight of their own with gout crystals 

causing joint inflammation, as deduced by Gerald Weissmann (2007) from portraits of 

Galileo. William Harvey (1578-1657) pushed the boundaries of medical knowledge by 

arguing for the systemic circulation with blood pumping to the brain and organs by the heart 

as published in his book ‘De Motu Cordis’. He was also a sufferer of uncontrolled 

inflammation from monosodium urate crystal deposition in his joints resulting in gout, 

which is a condition that was prevalent in many scholars of his time (Weissmann, 2007). 

Today, uncontrolled inflammation is a major component of many diseases and in aging. To 

combat these, new treatments are needed, yet dogma on the mechanism and control of 

inflammation is deep seated in the medical and scientific literature. For example, blood-

borne bacteria can lead to infectious inflammation, sepsis and mortality that are significant 

public health concerns, placing considerable financial burden that impacts millions in the 

USA (Epstein et al., 2016; Ward and Bosmann, 2012), thus emphasizing the urgent need for 

development of new treatments (Epstein et al., 2016; Ward and Bosmann, 2012; Serhan, 

2017; Wei and Gronert, 2017; Buechler et al., 2017; Lee and Zeldin, 2015; Russell and 

Schwarze, 2014). Human phagocytes [neutrophils (PMN) and macrophages (MΦ)] play 

pivotal roles in host defense, acute inflammatory responses and their timely resolution 
(Serhan and Savill, 2005; Tabas and Glass, 2013; Delano and Ward, 2016; Nathan, 2012; 

Leslie, 2015).

In the post-genomic era, understanding inflammation and its intricate mechanisms is the 

frontier. While ancient physicians recognized inflammation’s cardinal signs as heat, redness, 

swelling and pain centuries ago, the cellular and molecular players in this vital inflammatory 

host response have only been elucidated for the most part in the last century (Majno and 

Joris, 2004). Today, it’s now well appreciated that uncontrolled inflammation and excessive 

tissue levels of inflammatory mediators play central roles in the pathogenesis of many 

widely occurring diseases throughout the body and all its organs. Earlier, the study of 

inflammation and inflammatory diseases was confined to chronic inflammatory diseases 

such as rheumatoid arthritis, periodontal disease and the like, along with their initiating 

signals. Today it is widely appreciated that neurodegenerative diseases, cognitive decline, 

vascular disease, asthma, obesity and many other commonly occurring diseases involve 

uncontrolled, recurrent bouts of local and systemic inflammation. For us to gain and harness 

new approaches to treat these diseases and appreciate the complexity of the inflammatory 

response, it is essential for biomedical scientists and health care practitioners to command a 

detailed appreciation of the cellular and molecular language of the inflammatory response, 

the mediators and governance of this vital body defense system.

Uncontrolled inflammation is now widely appreciated as a unifying component in many 

diseases including vascular diseases, metabolic syndrome, neurological diseases, and many 

others (Serhan and Savill, 2005; Tabas and Glass, 2013). Since the acute inflammatory 

response is protective, evolved to permit repair of injured tissues and eliminate invading 

organisms (Cotran et al., 1999), it is ideally self-limited and leads to complete resolution of 

leukocyte infiltrates and clearance of cellular debris enabling homeostasis. Although 
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resolution of disease is appreciated by clinicians, resolution was considered a passive 

process (Cotran et al., 1999; Serhan, 2017), until we and now many others (Fredman et al., 

2016; Chattopadhyay et al., 2017; Easley et al., 2016; Jo et al., 2016; Petri et al., 2017; Pope 

et al., 2016; Gilbert et al., 2014; Perretti et al., 2017; Viola et al., 2016; Bang et al., 2010; El 

Kebir et al., 2012; Hellmann et al., 2011; Liao et al., 2012; Liu et al., 2012; Lund et al., 

2010; Palmer et al., 2011; Qu et al., 2012; Rajasagi et al., 2011; Rogerio et al., 2012; 

Settimio et al., 2012) have obtained new evidence that resolution of self-limited 

inflammation is an active process. A weakness of current anti-inflammatories is that they 

eventually become immunosuppressive (Cotran et al., 1999; Serhan, 2017). With our 

strategy employing unbiased LM-lipidomics, genetically engineered mice, exudates and 

human cell systems, we obtained the first evidence that resolution is actively “turned on” 

and not simply a passive process. Thus, we defined the signs of resolution and its 

biochemical and cellular code (reviewed in (Serhan, 2014, 2017; Serhan et al., 2015a)).

Local Mediators in Resolution of Inflammation

Central to this paradigm change is the identification of a novel super-family of pro-resolving 

mediators (SPM) (Fig. 1) that include resolvins, protectins, their aspirin-triggered forms 

(Serhan, 2014, 2017), and more recently maresins (Serhan et al., 2009; Serhan et al., 2012). 

These provided evidence that local mediators and their biosynthesis from n-3 precursors 

EPA and DHA orchestrate resolution in humans (Barden et al., 2016a; Jaudszus et al., 2013; 

Mas et al., 2016; Morris et al., 2009). Since these mediators stimulate resolution as agonists 

they are coined immunoresolvents (Serhan, 2017).

The biosynthesis of E-series resolvins from EPA proceeds via the production of 18-

hydroperoxy-eicosapentaenoic acid and subsequently 18-hydroxy-eicosapentaenoic acid, 

which are biosynthesized from COX (cyclooxygenase)-2 in an aspirin-dependent and 

independent manner (Oh et al., 2011; Nebert, 2017), where this precursor is also produced 

by P-450 enzymes in humans and microbial cells. This pivotal intermediate is converted by 

human leukocytes to RvE1 and RvE2 by 5-lipoxygenase (LOX) reactions (Tjonahen et al., 

2006). The potent actions of RvE1 and RvE2 following their complete stereochemical 

assignments have been confirmed by many independent laboratories (for review, see Serhan, 

2014). Resolvin E3 is also produced from EPA and carries potent anti-inflammatory actions 

(Arita et al., 2005; Isobe et al., 2012a). EPA-rich high-density lipoprotein (HDL) in 

particular is a source of RvE3 (Tanaka et al., 2017). Like RvE1 and RvE2, RvE3 is a potent 

anti-inflammatory that stops PMN infiltration. It’s not yet known if RvE3 is also pro-

resolving like RvE1 and RvE2 in stimulating increases in phagocytosis of apoptotic PMN, 

debris and bacteria (Tanaka et al., 2017; Arita et al., 2005; Schwab et al., 2007). Earlier 

studies demonstrated that COX2-derived PGE2 and LXA4 accelerate resolution of allergic 

edema (Bandeira-Melo et al., 2000). In addition, inhibition of COX-2 delays resolution of 

acute inflammation (Schwab et al., 2007). Therefore, COX-2 plays an important role in 

accelerating resolution via enhancing SPM biosynthesis.

DHA is enriched in specific tissues in humans such as brain and testis (Lands, 2005) and is 

precursor to three main structurally distinct families of mediators that include D-series 

resolvins, protectins and maresins (Fig. 1A). The biosynthesis, function and complete 
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stereochemistry of each major bioactive product in each family are established (see Serhan, 

2014). The D-series resolvins and protectins are produced via a 17-lipoxygenation reaction 

carried out predominantly by the human 15-LOX, and the maresins are initiated by 14-

lipoxygenation of DHA via the human 12-LOX (Serhan, 2014; Serhan et al., 2012; Serhan et 

al., 2009).

Dietary n-3 supplements with EPA and DHA are widely used but <25% are directed by 

health care providers (Bailey et al., 2013). Clinical trials with n-3 fatty acids show mixed, 

sometimes weak, results (Bisgaard et al., 2016; Ramaswami et al., 2016; Ramsden, 2016; De 

Caterina, 2011; Lourdudoss et al., 2017; Polus et al., 2016; Uno et al., 2016), likely due to 

poor product quality (Albert et al., 2015). Since fatty acids themselves are not suitable drugs 

and widely used, it is paramount for public health to establish mechanisms that underlie their 

essential health requirements and benefits.

Using a rigorous systems approach with self-resolving exudates, we isolated and elucidated 

novel n-3-derived SPM (Colas et al., 2014; Dalli et al., 2015a; Serhan et al., 2002). Their 

biosynthesis and complete stereochemistry of each major resolvin (RvE1, RvD1, RvD2, 

RvD3, RvD4 and RvD5) conferring their potent actions (reviewed in (Serhan, 2014, 2017)) 

were the focus of investigations first established from this laboratory and now independently 

confirmed by many investigators.

Substrate mobilization

In neural systems, DHA is esterified in phospholipids and in cells such as the microglia of 

the brain. We found that DHA is released from phosphatidylethanolamine in phagocytosis 

(Hong et al., 2003) and released substrate is converted to (Fig. 1B) Neuroprotectin D1/PD1 

that reduces inflammatory cytokine production by these cells (Serhan et al., 2002). 

Phospholipids are the source of DHA in the human brain (Lukiw et al., 2005); see also the 

review by Bazan in this series. In lymph nodes, Miki et al. (2013) identified a specific PLA2 

denoted sPLA2G2D, which releases substrate to produce RvD1 and PD1 in reducing 

inflammation in the skin (Fig. 1B). Human microparticles are also a source of hydroxy-

containing DHA, i.e. 17-HDHA, 14-HDHA, namely intermediates and markers for release 

by sPLA and conversion to resolvins and related SPM (Norling et al., 2011). During 

initiation and resolution of acute inflammatory responses, circulating n-3 in blood is carried 

by edema proteins such as albumin that shuttle EPA and DHA from blood to inflammatory 

exudates for conversion to SPM that in turn limit the size of the exudate (Kasuga et al., 

2008) and bring the pus to resolution (Fig. 1B).

The structures and pico to nanogram functions of E-series Rv are extended to several 

systems, e.g. vascular (Miyahara et al., 2013), airway (Seki et al., 2010), dermal (reviewed 

in (Lee, 2012; Serhan et al., 2008), ocular (Li et al., 2010), pain (Xu et al., 2010; Huang et 

al., 2011; Feng et al., 2012; Lima-Garcia et al., 2011; Xu et al., 2013), surgery (Uno et al., 

2016), fibrosis, wound healing (Vassiliou et al., 2008; Campbell et al., 2010; de Paiva et al., 

2012; Hisada et al., 2009; Ishida et al., 2010; Jin et al., 2009; Keyes et al., 2010; Kim et al., 

2012; Wan et al., 2011; Lund et al., 2010; El Kebir et al., 2012; Qu et al., 2012; Rajasagi et 

al., 2011), and tissue regeneration (Serhan et al., 2012).
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Also each D-series resolvin, RvD1 (Bang et al., 2010; Rogerio et al., 2012; Settimio et al., 

2012; Hellmann et al., 2011; Liao et al., 2012; Liu et al., 2012; Palmer et al., 2011; Tang et 

al., 2013; Li et al., 2013; Terrando et al., 2013; Lee et al., 2013), RvD2 (Spite et al., 2009; 

Bohr et al., 2013)) and neuroprotectin/protectin (Schwab et al., 2007; Sheets et al., 2010; 

Isobe et al., 2012b; Bazan et al., 2010; Kenchegowda et al., 2013; Park et al., 2011) has 

actions throughout the organ systems of the body. This is because resolvins and SPM act on 

leukocytes (Fig. 2) that function in blood from head to toe throughout the body. To pinpoint 

SPM in vivo functions in inflammation, we also defined the first resolution indices 

permitting identification of SPM and drugs that shorten resolution intervals (Bannenberg et 

al., 2005; Schwab et al., 2007). These indices are now widely used to monitor resolution 

(Pruss et al., 2011; Navarro-Xavier et al., 2010; Morris et al., 2010a; Hilberath et al., 2011; 

Fujieda et al., 2013; Koltsida et al., 2013; Lucas et al., 2014; Luo et al., 2016; Montero-

Melendez et al., 2015). Recently, AT-RvD1 was shown to control herpes simplex virus-

induced corneal immunopathology, reducing neutrophils as well as Th1 and Th17 cells 

(Rajasagi et al., 2017). In experimental autoimmune encephalitis, oral administration of 

RvD1 decreased disease progression via regulating autoreactive T cells, monocytes/

macrophages and resident brain microglial cells (Poisson et al., 2015). These results 

demonstrate potent actions of RvD1 in controlling viral infection and autoimmunity via 

regulating both innate and adaptive immune systems (vide infra). In addition, D-series Rv 

regulate pain and depression. For example, RvD1 reduces osteoarthritic pain (Huang et al., 

2017) and post-thoracotomy pain (Wang and Strichartz, 2017). RvD1 and RvD2 

demonstrate anti-depressant properties in a chronic unpredictable stress model (Ishikawa et 

al., 2017). The rigor of our structural elucidation enabled organic syntheses that confirmed 

and reproduced our original SPM assignments (reviewed in (Serhan and Petasis, 2011)), 

permitting their commercialization, and extend our findings with these mediators to many 

important disease models and systems.

The acute inflammatory response is protective

While SPM stimulate resolution by limiting PMN infiltration and stimulating uptake and 

clearance of apoptotic PMN from head to toe (Fig. 2), we unexpectedly found that SPM also 

stimulate phagocytosis of bacteria as well as their killing and clearance (Chiang et al., 2012; 

Spite et al., 2009). These counterintuitive results are confirmed by others (Russell and 

Schwarze, 2014; Lee and Zeldin, 2015) and are associated with the ability of SPM to clear 

infections in animals (Chiang et al., 2012; Codagnone et al., 2017), and thus a potential new 

approach to treat sepsis (Buechler et al., 2017; Enkhbaatar, 2016). We monitored SPM 

profiles in sepsis patients where their temporal profiles correlate to survival and outcomes 

(Dalli et al., 2017b) (vide infra). In addition to regulating innate immune system phagocytes 

(Fig. 2), SPM also display potent actions in the adaptive immune system including the 

regulation of T-cell phenotype and responses (Chiurchiu et al., 2016) and the actions of B-

cells to viral infections (Ramon et al., 2012; Kosaraju et al., 2017). Key to SPM actions is 

their ability to activate specific G-protein coupled receptors (GPCR) (Dalli et al., 2013a; 

Serhan et al., 2011b). For example, RvE1 acts at two receptors on human PMN and MΦ 
(Arita et al., 2007; Ohira et al., 2010). RvD1 and RvD5 activate GPR32 (DRV1) in humans 

(Krishnamoorthy et al., 2010; Recchiuti et al., 2011; Chiang et al., 2012), RvD2 activates 

GPR18 (DRV2) (Chiang et al., 2015) that mediates the actions of RvD2 on PMN and MΦ as 
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well as sepsis (Chiang et al., 2017). Lipoxin (LX) A4 and 15-epi-LXA4 activated ALX 

receptor (Cooray et al., 2013; Takano et al., 1998; Libby, 2015; Petri et al., 2015). For a 

recent review of the resolvin and SPM receptors, see (Chiang and Serhan, 2017).

The actions of SPM were recently reported in human settings where an RvE1 analog entered 

human clinical trials (Lee, 2012) and was reported to be effective in ocular inflammation 

(Resolvyx Pharmaceuticals Inc., 2012; Brooks, 2009; Science Blog, 2009). Another SPM 

identified in the author’s lab, i.e. aspirin-triggered LXA4, effectively reduced infant eczema 

without side effects in double-blind trial (Wu et al., 2013), and LXA4 proved a marker of 

metabolic syndrome(Yu et al., 2015). Other SPM are in Phase I and II trials (Birnbaum, 

2012; Lee, 2012; Perretti et al., 2017). These first in class, human trial results now open 

possibilities for resolution agonists and resolution pharmacology.

Human specialized pro-resolving mediator (SPM) experiments: Profiling PUFA bioactive 
metabolomes

Having established the complete stereochemistry of the E-series and D-series resolvins, 

protectins and maresins (MaR1 and MaR2) as well as key deuterium-labeled SPM that serve 

as internal standards for LC-MS-MS-based targeted identification and quantitation, we were 

ready to begin the operationalization of human tissue profiling of the bioactive SPM 

metabolomes (Colas et al., 2014). To study LM-SPM in human peripheral blood, we carried 

out targeted LM metabololipidomics using an LC-MS-MS system. To assess potential losses 

during processing as well as to normalize RT inter-run variations, we employed deuterated 

internal standards that marked specific chromatographic regions of interest within each 

chromatographic profile. With this approach, we profiled human sera, where each sample 

was a composite of ~100 individual donors. In these, we identified LM from each of the 

DHA, EPA and AA bioactive metabolomes. The complete LM stereochemistry and 

annotated biological functions are reported in (Dalli and Serhan, 2012; Colas et al., 2014). In 

serum, the SPM included endogenous RvD1, RvD2, RvD3, PD1, MaR1 and LX (Colas et 

al., 2014). Each LM and biosynthetic pathway product was identified in accordance with 

published criteria (Serhan and Petasis, 2011; Dalli and Serhan, 2012) that included matching 

RT and at least six characteristic and diagnostic ions. This is illustrated, for example, with 

tissue-derived endogenous RvD1 to RvD6, protectins, maresins and classic eicosanoids.

Identification and quantification of LM and SPM is achieved using targeted MRM of 

specific ion pairs Q1 (parent ion) to Q3 (diagnostic daughter ion) without the need for 

derivatization of the samples (Dalli and Serhan, 2012). In human serum composites, the 

DHA bioactive metabolome represented ~30.7% of targeted SPM and/or pathway markers 

(Colas et al., 2014). From these, we identified D-series resolvins, RvD1 (30.9 ± 7.0 pg/mL) 

and its 17R-epimer (40.7 ± 13.9 pg/mL), from the protectins, PD1 (5.6 ± 3.4 pg/mL) along 

with its double dioxygenation isomer 10S,17S-diHDHA (227.4 ± 68.2 pg/mL a.k.a. PDx) 

(Balas and Durand, 2016), and from the maresins, MaR1 (21.2 ± 7.2 pg/mL) and 4S,14S-

diHDHA (1,579.7 ± 282.8 pg/mL).

The EPA bioactive metabolome in human serum was ~25.9 % in which we identified RvE2 

(2212.6 ± 1587.6 pg/mL). Each SPM was present in amounts commensurate with their 

known bioactions (Dalli and Serhan, 2012). The AA bioactive metabolome comprised 
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~43.4% of the targeted LM; we identified lipoxins LXA4 (115.6 ± 45.5 pg/mL) and LXB4 

(48.7 ± 25.2 pg/mL). In human serum we also identified the double dioxygenation isomer of 

LTB4, 5S,12S-diHETE (2,162.6 ± 515.5 pg/mL), PGE2 (72.5 ± 10.9 pg/mL) and PGD2 

(271.0 ± 57.7 pg/mL) (Colas et al., 2014). The unesterified precursors and monohydroxy-

EFA products that can serve as biosynthetic pathway markers of utilization were also 

identified and quantitated. In a separate study, LXB4 increases survival of mice with CLP-

induced sepsis regulated by NLRP3 inflammasome (Lee et al., 2017).

To provide a benchmark for cross-laboratory validation by our new approach, we assessed 

human pooled plasma obtained from NIST (www.nist.gov), as a standard reference material 

(SRM 1950) that is available to all interested investigators. This composite sample contained 

plasma from 100 individuals with equal number of men and women ages 40–50. The racial 

distribution reflects US population (for reference, see www.nist.gov). We identified in these 

the DHA, EPA and AA bioactive metabolomes, which represented ~40.3%, 40.1% and 

19.6% respectively of the targeted LM pathways. From DHA metabolome, we identified D-

series resolvins RvD1 (2.6 ± 0.1 pg/mL), RvD5 (1.2 ± 0.3 pg/mL) and RvD6 (58.1 ± 5.2 

pg/mL) and the maresin 4S,14S-diHDHA. From AA metabolome, we identified the 

leukotriene 5-LOX pathway product LTB4, as well as the prostaglandins, PGD2 and PGE2. 

Human plasma contained ~10–100 times less LMs than serum recoveries. This finding 

suggests that upon activation of peripheral blood bioactive LM-SPM increase. A LM index 

is obtained by taking the ratio of the SPM summation, i.e. LX, D- and E-series Rv, MaR1, 

PD1 and related pathway isomers (i.e. epoxide intermediate hydrolase products such as D12-

trans-MaR1 and 7-epi, D12-trans-MaR1) divided by the summation of prostanoids and 

leukotrienes. This value, 5.4, is higher in SRM1950 plasma compared to 2.2 obtained for 

serum.

Individual signature profiles of LM-SPM from human peripheral blood

Data-driven modeling such as PCA is useful to interrogate large biological datasets such as 

metabolomics (Janes and Yaffe, 2006). LM-SPM profiles obtained with SRM 1950 (human 

plasma composite 100 individuals) and human serum composites (~300 individuals, ~100 

subjects in each composite) as well as fresh plasma and serum from healthy individual 

donors were assessed using PCA (Colas et al., 2014). LM are displayed in three-dimensional 

space consisting of three principal components, illustrated in Figure 3. They were calculated 

from the systematic variation in the data matrix consisting of the overall bioactive LM 

identified in each sample. This included ~75 % of the variation of the entire dataset (n=42, 

where n=each LC-MS-MS profile). Gray ellipse in the score plot denotes 95 % confidence 

regions. This region diagnosis strong outliners based on Hotelling’s T squared equation (see 

http://www.itl.nist.gov/div898/handbook/). Principal component 1 showed distinct 

separation between the plasma cluster and serum cluster. The loading plot demonstrated that 

the serum cluster displayed lower LTB4 levels and higher levels of lipoxins, resolvins, 

protectins, maresins, and prostaglandins compared to plasma for both SRM 1950 reference 

and fresh plasma. In these, plasma samples showed a tight cluster of LM while serum proved 

more dispersed (Colas et al., 2014).
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As a demonstration of this approach using targeted LM metabololipidomics, we investigated 

endogenous LM in human lymph nodes and spleens given their roles in immune function. 

Each bioactive LM, SPM and/or pathway markers is identified. For example, in human 

axillary lymph nodes, we identified D-series resolvins, RvD1 (5.5–48.6 pg/100 mg tissues), 

RvD5 (1.9–9.4 pg/100 mg tissues) and RvD6 as well as the E-series resolvin, RvE3 (Isobe et 

al., 2012a). Human lymph nodes also contained LXA4 (16.4–114.3 pg/100 mg tissues) and 

LXB4 (9.9–101.1 pg/100 mg tissues), as well as pro-inflammatory LTB4 (0.7–3.8 pg/100 mg 

tissues) and its related double lipoxygenase product 5S,12S-diHETE (3.0–50.8 pg/100 mg 

tissues). In these, prostanoids were also identified, with PGE2 at levels significantly higher 

than other prostanoids. We identified LM from each metabolome in human spleens. These 

included RvD5 from the D-series resolvins, the protectins (PD1 and 10S,17S-diHDHA) as 

well as the maresins, MaR1 (22.6 pg/100 mg tissues) and its double dioxygenation product, 

7S,14S-diHDHA (46.1 pg/100 mg tissues). In these, we identified E-series resolvins RvE1, 

RvE2 and RvE3 as well as LXA4 (5.7–122.9 pg/100 mg tissues). Of the prostanoids, we 

identified PGD2, PGE2 and PGF2µ. Results from these studies clearly demonstrate that 

omega-3-derived SPM from the 3 main bioactive metabolomes as well as eicosanoids were 

present in human lymphoid tissues.

Functional metabolomics: LM-SPM signature profiles in human plasma and phagocytosis

We questioned whether EFA and low dose ASA intake could impact circulating LM-SPM in 

a small group of healthy human volunteers (n=10) (Figure 3). Plasma LM profiles of healthy 

volunteers after EPA, DHA and ASA intake were investigated using LC-MS-MS 

metabololipidomics, and the functional impact was assessed in the same whole blood from 

each subject using bacterial phagocytosis. Since each SPM is known to increase bacterial 

uptake by phagocytes at concentrations in pM to nM range (Chiang et al., 2012; Dalli and 

Serhan, 2012), phagocytosis of E. coli was assessed in this human experiment. The fresh 

plasma from individual healthy volunteers displayed similar LM signature profiles as those 

present in the NIST standard reference SRM 1950 (Colas et al., 2014).

To investigate whether PUFA substrate supplementation and low-dose aspirin are causally 

related to changes in LM-SPM profiles, we carried out PLS-DA with results from n = 10 

healthy subjects (illustrated in Figure 3). The two principal components, calculated using the 

data matrix, showed clear separation between the time zero cluster and 4h cluster. In 

addition, PLS-DA loading plot demonstrated a positive association of n-3 EFA and ASA 

intake with elevated RvD1, RvD2, 17epi-PD1, RvE2 and RvE3. TxB2 decreased ~75%. This 

reduction is in accordance with ASA mode and duration of action in humans (Higgs et al., 

1987). With PUFA supplementation, prostaglandin and TxB2 were also reduced. 

Phagocytosis of live E. coli by phagocytes in whole blood increased at 4 h and positively 

correlated (r2 = 0.77) with increased levels of RvD1, RvD2, RvE2, RvE3 and 17epi-PD1 in 

human plasma (Colas et al., 2014 and Figure 3). This approach establishes rigorous 

identification criteria for the resolvin, protectin and maresin families of n-3-derived local 

SPM from human peripheral blood (serum and plasma) and other tissues employing MS-

MS-based profiling of their biosynthetic pathways.
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The SPM as well as LTB4 and prostanoids were identified in these tissues at levels 

commensurate with their known bioactive ranges in vivo (ng levels). For example, results 

(Colas et al., 2014) indicate that LXA4 was present in human peripheral blood serum and 

lymphoid tissues (i.e. spleen and lymph nodes); also present were RvD1, RvD2, RvD3 and 

RvD5, and the E series resolvins RvE1, RvE2 and RvE3. RvE3 is a newly identified 

bioactive resolvin (Isobe et al., 2012a). Also, D-series resolvins RvD1 and RvD2 were 

recently identified using mass spectral-based methods in human blood samples (Mas et al., 

2012) as well as E-series RvE1 and RvE2 (Oh et al., 2011). With this new approach, the 

relationship(s) between each of these mediators and their biosynthetic pathways can be 

assessed. Bioactive mediators from EFA including each of the AA, DHA and EPA bioactive 

metabolomes are amenable to profiling from tissues; their respective relationships and 

summation index appears to provide information regarding the potential inflammatory 

and/or resolution status of a given target tissue.

Lipidomics vs. LM-SPM metabololipidomics: Focus on pathway and function

Biosynthesis of the potent EFA-derived mediators involves epoxide-containing intermediates 

(Serhan, 2004; Serhan et al., 2000; Haeggstrom and Funk, 2011; Shimizu, 2009; Oh et al., 

2011). In the case of leukotriene A4, the epoxide intermediate is precursor to 

stereochemically-defined LTB4, which reflects its enzymatic formation. In parallel, the non-

enzymatic aqueous hydrolysis of the epoxide LTA4 leads to two major isomers, (5,12-

dihydroxy-eicosatetraenoic acid) and two minor (5,6-vicinal diols) isomers (Samuelsson, 

1983a). Hence, focusing on the evaluation and relationship between LTB4 and its non-

enzymatic related isomers gives a signature profile indicative of the central role of 5-LOX in 

the biosynthesis of LTA4. In this regard, 5-HETE, which is produced from the 5-

hydroperoxyeicosatetraenoic acid (5-HpETE) intermediate in this leukotriene pathway, can 

be used as a biosynthetic pathway biomarker reflecting its reduction from 5-HpETE in the 

AA metabolome.

In the SPM metabolomes, 17-HDHA serves as a marker of the biosynthetic conversion of 

DHA via, for example, human 15-LOX type I for D-series resolvins and protectins (Serhan 

et al., 2002; and reviewed in Serhan and Petasis, 2011) and 14-HDHA, a marker of 

activation of the maresin pathway (Fig. 1) via the 14-lipoxygenation carried out by the 12-

LOX (Serhan et al., 2012; Serhan et al., 2009). Hence, the relative amounts of each 

individual bioactive LM-SPM, their biosynthetic isomers, namely Δ12-trans-MaR1, Δ15-

trans-PD1, and biosynthetic pathway markers including 5-HETE, 12-HETE, 17-HDHA, 14-

HDHA provide a LM-SPM signature that reflects the status of a particular organ and/or 

phenotype.

In addition to resolving inflammatory exudates (Serhan et al., 2002), the SPM are also 

produced by human peripheral blood leukocytes (Oh et al., 2011; reviewed in Serhan and 

Petasis, 2011). RvE1 (100–400pg/mL) was identified in human plasma at 4h after EPA (1g) 

and ASA (160mg) supplementation using MS3 (Arita et al., 2005). We also found that p450 

and COX-2 without aspirin can produce RvE1 in human cells if ample substrate is present 

and both 18S and 18R versions of RvE1 and RvE2 are produced (Oh et al., 2011). Present 

results demonstrated that without known supplementation, RvE1 was identified in serum 
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(both commercial and fresh) as well as in fresh plasma. Its absence in SRM1950 might 

reflect a dilution effect with the 100 selected individuals or RvE1 lability in these samples, 

as it degrades without addition of methanol. Of note, Psychogios et al (2011) reported RvE1 

(182pg/mL) in plasma from a cohort of 70 individuals. This value is similar to present values 

found after EPA supplementation in other healthy subjects. This could reflect differences in 

diet. Psychogios et al. (2011) also identified RvD1 at 17 pg/mL. Mas and colleagues (2012) 

identify RvD1, 17epi-RvD1 and RvD2 in both human plasma and serum following EFA 

supplementation for several weeks at levels commensurate with those we identify here in 

human serum.

Omega-3 PUFA supplementation in human studies in some cases has given seemingly 

opposite results. Supplementation was protective in rheumatoid arthritis (Di Giuseppe et al., 

2013) and certain cardiovascular diseases (De Caterina, 2011) but also associated with 

increased risk of prostate cancer (Brasky et al., 2013). In these and similar human studies, 

the mechanism of n-3 remains a subject of discussion and emphasize the need for rigorous 

identification and functional LM-SPM profiling approaches (Colas et al., 2014; English et 

al., 2017). Using functional LM-SPM metabololipidomics and PLS-DA, we identified a 

cluster of pro-resolving mediators that were elevated with acute essential fatty acids and 

aspirin intake. The levels of SPM were within their bioactive ranges and positively 

correlated (r2=0.77) with increased function, e.g. an enhanced E. coli phagocytosis in whole 

blood from these subjects. These findings are in accordance with recent findings that SPM 

enhance bacterial killing in mice, lowering antibiotic requirement (Chiang et al., 2012). 

Results from SPM functional profiling also underscore the utility of this approach in 

determining the potential resolution status of an individual or a target organ following EFA 

intake. Diets rich in omega-3 PUFA increase both resolvins and protectins in model 

organisms (Jones et al., 2013) whereas SPM such as PD1 are reduced in disease as described 

in human asthma patients (Levy et al., 2007; Miyata et al., 2013), where LM can be 

regulated with increased omega-3 supplementation of asthmatics (Lundstrom et al., 2013).

Using profiling of specific n-3 and n-6-derived bioactive EFA-metabolomes with reference 

human tissues that can be used by different laboratories and investigators for instrument and 

LM-SPM calibration as documented (Colas et al., 2014; English et al., 2017) can provide 

information of potentially diagnostic and therapeutic value. Widely used assessment of 

omega-3 fatty acids incorporated in red blood cell membranes is very useful, along with the 

omega-3 index that correlates with this membrane compartment and functional outcomes to 

evaluate the availability and intake of n-3 PUFA (Tan et al., 2012). Importantly, rigorous 

LM-SPM profiling is needed because human resolution phenotypes have only recently 

emerged in healthy individuals (Morris et al., 2010b) and those undergoing surgery (Pillai et 

al., 2012). Their biosynthetic pathways give rise to specific stereochemistry for each of these 

local mediators (Serhan and Petasis, 2011) and thus specific signature profiles in human 

tissues (Colas et al., 2014; Dalli and Serhan, 2012; English et al., 2017). To this end, we 

used LC-MS-MS-based LM-metabololipidomics together with authentic biologically 

derived and synthetic standards to establish signature profiles with human tissues. Results 

from earlier studies established that eicosanoids derived from arachidonic acid are potent 

pro-inflammatory mediators (Samuelsson, 1983a; Haeggstrom and Funk, 2011) save the 

lipoxins, which display local anti-inflammatory and pro-resolving actions (Serhan and 
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Petasis, 2011; Borgeson and Godson, 2012). Thus, our LC-MS-MS-based profiling approach 

will permit assessment of when and where individual metabolites are physiologically active 

and in concentrations to serve as proresolving mediators in model organisms as well as in 

human health and disease.

With human subjects, we found that amounts of specific SPM are substantially increased 

with increased availability of substrate intake. For example, NPD1/PD1 in plasma, RvE2 

and RvE3 as well as D-series resolvins RvD1 and RvD2 each increase at 4 h post-PUFA 

administration (Colas et al., 2014). Sample storage before solid-phase extraction and LC-

MS-MS injections proved critical in capturing the MS-MS to identify prostanoids and SPM. 

For example, at 4 weeks of sample storage, >70% of MaR1 is lost, > 50% of RvE1, and 

>50% of RvD1 is lost, presumably by degradation. This loss of LM-SPM in storage was also 

obtained with lipoxins, where >50% of LXB4 and almost 40% of LXA4 are quantitatively 

lost in sample storage. For a list of individual LM-SPM losses during storage of human 

serum samples and recoveries, see Colas et al. (2014). The chemical stability of SPM in 

tissue matrix is likely organ- and individual mediator-dependent. We therefore take samples 

for workup and LC-MS-MS profiling as soon as possible to minimize potential losses of 

SPM.

Several research groups have identified and measured SPM in human plasma, which 

increase with supplementation of n-3 PUFA; recently reviewed in Barden et al. (2016a). In a 

randomized trial with chronic kidney disease in 74 patients, RvD1 and upstream SPM 

precursors and pathway markers 18-HEPE (Figure 1) and 17-HDHA increased after 8 weeks 

of n-3 PUFA supplementation (Mas et al., 2016). In serum from arthritis patients, we 

identified RvD1, RvD3 RvD4 and other LM of interest in joint inflammation (Arnardottir et 

al., 2016b). RvD3 administered to arthritic mice reduced joint leukocytes, edema and 

clinical scores. Also, in synovial fluid of rheumatoid arthritis patients, RvD1 and RvD3 

along with eicosanoids were identified via LC-MS-MS-based metabololipidomics (Norling 

et al., 2016). There is longstanding interest in PUFA, particularly n-3 PUFA, in pathogenesis 

and chronic inflammation in the joints (Norling and Perretti, 2013). Recently Barden et al. 

(2016b) compared knee effusions and plasma of arthritis patients taking 2.4 g/day of n-3 

PUFA for 4 weeks. They identified E-series resolvins, D-series resolvins, protectins (PD1, 

PDx) and MaR1 in synovial fluid and plasma. Importantly, plasma SPM in the arthritic 

patients were found to be negatively related to erythrocyte sedimentation rate, which is an 

index of inflammation (Barden et al., 2016b). Also, in this study, RvE2 in synovial fluid was 

negatively associated with patient pain scores. These findings suggest that n-3 PUFA 

increase plasma and local levels of SPM that in turn reduce pain in patients, providing a 

mechanism for n-3 and SPM in reducing symptoms of arthritis. This is supported by a recent 

randomized crossover study with arthritis patients supplemented with microalgae DHA that 

reported increases in 14-HDHA and 17-HDHA from supplementation (Dawczynski et al., 

2017).

In coronary artery disease patients, Lovaza (3.36 g daily) increased RvE2, RvD6 and the 

17R aspirin-triggered (AT) forms of AT-RvD3, AT-LXB4 and AT-PD1 (Elajami et al., 2016). 

In these CAD patients not taking Lovaza, SPM were absent, suggesting that increased 

substrate can functionally impact the disease, since these SPM increased the phagocytosis of 
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fibrin clots by human macrophages ex vivo (Elajami et al., 2016). In obese women, n-3 

PUFA increase SPM, resolvins and up-regulated 15-LOX and ALX receptor (Polus et al., 

2016).

SPM profiles temporally change during ICU hospitalization, and their levels in relation to 

eicosanoids in sepsis correlate with survival and development of acute respiratory distress 

syndrome (Dalli et al., 2017b). Human periodontal stem cells release SPM as well as 

lipoxins and prostaglandins that are functional (Cianci et al., 2016). Human tears (English et 

al., 2017) and, for example, breast milk also possess bioactive amounts of SPM (Figure 3B). 

SPM in milk stimulate resolution of inflammation in vivo in mice (Arnardottir et al., 2016a). 

Umbilical cord blood from mothers supplemented with n-3 PUFA showed increases in SPM 

biosynthetic pathway markers 17-HDHA and 14-HDHA (Fig. 1) from the maresin pathway 

(Mozurkewich et al., 2016).

Human skin blisters are an ideal setting to test the principles of resolution of acute 

inflammation in vivo and their direct relationship to LM and specifically resolvins and other 

SPM. Morris et al. (2010a) demonstrated the duration and severity of acute inflammation 

and leukocyte trafficking was associated with the activation of pro-resolution pathway and 

that oral administration of aspirin in vivo (low dose) increases the aspirin-triggered 15-epi-

lipoxin to functional levels within blister inflammatory exudates (Morris et al., 2009). 

Recently, Rathod et al. (2017) identified resolvins and other SPM in skin blisters formed in 

response to cantharidin application. Exudates from females had higher amounts of SPM, 

particularly D-series resolvins, that was associated with accelerated resolution of 

inflammation compared to males. With E. coli-activated inflammation in human blisters, 

Motwani et al. (2017) obtained evidence for local SPM biosynthesis as well as SPM 

receptors appearing during the inflammation-resolution sequence in vivo. Direct evidence 

for SPM’s ability to stimulate resolution was obtained with local intrablister injections of 

specific SPM (LXB4, RvD1, RvE1), which accelerated resolution of PMN numbers in vivo 

(Motwani et al., 2017). Hence, these results provide additional evidence indicating that SPM 

function in vivo in humans at the concentrations in which they are produced locally during 

microbial challenge.

Novel SPM in Resolution of Inflammation, Pain and Tissue Regeneration

The relation between inflammation, wound response of the host and tissue regeneration is of 

wide interest (Eming et al., 2017). Macrophages play critical roles in wound healing and 

tissue regeneration. Maresins (macrophage-derived resolution mediators) produced via 14-

lipoxygenation of DHA (Fig. 1B) appear well suited to engage in healing and tissue 

regeneration. Maresins are produced by MΦ and carry potent proresolving actions, reducing 

inflammation and stimulating efferocytosis of dead PMN and apoptotic cell debris (Serhan 

et al., 2009). Maresin 1 (MaR1) is assigned the complete stereochemistry 7R,14S-

dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid; biosynthesis from DHA is 

established (Serhan et al., 2012), including the assignment and bioactions of the pathway 

epoxide intermediate 13S,14S-epoxy-maresin (13S,14S-eMaR), which also proved to 

possess new potent proresolving mechanisms (Dalli et al., 2013b). Along with serving as a 

precursor for the enzymatic conversion to MaR1 and MaR2 (Deng et al., 2014), 13S,14S-
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eMaR blocks LTA4 hydrolase production of LTB4 (Dalli et al., 2013b), reduced conversion 

of arachidonic acid via human 12-LOX and promoted M1 MΦ conversion to the M2 

phenotype.

Since the repertoire of pathways needed for tissue regeneration is likely to be highly 

conserved in evolution, we focus on a primordial model organisms to address the potential 

functions of novel lipid mediators (Serhan et al., 2012). The Platyhelminthes (e.g. Dugesia 
tigrina, also known as planaria) are small organisms that are capable of rapid tissue 

regeneration. We first questioned whether MaR1 had a role in this critical process. When 

planaria are surgically injured by removing their anterior portions and exposed to 

proresolving mediators such as MaR1 or RvE1, the rate of regeneration is enhanced (Serhan 

et al., 2012). MaR1-enhanced tissue regeneration is concentration dependent, and surgically 

injured planaria biosynthesize MaR1 from DHA. The accelerated tissue regeneration was 

monitored quantitatively in an unbiased fashion by introducing a tissue regeneration index 

that gave a linear regression coefficient of r2 = 0.836, with MaR1 in the nanomolar range.

The biological actions of MaR1 are stereospecific, since related isomers were found to be 

less effective in also stimulating human MF phagocytosis and apoptotic neutrophils (Serhan 

et al., 2012). MaR1 also reduces pain in vivo and inhibits TRPV1 currents, IC50 (nM) and 

TRPA1 current. In dorsal root ganglion (DRG) cell culture, pertussis toxin treatment blocked 

MaR1 actions, implicating a Gαi-coupled GPCR. MaR1 also dramatically reduces 

vincristine-initiated neuropathic pain in a cancer chemotherapy model (Serhan et al., 2012) 

and in temporomandibular joint pain (Park, 2015). MaR1 reduces inflammatory bowel 

disease (Schwanke et al., 2016), reduces fibrosis (Tang et al., 2017) and diet-induced obesity 

in mice (Martinez-Fernandez et al., 2017). MaR1 prevents atheroprogression in mice (Viola 

et al., 2016) and has direct actions on human platelets (Lannan et al., 2017) and human 

phagocytes (Wang et al., 2015). These results in diverse animal models confirm the potent 

proresolving actions of MaR1 and emphasize the importance of this separate biosynthetic 

pathway (Fig. 1B). MaR1 modulates T-cell responses (Fig. 2) (Chiurchiu et al., 2016) and is 

found in human tears (English et al., 2017).

MCTRs

The levels of potent leukocyte agonists decline during the later phase of the self-limited 

inflammatory response (Chiang et al., 2012), opening the possibility that other signals may 

be produced that regulate leukocyte responses to promote tissue repair and regeneration. 

Given the pivotal roles of chemical signals in infections, we investigated whether mediators 

within self-resolving infections could regulate tissue repair and regeneration without 

immunosuppression. Since maresin 1 (7R,14S-dihydroxydocosa-4Z,8E,10E,12Z,16Z,19Z-

hexaenoic acid; MaR1) displays potent pro-resolving and tissue regenerative actions, we 

investigated whether new undescribed chemical signals are produced during self-limited 

infections that regulate tissue regeneration. Along these lines, we identified a new pathway 

and mediators in planaria, mice and human tissues that promote repair and regeneration 

during infection. Identification of the first two new sulfido-conjugate (SC)-containing 

mediators provides the initial evidence for autacoids produced during the resolution of live 

infections that signal innate host responses and accelerate repair (Dalli et al., 2014).

Serhan et al. Page 13

Mol Aspects Med. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To obtain self-resolving infectious exudates in order to assess the impact of this process on 

tissue regeneration, we used murine Escherichia coli (E. coli) peritonitis relevant to human 

infections and mapped leukocyte trafficking. E. coli inoculation at 105 colony-forming units 

(CFU)/mouse i.p. initiates a self-limited inflammatory response that reaches maximal 

neutrophil infiltration at 12h and subsequently declined (Fig. 4). Monocyte/macrophage 

numbers increased between 4 and 24h demarking onset of the resolution phase. In these 

experiments, we isolated products from resolving infectious exudates (i.e. 24h) and assessed 

their ability, with planaria, to stimulate tissue regeneration. Since MaR1 stimulates tissue 

regeneration (Serhan et al., 2012) and elutes within methyl formate fractions from C18 

solid-phase extractions, we sought evidence for chemical signals in distinct chromatographic 

fractions. In these experiments, we assessed eluates in methanol fractions for new signals 

that displayed tissue regenerative properties (Dalli et al., 2014).

Planaria undergo both restorative and physiological regeneration utilizing evolutionarily 

conserved pathways, making this an ideal system (Sanchez Alvarado, 2006) for us to 

identify new chemical signals involved in tissue regeneration. For these studies, planaria 

(Dugesia japonica) were injured on day 0 and time-dependent head regeneration monitored. 

To quantitate regeneration, we devised and calculated a tissue regeneration index (TRI) 

(Dalli et al., 2014). Following head resection or surgical removal, regeneration ensued, 

giving a TRImax (maximum tissue regeneration) at 6 days and T50 (the interval at which 50% 

regeneration, TRI50, occurred) ~4.3 days (Fig. 4, right panel). Isolates from 24h infectious-

resolving exudates dose-dependently accelerated head regeneration (r2=0.91) as early as 2 

days after surgery, shortening T50 to ~3.3 days. For direct comparisons, maresin 1 (Fig. 4, 

right panel) accelerates this regenerative process to essentially the same extent as the new 

materials from resolving E. coli exudates. Towards human translation, and because human 

milk carries nutrients and is appreciated to have products relevant to infant development and 

immune status (Calder et al., 2006), we also examined the tissue regenerative properties of 

human milk isolates obtained using the same chromatographic fractions. In these 

incubations of planaria with human milk isolates, we obtained clear dose-dependent 

acceleration of regeneration with reduced T50 from ~4.3 to ~3.5 days (Dalli et al., 2014). 

These findings demonstrate that both mouse resolving-exudates and human milk possess 

tissue regenerative properties that elute within the methanol fractions from solid-phase C18 

extractions.

Since 14S-hydro(peroxy)-docosahexaenoic acid (14S-HpDHA) is the product of human MΦ 
12-LOX biosynthetic precursor to maresins (Serhan et al., 2009), we prepared and tested 

14S-HpDHA as a potential precursor of these regenerative molecules. Human MΦ incubated 

with 14S-HpDHA also gave these new products. Each product gave ultraviolet (UV)-

chromophores with maximum absorbance at 280nm and shoulders at 270nm and 295nm in 

reverse phase-high pressure liquid chromatography mobile phase (Fig. 5), characteristic of a 

conjugated triene double bond system coupled to an auxochrome allylic to the triene such as 

sulphur (Samuelsson, 2012, 1983b). This was corroborated in experiments with a 

desulphurization reagent, Raney Nickel (Samuelsson, 2012, 1983b), that gave 14-HDHA as 

product. These results together with MS-MS fragmentation indicated a 13-glutathionyl,14-

hydroxy- and 22-carbon backbone that originated from precursor DHA (Fig. 5) and 

therefore this sulfido-conjugated product I was coined MCTR1.
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To gain further evidence for this deduced structure (Fig. 5), we assessed deuterium 

incorporation in MCTR1 and MCTR2 with human MΦ and d5-14S-HpDHA (Dalli et al., 

2014). The d5-MCTR1 gave the expected 5-Dalton shift in the parent ion mass, from m/z 

650 to m/z 655, as well as in the m/z of fragments containing carbons 21 and 22, including 

that resulting from a diagnostic 14–15 carbon break, which increased in mass from m/z 109 

to m/z 114. The glutathione conjugate structure was corroborated by treating the bioactive 

products with diazomethane followed by MS-MS analysis. This was also employed to 

elucidate the structure of the products, i.e. 13-cysteinylglycinyl, 14-hydroxy-

docosahexaenoic acid (Fig. 5). These two new structures were identified in infectious mouse 

exudates, human milk, human MF and planaria (Dalli et al., 2014). Their structures were 

deduced from chemical degradation, label tracking and mass spectrometry studies along 

with assessing their respective actions in diverse biological systems that suggest the 

molecules are highly conserved structures and function in controlling infection and tissue 

regeneration.

Given these structures and biological actions, the new family of macrophage-derived pro-

resolving and tissue regenerative molecules was coined maresin conjugates in tissue 

regeneration (MCTR). Administration of MCTR1 and MCTR2 (Fig. 5), to mice with E. coli 
peritonitis, shortened the resolution interval (Ri) from Ri ~ 20 h to ~ 10 h, demonstrating 

their potent proresolving actions in inflammation and infections. With human MΦ, both 

MCTR stimulate efferocytosis, with MCTR2 > MCTR1 in potency with an apparent 

maximum of ~1 nM, and are organ protective from PMN-mediated reflow tissue injury 

(Dalli et al., 2014).

Using lipid mediator profiling we recently identified MCTR in human serum, lymph nodes 

and plasma, and investigated MCTR biosynthetic pathway in human macrophages. With 

human recombinant enzymes, primary cells and enantiomerically pure synthetic compounds 

prepared for these studies, the synthetic maresin epoxide intermediate 13S,14S-eMaR (13S,

14S-epoxy- 4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid) is converted to MCTR1 (13R-

glutathionyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) by 

Leukotriene C4 Synthase (LTC4S) as well as Glutathione S-transferase Mu 4 (GSTM4) (Fig. 

6). Of interest, human macrophages exposed to LTC4S inhibitors such as BAY-X-1005 or 

MK886 blocked LTC4 production and increased both resolvins and lipoxins, indicating that 

these inhibitors stimulate the endogenous production of proresolving mediators.

The conversion of MCTR1 to MCTR2 13R-cysteinylglycinyl, 14S-hydroxy-4Z,7Z,9E,11E,

13R,14S,16Z,19Z-docosahexaenoic acid is catalyzed by γ-glutamyl transferase (GGT) in 

human macrophages (Fig 6). Biosynthesis of MCTR3 produced by dipeptidases cleaved the 

cysteinyl-glycinyl bond in MCTR2 to 13R-cysteinyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,

16Z,19Z-docosahexaenoic acid. Both GSTM4 and GGT enzymes displayed higher affinity 

to 13S,14S-eMaR and MCTR1 when compared to their classic substrates in the cysteinyl 

leukotriene metabolome (Dalli et al., 2016b). The MCTR biosynthetic pathway is 

established, and their roles in tissue repair and regeneration confirmed with synthetic 

MCTR. Among the three MCTR, MCTR3 proves to also possess potent bioactions (Fig 6).
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Having identified the newest MCTR3 (Fig. 6) and established rank order potencies via 

matching the stereochemistries of MCTR1, MCTR2 and MCTR3 with material prepared by 

total organic synthesis and mediators isolated from both mouse and human systems. MCTR3 

was produced from endogenous substrate by E. coli activated human macrophages and 

identified in sepsis patients (Dalli et al., 2016a). The three synthetic MCTR dose-

dependently (1–100nM) accelerated tissue regeneration in planaria by 0.6–0.9 days. When 

each MCTR is administered at the onset or peak of inflammation in mice, each promoted 

resolution of E. coli infections. They increased bacterial phagocytosis by exudate leukocytes 

(~15–50%), limited neutrophil infiltration (~20–50%), promoted efferocytosis (~30%) and 

reduced eicosanoids. MCTR1 and MCTR2 upregulated human neutrophil and macrophage 

phagocytic responses where MCTR3 also proved to possess potent actions. The first 

synthesis of MCTRs was achieved by Rodriguez and Spur (2015). The complete 

stereochemistry and rank order potencies for MCTR1, MCTR2 and MCTR3 are established 

at this point and provide novel resolution signals in regulating responses to clear infections 

and signal to promote tissue regeneration (Dalli et al., 2016a).

Discovery of PCTR and RCTR

Spleens from self-limited infections, namely infectious resolving exudates in mice, human 

spleens (Borges da Silva et al., 2015; Mebius and Kraal, 2005) and blood from sepsis 

patients, each contain new mediators that also carried conjugations with glutathione (Dalli et 

al., 2015b). Each mediator obtained from resolving infectious exudates stimulates tissue 

regeneration and the removal of bacteria by human macrophages. Their structures were 

systematically elucidated, and their biosynthesis from DHA was determined (Figs. 7 and 8). 

The six new conjugated mediators stimulated phagocytosis, bacterial killing and 

efferocytosis of apoptotic cells and enhanced tissue regeneration in planaria as a bioassay 

model organism (Dalli et al., 2015b).

The proposed biosynthetic schemes for the RCTRs including RCTR1, RCTR2 and RCTR3 

are shown in Figure 7. The PCTRs, including the new bioactive structures PCTR1, PCTR2 

and PCTR3, are shown in Figure 8. The structures of the PCTRs have been rapidly 

confirmed by total organic synthesis (Dalli et al., 2016b; Rodriguez and Spur, 2015), and the 

three new structures of the RCTRs have been confirmed by total organic synthesis 

(Rodriguez and Spur, 2017).

The protectins and their relationship to the PCTRs and resolvins are illustrated in Figure 8. 

Each bioaction of the new pathway is confirmed with synthetic RCTR and PCTR (Ramon et 

al., 2016), and their rank orders of potency are in progress (X. de la Rosa et al., manuscript 

in progress). The structural elucidation of the PCTRs, since they possess a carbon-17 alcohol 

group and conjugated triene structure, dictated that they belong to the protectin family along 

with NPD1/PD1 and 10S,17S-diHDHA, a.k.a. PDX (Serhan et al., 2006; Balas and Durand, 

2016), and the 17R- or aspirin-triggered protectin D1 (Serhan et al., 2011a). By a similar 

line of evidence, the RCTRs (Fig. 8) carried a carbon-17 position and conjugated tetraene 

belonging to the resolvin family. Key to their biosynthesis is the enzymatic production of an 

allylic epoxide that is enzymatically converted to the respective thiopeptides that are 
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bioactive (Figs. 8 and 9). The enzymatic biosynthesis of these pivotal allylic epoxides was 

recently reviewed in detail in Serhan et al. (2015b)

The 16S,17S-epoxy-protectin (Fig. 8) intermediate was synthesized by total organic 

synthesis and enzymatically converted to PCTR1 (Ramon et al., 2016). PCTR1 is pro-

resolving and is produced in greater amounts by human M2 macrophages than M1-

phenotype MΦ, and in vitro is produced by M2 MΦ in the same magnitude as cysteinyl 

leukotrienes (Ramon et al., 2016). Vagal stimulation regulates inflammation in a process 

termed inflammatory reflex (Chavan et al., 2017). Vagotomy controls the local production of 

pro-resolving mediators such as RvD1 (Mirakaj et al., 2014). Moreover, the right vagus 

nerve regulates peritoneal resolution tone in mice (Dalli et al., 2017a) with production of 

PCTR1 (Fig. 8) via ILC3. PCTR1 restores MΦ functions and stimulates resolution of 

bacterial infections in mice (Dalli et al., 2017a).

Summary

In summation, results from studies on self-limited acute inflammatory response clearly 

demonstrated that resolution is an active biosynthetic process that connects the first response 

of the innate immune system to active immunity with the structural elucidation of the 

specialized proresolving mediators including resolvins, protectins and maresins. The 

precursors for these mediators prove to be n-3 essential fatty acids that have long been 

suspected to play critical roles in organ protection and the innate immune response to control 

inflammation (Calder, 2013). This structural elucidation, complete stereochemical 

assignments of the SPM and identification of several of their G protein-coupled receptors 

opens up the possibility for resolution physiology and pharmacology. It also paves the way 

for a deeper appreciation of the role of nutrition and the essential fatty acids in these vital 

processes. We identified nine new mediators during bacterial infection that stimulate tissue 

regeneration; their structures and biosynthesis are reviewed here. Given that their backbone 

structures and biosynthesis are related to resolvins, protectins and maresins, they have been 

named accordingly MCTR, PCTR and RCTR. Now that their structures and complete 

stereochemical assignments are in place, it will be possible to assess their functions and 

mechanisms in further molecular detail in vivo. Profiling approaches to date for the 

resolution metabolome clearly establish the biosynthesis and actions of SPMs in humans 

that evoke proresolving responses in vivo in the concentrations at which they are produced 

locally. Hence, these pathways and mediators illustrate new proresolving mechanisms that 

the host utilizes to contain as well as return from challenge and tissue injury. They could 

provide a basis for new approaches to treating diseases and controlling excessive 

inflammation as well as to tissue regeneration using active resolution pharmacology. These 

now permit direct assessment of personalized resolution metabolome for medicine and 

nutrition.
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Abbreviations*

DHA docosahexaenoic acid

EPA eicosapentaenoic acid

LC-MS-MS liquid chromatography tandem mass spectrometry

LM lipid-derived mediators

LOX lipoxygenase

LT leukotriene

LX lipoxin

PG prostaglandins

MΦ macrophage

Maresins macrophage mediators in resolving inflammation

MCTR maresin conjugate in tissue regeneration

PCTR protectin conjugate in tissue regeneration

RCTR resolvin conjugate in tissue regeneration

PMN polymorphonuclear leukocyte

PD1/NPD1 protectin D1/ neuroprotectin D1

SPM specialized pro-resolving mediators *

Rv, Resolvins * bioactive omega-3 derived resolution phase interaction 

products

E series Rv resolvins from EPA

D series Rv resolvins from DHA
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Figure 1. SPM biosynthetic pathways and substrate mobilization
(A) Human SPM biosynthesis. Biosynthesis of E-series resolvins is initiated with molecular 

oxygen insertion at carbon-18 position of EPA, which is converted to bioactive E-series 

members resolvin E1, resolvin E2 and resolvin E3. Biosynthesis of D-series resolvins and 

Protectins are initiated by molecular oxygen insertion at carbon-17 position of DHA. 

Maresins are produced via initial lipoxygenation at carbon-14 position. The stereochemistry 

of each bioactive SPM is established, and SPM biosynthesis in human cells and tissues 

confirmed.

(B) Substrate mobilization. In murine inflammation, edema carries substrate DHA and EPA 

from circulating blood to local inflamed site for SPM production. In human neural tissues, 

phospholipids are the source of DHA, which is released by cPLA2 for PD1 formation. In 

lymph nodes, sPLA2G2D releases substrate to produce RvD1 and PD1 that reduce 

inflammation in the skin.
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Figure 2. Main Actions of SPM in the Innate Immune System: Pro-Resolution and Anti-
Inflammation Are Not Equivalent Mechanisms
The actions of SPM on innate immune system have been demonstrated with phagocytes 

including limiting PMN and stimulating macrophage functions. SPM also directly act on the 

adaptive immune cells, including T cells and B cells (see text for detail).
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Figure 3. Demonstrations of SPM Production in Humans
(A) Illustration of functional metabololipidomics: human SPM production and assessment of 

their function. At time zero, individuals all ingested 1 gram of omega-3, containing 50% 

EPA and 20% DHA. At 2h, they took low-dose aspirin (81 mg). At 4h, blood was collected 

to carry out LM-metabololipidomics together with PCA analysis. In parallel, whole blood 

from the same subjects were used for functional assessment with phagocytosis. Whole blood 

was incubated with fluorescent-labeled E. coli ex vivo, and phagocyte ingestion of E. coli 
measured by flow cytometry. A cluster of SPM was elevated with acute n-3 and ASA intake, 

and correlated with increased phagocyte function in whole blood. This approach provides a 

tool for functional metabololipidomics.

(B) Principal Component Analysis: Mastitis human milk gives altered LM-SPM profiles 

with higher levels of PG and LT, while healthy human milk contains higher amounts of 

SPM, including LX, Rv, PD and MaR1.
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Figure 4. 
Resolvin E. coli Infectious Exudate Isolates Contain New Molecules that Promote Tissue 

Regeneration. To determine whether new signals were produced during self-limited 

infections chemical isolates were tested for their regeneration capacity (Left panel). Addition 

of these molecules to surgically injured planaria accelerated tissue regeneration by 

approximately 1 day, an action that was comparable to that displayed by the proresolving 

mediators MaR1.
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Figure 5. 
Structure Elucidation of the Maresin Conjugates in Tissue Regeneration: Evidence for 

MCTR1 and MCTR2. Using several lines of evidence to interrogate the physical properties 

of the bioactive structures isolated from self-resolving infectious exudates, that included the 

incorporation of radiolabeled DHA, deuterium incorporation and methyl-ester derivatives as 

well as Rainey Nickel desulfurization and UV chromophores we established that the 

molecules carried a DHA backbone with conjugated triene double bond systems that was 

allylic to a peptide containing an auxochrome such as sulfur. Using these lines of evidence 

the structures were assigned as 13R-glutathionyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,

19Z-docosahexaenoic acid for MCTR1, and 13R-cysteinylglycinyl, 14S-hydroxy-4Z,7Z,9E,

11E,13R,14S,16Z,19Z-docosahexaenoic acid for MCTR2. These mediators are evolutionary 

conserved and their production was established in organisms as diverse as planaria, mice and 

humans.
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Figure 6. 
MCTR Biosynthesis and Structures. The MCTR biosynthetic pathway is initiated by 

lipoxygenation of DHA at carbon position 14 leading to 14S-hydro(peroxy)-4Z,7Z,10Z,12E,

16Z,19Z-docosahexaenoic acid, this is converted by lipoxygenase activity to 13S,14S-epoxy 

−4Z,7Z,9E,11E,16Z,19Z- docosahexaenoic acid. Conversion of this allylic epoxide is to 

MCTR1 is catalyzed by either glutathione s-transferase mu4 (GSTM4) and by leukotriene 

C4 synthase (LTC4S). MCTR1 is converted by gammaglutamyl transferase (GGT) to 

MCTR2 that in turn is substrate for conversion by dipeptidase (DPEP) to MCTR3.
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Figure 7. RCTR Biosynthesis and Structures
15-LOX type 1 is the initiating enzyme in the RCTR pathway which catalyzes the formation 

of 17S-hydro(peroxy)-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid via subsequent 

lipoxygenase activity this substrate is converted to 7, 8-epoxy, 17S-hydroxy-4Z,

9,11,13,15,19Z-docosahexaenoic acid that is precursor to RCTR1. This mediator is 

converted to RCTR2 that in turn produces RCTR3.
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Figure 8. PCTR Biosynthesis and Structures
Formation of 17S-hydro(peroxy)-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid from DHA 

by 15-LOX type 1 initiates the PCTR biosynthetic pathway. This hydroperoxide is converted 

to 16S,17S-epoxy-7Z,10Z,13E,14E,19Z- docosahexaenoic acid, this allylic epoxide is 

precursor to PCTR1, that is transformed to PCTR2 that is in turn precursor to PCTR3.
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