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Abstract

Many children with hearing loss (CHL) show a delay in mathematical achievement compared to 

children with normal hearing (CNH). This study examined whether there are differences in acuity 

of the Approximate Number System (ANS) between CHL and CNH, and whether ANS acuity is 

related to math achievement. Working memory (WM), short-term memory (STM), and inhibition 

were considered as mediators of any relationship between ANS acuity and math achievement. 

Seventy-five CHL were compared with 75 age and gender-matched CNH. ANS acuity, 

mathematical reasoning, WM, and STM of CHL were significantly poorer compared to CNH. 

Group differences in math ability were no longer significant when ANS acuity, WM, or STM were 

controlled. For CNH, WM and STM fully mediated the relationship of ANS acuity to math ability; 

for CHL, WM and STM only partially mediated this relationship. ANS acuity, WM, and STM are 

significant contributors to hearing status differences in math achievement, and to individual 

differences within the group of CHL.

Keywords

approximate number system; mathematics; hearing loss; deaf; working memory; short-term 
memory; inhibition

The numerical knowledge that young children have when they enter school has significant 

long term consequences on continued mathematical learning throughout school (Duncan et 

al., 2007; Geary, 2011; Jordan, Kaplan, Ramineni, & Louniak, 2009). Poor numeracy 

contributes to socioeconomic status in adulthood (Ritchie & Bates, 2013), and impacts long-

term psychological well-being (see Gross, 2009, for a review). In seeking to understand why 

some individuals have poor numerical and mathematical skills it is important to examine 

core skills thought to be fundamental to their acquisition and continued development. The 

current study examines acuity of non-symbolic numerical representations, also known as the 

approximate number system (ANS), which is argued to be a central component of ‘number 
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sense’. The study also considers the contribution of ANS acuity in predicting math 

achievement beyond domain-general abilities.

A particular focus of the current study is children with hearing loss (CHL). CHL show 

delays in abstract counting (counting without the support of concrete manipulatives), 

understanding of counting principles, and slower progress in standardised mathematic 

achievement tests that require more than just arithmetic (for a review see Gottardis, Nunes, 

& Lunt, 2011). Such delays have been ascribed to deficits in early experiences with 

quantitative concepts (Kritzer, 2009a, b; Nunes & Moreno, 2002), and sensory- and 

language-based differences in the ways that CHL and CNH process information (Marschark, 

Spencer, Adams, & Sapere, 2011). Whether or not CHL have a deficit in the ANS has not 

been considered in detail in previous studies. Furthermore, deficits in the ANS may be 

associated with other cognitive abilities involved in math and that have been demonstrated to 

differ in CHL and children with normal hearing (CNH), e.g., inhibition and memory.

ANS and Math Achievement in CNH and CHL

The ANS provides approximate abstract representations of number that enable us to make 

estimations of quantity and compare sets of objects for numerosity, either before we are able 

to count or make use of symbols or for quantities that are too large or appear too quickly to 

count. The accuracy of quantity discriminations is restricted by the ratio difference of the 

quantities being compared. For example, a comparison of 27 to 30 items (ratio of 0.9) is 

more difficult than a comparison of 12 to 15 items (ratio of 0.8) despite the absolute 

difference between them both being 3. Therefore, the closer the ratio is to 1, the more 

difficult the magnitude discrimination will be.

Acuity of the ANS improves throughout development; 6 month old infants can discriminate 

visual and auditory arrays at a ratio of 1:2 (e.g., Lipton & Spelke, 2003; Xu, Spelke, & 

Goddard, 2005), and by 9 months old are able to discriminate at a ratio of 2:3 (Libertus & 

Brannon, 2010; Wood & Spelke, 2005). Halberda and Feigenson (2008) reported 

discrimination limits of approximately 3:4 at age 3, 4:5 at age 4, 5:6 at age 5 to 6, and 10:11 

in adults. The source of refinement of ANS acuity is widely debated, with possibilities 

including maturation of supporting neural structures, incidental learning opportunities, and 

the corresponding development of other domain-general skills that may influence math and 

ANS task performance (Halberda & Feigenson, 2008). Other studies suggest that differences 

in formal mathematics education may lead to individual differences in the refinement of the 

ANS (Guillaume, Nys, Mussolin, & Content, 2013; Lindskog, Winman, & Juslin, 2014; Nys 

et al., 2013; Piazza, Pica, Izard, Spelke & Dehaene, 2013).

In a seminal study, Halberda, Mazzocco, and Feigenson (2008) revealed a retrospective 

relationship between ANS acuity (measured at age 14 years) and math achievement 

(measured annually from the ages of 5 to 11). Subsequently, a number of studies have shown 

the ANS to play an important role in children’s mathematical learning (e.g., Desoete, 

Ceulemans, De Weerdt, & Pieters, 2012; Gilmore, McCarthy, & Spelke, 2010; Inglis, 

Attridge, Batchelor, & Gilmore, 2011; Keller & Libertus, 2015; Libertus, Feigenson, & 

Halberda, 2011; Mazzocco, Feigenson, & Halberda, 2011a), and have revealed that the ANS 
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acuity of individuals with mathematical difficulties and dyscalculia is significantly poorer 

than their typically achieving peers (e.g., Mazzocco, Feigenson, & Halberda, 2011b; Meijas, 

Gregoire, & Noel, 2012; Mussolin, Meijas, & Noel, 2010; Piazza et al., 2010). However, 

there are some contradictory findings (see Chen & Li, 2014 for a meta-analysis), and no 

robust modifier has been found to account for these differences (De Smedt, Noel, Gilmore, 

& Ansari, 2013).

Whilst CHL show a range of mathematical difficulties (as discussed earlier), it has been 

found that in tasks which require minimal counting, and where visual support is given, CHL 

perform as well as CNH (Zafarty, Nunes, & Bryant, 2004). From this it was concluded that 

delays in math achievement for CHL cannot be explained by difficulties in their early 

representation of number. Supporting this conclusion, Arfe et al. (2011) found that pre-

schoolers with HL outperformed CNH in the comparison of non-symbolic displays, and 

performed as well as CNH in the comparison of Arabic digits. However, the non-symbolic 

task only included displays of 1–9 items; small numbers (1–4) are represented distinctly 

from large numbers because they fall within the limits of the brain to individuate and track 

simultaneously - therefore small numbers do not appear to be represented as approximate 

numerical magnitudes (see Hyde, 2011, for a review). Furthermore, no information was 

provided about the length of stimulus presentation, meaning that one cannot rule out the 

possibility that children had sufficient time to count the displays prior to making a 

magnitude decision. Finally, no measure of math ability was collected.

ANS and Domain-General Abilities

Recent evidence suggests that domain-general skills play a role in performance on ANS 

tasks and may account for the relationship between ANS acuity and math achievement. For 

example, to perform accurately in a non-symbolic numerical discrimination task it is 

necessary to ignore visual cues that may be confounded with numerosity, such as surface 

area. Fuhs and McNeil (2013) and Gilmore et al (2013) reported that whilst math ability is 

related to performance on tasks measuring the ANS, this relationship is no longer significant 

after controlling for inhibitory skills (although for contradictory evidence see Keller & 

Libertus, 2015).

There is more limited information on how the ANS may interact with STM or WM in the 

representation and processing of non-symbolic quantities. Xenidou-Dervou, De Smedt, van 

der Schoot, and van Lieshout (2013) found that WM was correlated with both non-symbolic 

and symbolic approximation, and that individual differences in WM predicted math 

achievement beyond the effect of approximation skills. However, they also found that 

symbolic approximation skill (which mediated the direct effect of non-symbolic 

approximation on math ability) correlated with math ability beyond the effect of WM 

capacity, suggesting unique contributions from both domain-specific and domain-general 

abilities. Other broad domain-general skills have been considered such as IQ, verbal skills, 

and executive control. Many studies find that even after controlling for domain-general 

skills, ANS acuity remains as a significant unique predictor of math achievement (Bonny & 

Lourenco, 2013; Halberda et al., 2008; Libertus, Feigenson, & Halberda, 2011; 2013; 

Lourenco, Bonny, Fernadez, & Rao, 2012; van Marle, Chu, Li, & Geary, 2014).
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Consideration of the role played by domain-general factors is particularly important, 

because CHL are often found to perform more poorly on certain cognitive measures, and 

this may account for the differences between hearing status groups in math ability. There are 

widely reported difficulties in verbal STM and WM for individuals with HL, particularly 

when retention of sequential or temporal information is required (see Hamilton, 2011 for a 

review). For example, growth of forward and backward digit span in children with severe to 

profound HL is similar to that of CNH, but consistently lower at all age points (Harris, 

Kronenberger, Gao, Hoen, Miyamoto, & Pisoni, 2013; Harris, Pisoni, Kronenberger, Gao, 

Caffrey, & Miyamoto, 2011).

CHL are also reported to have some inhibitory difficulties, particularly in the allocation of 

selective visual attention. Dye and Hauser (2014) had CHL complete a continuous 

performance task (CPT) to measure sustained attention, and the same task but with flanking 

digits to measure selective attention. Compared to CNH, CHL showed no difference on the 

sustained attention task. The flanking digits in the selective attention task significantly 

disrupted the performance of younger CHL (6–8 years), although this disruption was 

reduced in older CHL (9–13 years). One explanation put forward for this poorer selective 

attention is that in the absence of hearing, visual attention is an appropriate adaptation to 

alerting to events in the environment, resulting in a redistribution of attention away from the 

centre to peripheral vision (see Dye & Bavelier, 2010 for a review). Dye and Hauser (2014) 

argue that older children can inhibit this heightened attention to the periphery when the task 

requires attention to the central visual field, whilst younger CHL cannot. Hence, young CHL 

are more likely to show distraction from irrelevant visual information.

The current study examines acuity of the ANS in CHL and CNH, and the strength of the 

relationship between the ANS and math achievement. Furthermore, to examine whether 

differences between CHL and CNH, and whether relationships of ANS acuity to math within 

each group, are mediated by a third factor, we include domain-general measures assessing 

inhibition, STM, and WM.

Method

Participants

Seventy-five CHL (42 females) with a mean age of 9 years (SD = 1 year, 9 months, range = 

5 years, 1 months to 12 years, 7 months) participated in the study. CHL were recruited from 

mainstream schools and schools for the deaf in the UK and US. Seventy-five hearing age- 

and gender-matched controls were also recruited, where possible from the same schools as 

CHL or from schools within the surrounding area (see Table 1 for further information 

regarding the samples). Consent was gained from all parents prior to commencement of the 

study. None of the CNH had any known developmental or learning difficulty, and none of 

the CHL had any other diagnosed developmental difficulties.

As children were recruited from the USA and UK and differences in performance may have 

been influenced by differences in schooling, we initially examined whether performance on 

the outcome variables differed by child nationality. No differences were found on any of the 

measures (see Supporting Information Table S1). We also conducted a moderated multiple 
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regression to determine whether the strength of the relationship between ANS acuity and 

math outcomes differed across countries. Overall, the interaction term (ANS 

acuity×nationality) did not add significantly to the prediction of math outcomes, suggesting 

that the prediction of ANS acuity to math is not moderated by nationality (see Supporting 

Information). We therefore proceeded to analyse the results collapsed across nationality.

Within the group of CHL, we also considered whether specific factors associated with 

hearing loss accounted for individual differences in performance. These factors included 

school type, child preferred communication, level of hearing loss, having a deaf parent, use 

of hearing aids vs cochlear implants, age of HL diagnosis and age of HL intervention. No 

significant predictors of individual differences were found (all descriptive data and statistical 

analyses are reported in the Supporting Information). It is possible that we have insufficient 

power to detect effects – for the largest effect found (level of hearing loss on digit span), the 

observed power is .54, and power analysis indicates that a sample size of 90 would be 

needed to detect this effect at power equal to .80. However, previous findings relating such 

factors to academic achievement in individuals with HL have also been inconclusive (see 

Powers, 2011 for a review), possibly due to the great heterogeneity within the HL population 

(Convertino, Marschark, Sapere, Sarchet, & Zupan, 2009), and the difficulty of obtaining 

large samples of individuals with HL.

Tasks and Procedure

All children were tested in a quiet area of the school in their preferred mode of 

communication (sign, speech, or both).

ANS acuity: Non-symbolic discrimination—All materials were produced using 

Superlab 4.0 (Cedrus San Pedro, CA). Each trial consisted of the presentation of two arrays 

of dots (each in a different colour). The number of dots in each array varied from 5 to 35, 

with each pair of arrays depicting a ratio difference of 0.91 (e.g., 10:11), 0.83 (e.g., 5:6), 

0.77 (e.g., 7:9), 0.71 (e.g., 5:7), or 0.67 (e.g., 6:9). At each ratio level absolute difference 

between the stimulus pairings differed, but the ratio remained constant, e.g., at ratio 0.67, 

stimulus pairings were 6:9, 10:15, 12:18, 18:27, and 20:30. Five pairs at each level were 

presented four times throughout the task, the higher number appearing equally often on the 

left and right hand side of the screen, resulting in a total of 100 trials (20 at each ratio 

difference). Each stimulus pair was matched in terms of cumulative surface area of the dots. 

The size of individual dots was varied to ensure that items in the less numerous array were 

not always larger than those in the more numerous array. This ensures that individual dot 

size is not a predictable indicator of numerosity, although it does not preclude that other 

visual cues impact on numerosity comparison. Both arrays appeared simultaneously for 

2000ms, after which a screen appeared showing two question marks in place of the arrays. 

Children were asked to indicate which array contained the most coins by pressing the 

corresponding left or right button on a response box. Children received visual feedback 

regarding their accuracy after each trial, and after every 20 trials a motivational feedback 

screen was presented indicating that enough coins had been collected to build part of the 

‘captain’s boat’. Accuracy was used as the dependent measure as weber estimates can be 

difficult to calculate for children whose performance is close to chance (Inglis & Gilmore, 
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2014). The correlation between weber and accuracy was high (r = −.82, p < .001) and the 

overall pattern of results was the same using either accuracy or weber.

Standardised mathematics achievement (Wechsler Individual Achievement 
Test, WIAT-II, Wechsler, 2005)—Numerical Operations measures skills in identifying 

and writing numbers, rote counting, number production, and solving written calculation 

problems and simple equations that require children to use the basic operations of addition, 

subtraction, multiplication and division. Mathematical Reasoning is a verbal problem 

solving test that measures the ability to count, identify geometric shapes, and solve single 

and multi-step word problems. The child is required to solve problems with whole numbers, 

fractions or decimals, interpret graphs, identify mathematical patterns, and solve problems 

of statistics and probability (dependent on age and task progression).

Domain-general abilities

Inhibition: In the Flanker task (modified from Fan, McCandliss, Sommer, Raz, & Posner, 

2002), children were presented with a row of five fish facing either left or right with the 

target fish in the center of the computer screen. A fixation cross was presented for 2000ms 

followed by the target fish flanked on either side by two fish facing the same or the opposite 

direction (congruent or incongruent conditions respectively). In each trial, children were 

asked to indicate, by key press, the direction the target fish was facing. A blank screen was 

then presented for 500ms before the next trial began. The first block consisted of 20 

congruent trials, then 20 incongruent trials, and then a final block of 20 congruent trials. 

This final block was added to take account of any change in response time (due to practice 

or fatigue) during the task. For each block of trials accuracy and median RT (to correct 

responses only) were recorded. For purposes of analysis, a Flanker effect was calculated as 

{median RT incongruent block − ([median RT congruent blocks 1 + median RT congruent 

block 2]/2)}.

Verbal WM: In the counting recall task, the child counted the number of red circles on the 

screen out loud/signed and then attempted to recall in sequence the number counted on each 

card. The child received practice trials of 1, 2, and 3 arrays, and the test began with a block 

of 1 array and increased to a block of 7 arrays. Each block consisted of 6 trials (resulting in a 

maximum of 42 trials), and the child must achieve 4 correct trials within a block to move on 

to the next span level. The total number of trials recalled correctly was used as the dependent 

variable.

Verbal STM: In the digit recall task, children saw a sequence of between 1 and 9 digits 

presented sequentially on the computer screen (digits 1 to 9 presented in Tahoma font size 

72). Each digit was presented for one second, and when prompted the child was required to 

recall (verbally or by signing) the digits in the same order as they had been presented. The 

child received practice trials of 1, 2, and 3 digits (depending on age), and test trials began 

with a block of 1 digit to recall and increased up to 9 digits to recall. Each block consisted of 

6 trials (resulting in a maximum of 54 trials). The child must achieve at least 4 correct trials 

within a block to move to the next span level. The total number of trials recalled correctly 

was used as the dependent variable.
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Results

Descriptive data for all measures is shown in Table 2. CHL achieved significantly lower raw 

scores than CNH on the Mathematical Reasoning, but not the Numerical Operations test. 

CHL also showed significantly poorer performance on the WM and STM tasks. On the 

inhibition task, CHL showed a larger Flanker effect, indicating that they showed more 

slowing when dealing with incongruent flanking information; however, the difference to 

CNH was not significant. The difference between CHL and CNH on Mathematical 

Reasoning remained significant after controlling for inhibition, F (1, 145) = 5.81, p = .017, 

ηp
2 = .039. However, controlling for either WM or STM rendered the difference between 

CNH and CHL in Mathematical Reasoning non-significant (F (1, 146) = 1.95, p = .165, ηp
2 

= .013, and F (1, 147) < 1 after controlling for WM and STM respectively).

Initial analysis of the ANS task considered the change in performance associated with age 

for each hearing status group (see Figure 1). Increasing age was significantly related to 

increased accuracy on the ANS task (r’s = .53 and .58, p’s < .001 for CHL and CNH 

respectively). Figure 1 indicates that whilst the increase in accuracy with age is similar in 

both groups, CHL children show consistently lower performance across the age range.

Accuracy data from the ANS task were entered into a 5 (difficulty level: 0.91, 0.83, 0.77, 

0.71, 0.67) × 2 (hearing status) mixed design analysis of variance (ANOVA). This revealed 

significant main effects of difficulty level, F (4, 592) = 379.44, p < .001, ηp
2 = .72, and 

hearing status, F (1, 148) = 10.74, p = .001, ηp
2 = .07, but no significant interaction, F (4, 

592) = 1.55, p = .19. Controlling for ANS acuity rendered the group difference in 

Mathematical Reasoning non-significant, F (1, 147) = 1.27, p = .26, ηp
2 = .01.

Relationship Between ANS Acuity, Math Achievement, and Domain-General Abilities

A partial correlation analysis (controlling for age) showed that for both CHL and CNH, 

better ANS acuity was correlated with higher scores on the Numerical Operations and 

Mathematical Reasoning tasks, although for CNH only the relation of ANS to Mathematical 

Reasoning was significant. The strength of the relationship between ANS and performance 

on the Numerical Operations task was significantly higher for CHL compared to CNH (Z = 

2.29, p = .02), although there was no difference for Mathematical Reasoning (Z = 1.48, p = .

14). With regard to domain-general abilities, WM and STM correlated significantly with 

Numerical Operations, Mathematical Reasoning and ANS acuity in CNH. For CHL, WM, 

STM, and inhibition were all correlated with higher ANS acuity and higher scores on 

Mathematical Reasoning, although only WM and STM were related to higher scores on the 

Numerical Operations task (see Table 3).

The next analyses considered whether the relationship between ANS acuity and math 

achievement is mediated by domain-general abilities. Mediation analysis was conducted 

with ANS acuity as the predictor variable, WM, STM, or inhibition as the mediator variable, 

and Mathematical Reasoning or Numerical Operations as the dependent variable. Age was 

included as a covariate. We followed the bootstrapping method (with 1000 iterations) 

advocated by Preacher, Rucker and Hayes (2007), which tests the null hypothesis that the 

indirect path from the independent variable to the dependent variable via the mediator does 
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not significantly differ from zero. If zero is not contained within the confidence intervals 

(CI) computed by the bootstrapping procedure, one can conclude that the indirect effect is 

significantly different from zero.

Mediation analyses were only conducted for variables where ANS acuity, the math outcome 

measure, and domain-general skill were significantly correlated with each other (see Table 

4). For CHL, analysis with WM as the mediator revealed a significant direct effect of ANS 

acuity on Mathematical Reasoning, along with a significant indirect effect via WM. WM 

accounted for 16% of the total effect. A similar pattern of results was found for STM; there 

was a significant direct effect of ANS acuity on Mathematical Reasoning, along with a 

significant indirect effect via STM. STM accounted for 20% of the total effect. The indirect 

effect of ANS acuity on Mathematical Reasoning via inhibition was not significant. With 

Numerical Operations as the outcome variable, there was no significant indirect effect via 

WM; only the direct effect from ANS acuity to Numerical Operations was significant. 

Therefore, WM appears to be a partial mediator of the relationship between ANS acuity and 

mathematical ability in CHL, but this is dependent on the type of math skill being assessed. 

With STM as the mediator, there was a significant direct effect of ANS acuity on Numerical 

Operations, and a significant indirect effect via STM. STM accounted for 21% of the total 

effect. Therefore, STM appears to be a partial mediator the relationship between ANS acuity 

and both measures of math ability.

Similar mediation was conducted for CNH using WM or STM as the mediator variable. In 

both cases the direct effect of ANS acuity on Mathematical Reasoning was non-significant. 

The indirect effects were significant, with WM accounting for 31% of the total effect, and 

STM accounting for 39% of the total effect.

Discussion

Previous studies have reported that poorer math skills of CHL were not the result of delays 

in the representation of numerical information (e.g., Arfe et al., 2011). However, as 

highlighted earlier, a number of methodological issues (e.g., the use of subitizable 

numerosities, and uncertainty regarding whether counting could have occurred) make these 

findings inconclusive. Using a method more likely to detect subtle individual differences in 

acuity of the ANS, in the current study we find that CHL have poorer numerical 

discrimination skills compared to CNH. The lack of interaction between difficulty level and 

hearing status suggests that CHL are showing the usual signature ratio discrimination limits 

but that this is delayed in its development. CHL also showed significantly lower 

performance on the Mathematical Reasoning task. Controlling for group differences in ANS 

acuity rendered the difference between CHL and CNH in Mathematical Reasoning non-

significant. These results support the conclusion that CHL have less acuity in the ANS 

compared to CNH, and that this contributes to lower performance in mathematics.

With regard to domain-general skills, there was no difference between CHL and CNH on the 

inhibition task. CHL did show significantly poorer performance than CNH on the counting 

recall and digit recall tasks, replicating previous findings showing poorer performance on 

serial recall STM and WM tasks (Harris et al., 2011; Harris et al., 2013). Controlling for 
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group differences in either STM or WM rendered the difference between CHL and CNH in 

Mathematical Reasoning non-significant. In summary, poorer domain general skills (STM 

and WM) and poorer ANS acuity may both account for lower math performance of CHL 

compared to CNH.

To some extent, we replicate previous findings showing that better ANS acuity is associated 

with better mathematical skills. For both CHL and CNH, higher ANS acuity was correlated 

with better performance on both the Numerical Operations and Mathematical Reasoning 

subtests, although for CNH only the latter relationship was found to be significant. There is 

ongoing debate within the literature about the relationship between ANS acuity and 

mathematical ability as findings have been inconsistent. This relationship has been 

replicated in some studies (e.g., Gilmore et al., 2010; Inglis et al., 2011; Libertus et al., 

2011; Mazzocco et al., 2011a; Meijas, Mussolin, Rouselle, Gregoire, & Noel, 2012; 

Mussolin et al., 2010; Piazza et al., 2010), but not others (De Smedt & Gilmore, 2011; 

Gobel, Watson, Lervag, & Hulme, 2014; Holloway & Ansari, 2009; Iuculano, Tang, Hall, & 

Butterworth, 2008; Landerl & Kolle, 2009; Mundy & Gilmore, 2009; Rouselle & Noel, 

2007; Sasanguie, Gobel, Moll, Smets, & Reynvoet, 2013). Differences in the findings might 

be explained by methodological characteristics, e.g., the use of stimulus displays within a 

subitizable range or the collapse of results across subitizable and non-subitizable ranges, the 

presentation of easily discriminable ratio differences which would not have detected subtle 

differences in ANS acuity, differences in the paradigms to assess ANS acuity, differences in 

the math outcomes being measured, differences in the age groups tested, or differences in 

the inclusion of other predictor variables in the analytical model (see Schneider et al, 2016 

for a recent meta-analysis).

Some of these factors are addressed in the current study. Firstly, it is possible that the 

relationship of ANS acuity to math ability is most likely to be observed when studying 

groups with poorer mathematical skills (Bonny & Lourenco, 2013). We find this here in the 

comparison of CHL and CNH, where the strength of the relationship between ANS acuity 

and math achievement is higher in CHL who are lower achieving in mathematical ability. 

Secondly, the mediation analysis showed that both STM and WM fully mediate the direct 

effect of ANS on Mathematical Reasoning in CNH. This supports the idea that whilst there 

may be a significant bivariate correlation between ANS acuity and math ability in CNH, this 

is rendered non-significant when other explanatory variables are considered in the analysis 

(Lyons, Price, Vaessen, Blomert, & Ansari, 2014). However, this same pattern of results 

does not hold up for children (CHL) who have compromised STM/WM skills, and where 

non-symbolic numerical representations still appear to play an important and direct role in 

supporting mathematical skills. Clearly, further research is needed to examine the relative 

contribution of ANS versus domain-general skills to math ability in children of different 

ages, and with different levels of both math and domain-general abilities.

There are a number of mechanisms by which STM and WM might mediate the relationship 

between ANS acuity and math ability. Gullick, Sprute, and Temple (2011) demonstrated that 

during non-symbolic and symbolic comparison tasks, brain activity differences related to 

WM are seen across individuals, and Kolkman, Hoijtink, Kroesbergen, and Leseman (2013) 

argue that even very simple tasks, like magnitude comparison, impose a memory load as 
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they require simultaneous and sequential processes of perceiving, coding, interpreting, and 

comparing information. Therefore, one explanation of the significant mediation is that good 

memory skills are required to successfully complete the ANS task and for general math 

ability.

Another mechanism may be the accuracy with which the ANS is mapped on to symbolic 

numbers. Mazzocco et al. (2011b) suggested that the relationship between ANS acuity and 

computational skills may be mediated by the mapping of the ANS and the verbal number 

system, e.g., the ease and precision of accessing quantity representations from abstract 

symbols. Furthermore, they argue that domain-general skills like WM may mediate this 

mapping precision, since WM is responsible for storing, processing, retrieving, and 

combining information to yield meaningful quantitative representations (see also Hornung, 

Schiltz, Brunner, & Martin, 2014; Lyons & Beilock, 2011; Xenidou-Dervou et al., 2013). 

Similarly, Kolkman, Kroesbergen, and Leseman (2014) found that WM predicted the 

development of number-magnitude skills. They argued that while number-magnitude skills 

may arise from an innate system dedicated to process numerical information, WM might be 

needed to construct the connections between numbers and magnitudes.

Finally, it is possible that domain-specific elements of the domain-general tasks are 

important. The counting span task requires symbolic quantitative knowledge and counting 

skill, and these skills may mediate the relationship of ANS acuity and math ability. Van 

Marle et al. (2014) found a significant relationship between ANS acuity and math 

achievement, but children’s knowledge of number words (measured by counting tasks) fully 

mediated this relationship. Other studies have similarly found that the relationship between 

non-verbal number sense and math achievement is completely mediated by symbolic 

number skills (Bartelet, Vaessen, Blomert, & Ansari, 2014; Hornung et al., 2014). Our 

finding that digit recall (which does not require counting) also acts as a full or partial 

mediator suggests that the mediation of the relationship between ANS and math ability is 

not just something to do with counting, but we still cannot rule out the possibility that 

domain-specific processing of numerical information, rather than memory (ST or WM) is 

the mediating mechanism.

With regard to inhibition, for CHL inhibition was correlated with Mathematical Reasoning 

and ANS acuity. In line with the findings of Keller and Libertus (2015), inhibition was not 

significantly correlated with math ability or ANS acuity in CNH, and inhibition did not 

significantly mediate the direct relationship of ANS acuity to Mathematical Reasoning in 

CHL. Whilst it is not possible to perfectly control for non-numerical parameters such as dot 

size, density, and total area (Gebuis & Reynvoet, 2012), we deliberately constructed stimuli 

in the ANS task such that cumulative surface area of the dots in the two arrays are equated 

regardless of number. Moreover, individual dot size was varied so that it could not be used as 

a reliable predictor of numerosity (i.e., stimuli in the more numerous array were not of a 

constant smaller size; rather they were a combination of smaller and larger dots). Therefore, 

we attempted to create a stimulus set where performance would be negatively affected if a 

visual cue other than numerosity were considered (see Smets, Sasanguie, Szucs, & 

Reynvoet, 2015 for a detailed discussion of how ANS stimuli construction may influence 

performance). However, other visual cues, such as average dot diameter, are a congruent cue 
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in our stimulus set – increased numerosity is always associated with lower average dot 

diameter. Therefore, we cannot rule out the possibility that the predictability of this visual 

cue limited to need to inhibit completely incongruous or unpredictable cues to numerosity. 

Hence, inhibitory skill might not be so important for accurate performance in our ANS task. 

This is in contrast to some previous studies where stimuli are constructed so that number and 

area are correlated or anti-correlated to specifically examine for a bias to respond to stimulus 

parameters other than numerosity (Fuhs & McNeil, 2013; Gilmore et al., 2013) and where 

inhibition may be necessary to inhibit a consistent but inaccurate cue to numerosity (in anti-

correlated conditions). However, the inconsistency in findings across studies highlight that 

the method by which stimuli for ANS tasks are constructed may impact on overall accuracy 

and subsequently the relationship of ANS to math ability and domain-general measures, and 

represents a methodological confound when comparing across studies in the field (Dietrich, 

Huber, & Nuerk, 2015; Smet et al., 2015).

There is clearly something about having HL that puts children at risk of having poorer ANS 

acuity. Studies examining representation and retrieval of basic numerical information in 

adults with HL suggest that whilst numerical information might be represented in a similar 

manner in NH and HL adults (as shown by SNARC, distance, and size effects), the 

efficiency with which individuals with HL process that basic numerical information is 

poorer (Bull, Marschark, & Blatto-Vallee, 2005), and the accuracy with which that 

information is represented (as shown in a number-line task) is less precise (Bull, Marschark, 

Sapere, Davidson, Murphy, & Nordmann, 2011). More recently, Convertino, Borgna, 

Marschark, and Durkin (2014) reported that college students with HL were significantly less 

accurate in magnitude estimation (weight, size, quantity, or length) of real-world things (e.g., 

height of a basketball hoop) and things directly in front of them at laboratory stations (e.g., 

the number of marbles that would fit in a displayed shoe box). Furthermore, for students 

with cochlear implants, college entrance scores in mathematics were significantly related to 

performance on the estimation tasks. This suggests that individuals with HL may continue to 

have difficulties in a range of quantitative estimation tasks, and that for some individuals 

with HL, this may relate to mathematics achievement.

In looking for the source of this risk, we consider Bahrick and Lickliter’s (2012) 

intersensory redundancy hypothesis, which argues that information simultaneously available 

in temporal and spatial synchrony across two or more modalities is highly salient and may 

be attended to, learned, and remembered better than the same information presented to only 

one modality or presented to two modalities in a temporally and spatially asynchronous 

fashion. Multisensory information has been found to facilitate early numerical learning; the 

presentation of redundant, synchronous visual and auditory information about number 

resulted in infants making highly precise numerical discriminations at an earlier age (Jordan, 

Suanda, & Brannon, 2008). Jordan and Baker (2011) similarly revealed that preschool 

children showed more sensitive numerical discrimination ability if given numerical 

information in in auditory and visual synchronised displays.

Many CHL lack intersensory redundant information about numerosity from the moment 

they are born, and as such, may not develop (or will develop at a slower rate) as precise a 

representation of number as CNH. Gregory, Bishop, and Sheldon (1995) documented that 
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there is a lack of simultaneous visual and auditory information in the interactions between 

CHL and their parents. For example, whilst parents of hearing children count or label their 

actions as they carry them out (e.g., counting steps as they climb the stairs), parents of 

[some] CHL cannot do so. This lack of simultaneous visual and auditory information may 

subsequently interfere with CHL’s informal math experience and learning (Gregory, 1998) 

and may result in a lack of intersensory redundant information that is important for the fine 

tuning of the ANS and subsequently mathematical ability. We cannot rule out the reverse 

explanation that differences in math ability between CNH and CHL account for differences 

in the refinement of ANS acuity, but the finding that there are differences in ANS acuity 

between CNH and CHL (and individual variability within each group) even at a young age 

before there has been much exposure to formal education, suggests that this is not the 

fundamental explanation for differences in ANS acuity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Acuity of the approximate number system (% accuracy) for CHL and CNH across the age 

range.
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Table 1

Descriptive Information for CHL and CNH Samples.

CHL CNH

Level of hearing loss

Mild to Moderate 19 (25.3%)

Severe 8 (10.7%)

Profound 33 (44%)

Missing 15 (20%)

Hearing devices

Hearing aid 46 (61.3%)

Cochlear implant 24 (32%)

No device reported 5 (6.7%)

Communication preference

Signed language 19 (25.3%)

Spoken language 33 (44%)

Sign/spoken language mix 20 (26.67%)

Missing 3 (4%)

SES classification1

High 38 (50.75%) 45 (60%)

Medium 11 (14.75%) 18 (24%)

Low 16 (21.3%) 5 (6.7%)

Missing 10 (13.3%) 7 (8.3%)

Parental education

Secondary school or lower 6 (8%) 10 (13.3%)

High School 18 (24%) 18 (24%)

Undergraduate 23 (30.7%) 20 (26.7%)

Postgraduate 19 (25.3%) 21 (28%)

Missing 9 (12%) 6 (8%)

1
Based on parental reports of household income and occupation (using the National Statistic Socio-Economic Classifications, NS-SEC)
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