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Abstract

We present a Bayesian adaptive design for dose finding in cancer phase I clinical trials. The goal is 

to estimate the maximum tolerated dose (MTD) after possible modification of the dose range 

during the trial. Parametric models are used to describe the relationship between the dose and the 

probability of dose limiting toxicity (DLT). We investigate model reparameterization in terms of 

the probabilities of DLT at the minimum and maximum available doses at the start of the trial. 

Trial design proceeds using escalation with overdose control (EWOC), where at each stage of the 

trial, we seek the dose of the agent such that the posterior probability of exceeding the MTD of 

this agent is bounded by a feasibility bound. At any time during the trial, we test whether the MTD 

is below or above the minimum and maximum doses, respectively. If during the trial, there is 

evidence that the MTD is outside the range of doses, we extend the range of doses and complete 

the trial with the planned sample size. At the end of the trial, a Bayes estimate of the MTD is 

proposed. We evaluate design operating characteristics in terms of safety of the trial design and 

efficiency of the MTD estimate under various scenarios and model misspecification. The 

methodology is further compared to the original EWOC design. We showed by comprehensive 

simulation studies that the proposed method is safe and can estimate the MTD more efficiently 

than the original EWOC design.
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1. Introduction

Cancer phase I clinical trials are small sequential studies designed to investigate the safety 

and tolerability of investigational new agents or combination of existing cytotoxic and/or 

biologic agents. These trials enroll late stage patients who have exhausted all standard 

therapy (Roberts et al., 2004). The primary objective of these trials is to estimate a dose level 

that is associated with a predetermined level of dose limiting toxicity (DLT). Such a dose is 

referred to as the maximum tolerated dose (MTD) or phase II dose. A review of single agent 

dose-finding methods can be found in (Chevret, 2006; Le Tourneau, Lee and Siu, 2009; 
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Ting, 2006). The most commonly used design for cancer phase I trials is the 3+3 algorithm 

(Rogatko et al., 2007) although many authors showed that it is inefficient in estimating the 

MTD and can lead to many patients in the trial receiving sub-therapeutic doses, see e.g 

(Babb, Rogatko and Zacks, 1998; Hansen et al., 2014; Rogatko et al., 2015). A recent 

comparative review of the 3+3 design relative to some model based designs further 

confirmed the inefficiency of the these algorithm based designs and emphasized their 

dependence on the target probability of DLT rate (Ananthakrishnan et al., 2017).

Existing statistical designs such as the continual reassessment method (CRM) (Cheung and 

Chappell, 2000; Faries, 1994; Goodman, Zahurak and Piantadosi, 1995; Møller, 1995; 

O’Quigley, Pepe and Fisher, 1990; O’Quigley and Shen, 1996; Piantadosi, Fisher and 

Grossman, 1998) and escalation with overdose control (EWOC) (Babb et al., 1998; Babb 

and Rogatko, 2001; Chen, Tighiouart and Kowalski, 2012; Tighiouart, Cook-Wiens and 

Rogatko, 2012a, b; Tighiouart, Liu and Rogatko, 2014; Tighiouart and Rogatko, 2010; 

Tighiouart and Rogatko, 2012; Tighiouart, Rogatko and Babb, 2005; Zacks, Rogatko and 

Babb, 1998) and algorithmic designs such as the standard ‘3+3′ and its modifications 

(Derman, 1957; Durham, Flournoy and Rosenberger, 1997; Storer, 1989) or accelerated 

titration design (Simon et al., 1997) consist of searching for the MTD among a pre-

determined set of discrete doses or within a bounded interval of doses specified by the 

clinicians. If the true MTD happens to be below the minimum dose available in the trial 

Xmin, then such designs lead to stopping the trial using some type of statistical or 

deterministic stopping rules. As a result, enrollment to the trial is either suspended and the 

clinical protocol is amended to expand the dose range or the trial is closed to enrollment. On 

the other hand, if the true MTD is above the maximum dose available in the trial Xmax, these 

designs will usually proceed and enroll the planned number of patients in the trial and 

recommend the last dose as the phase II dose or the clinicians amend the protocol to include 

one or more doses above Xmax. This situation is not uncommon based on our experience 

reviewing amendments of protocols describing early phase cancer trials. For instance, we 

recently reviewed an amendment of a protocol for a phase I trial of a synthetic copolymer-

drug conjugate (SDX-7320) in patients with advanced refractory or late-stage solid tumors. 

The trial design used the 3+3 algorithm exploring seven dose levels of the drug. The 

amendment consisted of adding 3 dose levels above the maximum dose level originally 

proposed because there were no DLTs among all 21 patients enrolled to the trial.

In this manuscript, we extend the EWOC design by expanding the dose range [Xmin, Xmax] 

during the trial if there is evidence that the true MTD is outside this range. Clinicians specify 

a discrete set of doses {d1, …, dk} or a range of available doses in the interval [Xmin, Xmax] 

based on their prior belief or preliminary data about the safety of the dose Xmin and the 

location of the true MTD in [Xmin, Xmax]. We next ask clinicians to specify a range of doses 

they are willing to expand below Xmin if there is statistical evidence that Xmin is too toxic. 

We further ask them to pre-specify a range of doses to be expanded beyond Xmax if there is 

statistical evidence that the probability of DLT at Xmax is way below the target probability of 

DLT. This approach will allow us to search for the MTD beyond [Xmin, Xmax] and without 

suspending accrual, stopping the trial, or recommending a suboptimal dose as the phase II 

dose. Moreover, design operating characteristics are carried out at the design stage of the 

trial and will take into account any dose range expansion below Xmin or above Xmax.
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The manuscript is organized as follows. In section 2, we give a detailed description of the 

methodology and describe the trial design with a possible dose range expansion. In section 

3, we present the operating characteristics of the design using continuous and discrete dose 

levels and under model misspecification. Section 4 contains some final remarks and 

discussion of practical implementations.

2. Model

2.1 Dose-Toxicity Model

Consider the problem of identifying a tolerable dose x > 0 of a cytotoxic agent. We consider 

the dose-toxicity model of the form

Prob Y = 1 x = F β0 + β1x , (2.1)

where Y is the indicator of dose limiting toxicity (DLT), Y = 1 if a patient given dose x 
exhibits DLT within one cycle of therapy, and Y = 0 otherwise, and F is a known cumulative 

distribution function. Let Xmin and Xmax be the minimum and maximum doses available in 

the trial.

We will assume that β1 > 0 so that the probability of DLT increases with dose. The MTD is 

defined as the dose γ > 0 such that

Prob Y = 1 γ = θ . (2.2)

The value of the target probability θ is pre-specified by the clinicians and depends on the 

nature and clinical manageability of the DLT; it is set relatively high when the DLT is a 

transient, reversible or non-fatal condition, and low when it is life threatening. It follows 

from (2.1) and (2.2) that

γ =
F−1 θ − β0

β1
. (2.3)

Using the transformation h(u) = (u − Xmin)/(Xmax − Xmin), we standardize the dose levels to 

be in the interval [0, 1] so that Xmin corresponds to dose level 0 and Xmax to dose level 1. 

The original EWOC design (Babb et al., 1998) assumes that γ ε [Xmin, Xmax] with prior 

(and hence posterior) probability 1. This assumption may be very restrictive in some 

applications and the performance of the design is suboptimal if the true MTD γtrue is near 

the boundaries of the dose range. When γtrue is close to Xmax, the dose escalation rate slows 

down resulting in a large bias of the estimate of the MTD. Tighiouart et al. (Tighiouart et al., 

2005) introduced a class of flexible priors by expanding the support of γ to [Xmin, ∞). If 

γtrue is close to Xmin, the method results in an excessive number of DLTs and ad hoc 

stopping rules are introduced. One way to further expand the support of γ to [0, ∞) is to 

reparameterize model (2.1) in terms of ρ0, the probability of DLT at dose level 0, and ρ1, the 
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probability of DLT at dose level 1. This reparameterization is convenient to clinicians since 

prior information on ρ0 and ρ1 may be available from other trials. It can be shown that

β0 = F−1 ρ0

β1 = F−1 ρ1 − F−1 ρ0
. (2.4)

The standardized MTD in (2.3) becomes

γ =
F−1 θ − F−1 ρ0
F−1 ρ1 − F−1 ρ0

. (2.5)

Let Dn = {(xi,yi), i = 1, …, n} be the data after enrolling n patients in the trial. The 

likelihood function for the model parameters is

L ρ0, ρ1 Dn = ∏
i = 1

n
F ρ0, ρ1; xi

yi 1 − F ρ0, ρ1; xi
1 − yi, (2.6)

where

F ρ0, ρ1; xi = F F−1 ρ0 + F−1 ρ1 − F−1 ρ0 xi . (2.7)

2.2 Prior and Posterior Distributions

We assume that ρ1 ~ beta(a1, b1) and conditional on ρ1, ρ0 / ρ1 ~ beta(a2, b2). Under lack of 

prior information about these parameters, we take ai = bi, i = 1,2. Let Dn = {(xi, yi), i = 1,…, 

n} be the data after enrolling n patients in the trial. Using Bayes rule, the posterior 

distribution of the model parameters is

π ρ0, ρ1 Dn ∝ ∏
i = 1

n
H ρ0, ρ1; xi

yi 1 − H ρ0, ρ1; xi
1 − yiπ ρ1 π ρ0 ρ1 , (2.8)

where

H ρ0, ρ1; xi = F F−1 ρ0 + F−1 ρ1 − F−1 ρ0 xi . (2.9)

Features of this posterior distribution are estimated using WinBUGS (Lunn et al., 2000) and 

JAGS. In the design described below, the posterior distribution of the standardized MTD 

π(γ |D1) obtained using (2.5) is truncated to the interval [−Xmin/(Xmax − Xmin), ∞) since 

the dose is always positive.
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2.3 Trial Design

The adaptive design uses the EWOC scheme where at each stage of the trial, the posterior 

probability of overdosing a future patient is bounded by a feasibility bound α. Furthermore, 

at each stage of the trial, we check whether or not the minimum dose Xmin is likely to be too 

toxic and the maximum dose Xmax is likely to be very safe. If either condition holds, the 

dose range is expanded accordingly. Let L be the largest amount of the drug the clinician is 

willing to expand from below in case Xmin is too toxic and U be the largest amount to be 

added to Xmax in case Xmax is very safe. Denote by П−1(·| Di) the inverse cumulative 

distribution function of the posterior distribution of the MTD γ given the data Di.

1. The first patient (or cohort of m patients) receives dose x1 = Xmin.

2. The second patient receives dose x2 corresponding to the α-th percentile of π(γ |

D1), the posterior distribution of the MTD given the data. In general, the i-th 

patient receives dose

xi = Π−1 α Di − 1 I Xmin < Π−1 α Di − 1 < Xmax + XminI Π−1 α Di − 1 ≤ Xmin
+ XmaxI Π−1 α Di − 1 ≥ Xmax .

3. For i=1,…,n−1, if

P P DLT x = Xmin > θ + δ1 Di > δ, (2.10)

expand the range of doses to [Xmin − L, Xmax] and patient i+1 receives the dose

xi + 1 = Π−1 α Di I Xmin − L < Π−1 α Di < Xmax + Xmin − L I Π−1 α Di < Xmin − L

+ XmaxI Π−1 α Di > Xmax .

If

P P DLT x = Xmax < θ − δ2 Di > δ, (2.11)

expand the range to [Xmin, Xmax + U] and patient i+1 receives the dose

xi + 1 = Π−1 α Di I Xmin < Π−1 α Di < Xmax + U + XminI Π−1 α Di < Xmin
+ Xmax + U I Π−1 α Di > Xmax + U .

4. Repeat steps 2 and 3 until n patients are enrolled to the trial.

At the end of the trial, we estimate the MTD as the median of the posterior distribution π(γ |

Dn). Step 2 of the algorithm states that the dose allocated to the i-th patient in the trial is П
−1(α | Di−1) provided that this dose is within the range of doses available in the trial. 

Otherwise, the dose allocated to the i-th patent is either Xmin or Xmax depending on whether 
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П−1(α | Di−1) is below the minimum dose or above the maximum dose available in the trial. 

Step 3 states that anytime during the trial, if there is evidence that either the minimum dose 

is likely to be to toxic or the maximum doses is likely to have a probability of DLT below 

the target θ, then the dose range is expanded either below Xmin or above Xmax and dose 

allocation proceeds as in step 2 with this expanded range of doses.

The design parameters δ, δ1, and δ2, are selected to produce good operating characteristics. 

L and U control the size of the dose range expansion and are pre-specified by the clinicians. 

The parameter α is the feasibility bound and controls the probability of overdosing patients. 

It is set at 0.1 at the onset of the trial, and then increases by increments of 0.05 to a 

maximum value of 0.5 after each patient is enrolled to the trial. Although the use of a 

varying feasibility bound may violate the coherence (Cheung, 2005) property of EWOC 

(Bartroff and Leung Lai, 2011; Wheeler, 2016), we found that this occurred in less than 7% 

of the simulated trials when the true MTD is below the minimum dose. When the true MTD 

is in the middle of the dose interval or above the maximum dose, violation of the coherence 

property never occurred. In the simulation results we studied, the parameters associated with 

the stopping rules are δ1 = δ2 = 0 and δ = 0.8.

The possibility of modifying the range of doses during the trial is very useful to clinicians 

and can help salvage a trial that shows a high rate of DLTs around the minimum dose or a 

low rate of DLTs around the maximum dose. In such cases, the proposed design expands the 

range of doses without suspending enrollment to the trial and future amendments to the 

clinical protocol may be avoided if the dose expansion is big enough to include the true 

MTD.

3. Simulation Studies

3.1 Simulation Set-up and Scenarios

We studied the performance of this design by simulating m = 1000 trials under three 

scenarios of the true MTD using the logistic function F(u) = (1 + e−u)−1 as the true and 

working model with both continuous doses and a discrete set of doses. Model 

misspecification was examined using a normal distribution function as the response for the 

true model and the logistic function in the working model for the continuous doses. In all 

cases, the target probability of DLT is θ = 0.33, planned trial sample size is n = 30 patients, 

and aj = bj = 1, j = 1, 2 which corresponds to vague priors for ρ0 and ρ1. For a hypothetical 

trial, we took Xmin = 100 mg/m2 and Xmax = 500 mg/m2, L = 100 mg/m2, U = 200 mg/m2 

and the following scenarios for the true MTD, γ = 37 mg/m2, 308 mg/m2, and 586 mg/m2. 

The doses are standardized to the interval [0, 1] and the true standardized MTDs are −0.16, 

0.52, and 1.22. The corresponding true parameters for the reparameterized logistic dose-

toxicity model are (ρ0, ρ1) = (0.45, 0.95), (0.05, 0.8), and (0.01, 0.2).

In the case of continuous dose levels, we compared the safety of a trial and efficiency of the 

estimated MTD between the following three designs, (1) Dose expansion (DE) design: this 

is the proposed design where a stopping rule is put in place and the range of doses expanded 

if needed. (2) No dose expansion (NDE) design: this design uses the stopping rule but does 

not expand the range of doses, and (3) No stopping rule (NS): this design does not use a 
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statistical stopping rule as in the original EWOC (Babb et al., 1998; Tighiouart and Rogatko, 

2010), i.e., step 3 of the algorithm in Section 2.3 is skipped and all n patients are enrolled to 

the trial. We further compared the performance of the proposed design (DE) with the NS 

design but starting with the expanded dose range [Xmin − L, Xmax + U] to assess the safety 

of the trial and efficiency of the estimate of the MTD had we started the trial with a much 

wider dose range instead of expanding it during the trial. This latter design is called 

expanded range design (ERD).

Let Yi,j be the binary indicator of DLT of the j-th patient in the i-th trial. Safety of each 

design is assessed by computing the average percent of DLTs

aveDLT = 1/ m · n · ∑i = 1
m ∑ j = 1

n I Y i, j = 1 , (3.1)

and the percent of trials that have a DLT rate exceeding θ + δ, for δ = 0.05, 0.1,

%  trials w .  high DLT rate = m−1 · ∑
i = 1

m
I n−1 ∑

j = 1

n
Y i, j > θ + δ . (3.2)

The threshold θ + 0.1 is usually considered to be an indication of an excessive DLT rate. 

Efficiency of the trial is evaluated by calculating the average bias

avebias = m−1 · ∑i = 1
m γ i − γtrue , (3.3)

where γ i is the estimate of the MTD for the i-th trial and γtrue is the true MTD under a 

particular scenario, the root mean square error

RMSE m−1 · ∑i = 1
m γi − γtrue

2 1/2
, (3.4)

the percent of trials with estimated MTD within (100×p)% of the dose range of the true 

MTD, 0 < p < 1,

REC1 = m−1 · ∑i = 1
m I γtrue − p Xmax − Xmin ≤ γ i ≤ γtrue + p Xmax − Xmin , (3.5)

and the percent of trials with estimated MTD within (100×p)% of the value of the true MTD, 

0 < p < 1,

REC2 = m−1 · ∑i = 1
m I γtrue − pγtrue ≤ γ i ≤ γtrue + pγtrue . (3.6)
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The statistics in (3.5) and (3.6) can be interpreted as the percent of MTD recommendation 

within a neighborhood of the true MTD. They differ with respect to the structure of this 

neighborhood. In (3.5), the width of the tolerance interval is a fraction of the dose range and 

is constant regardless of the value of γtrue, see (Tighiouart et al., 2012a). In (3.6), the width 

of the tolerance interval is a fraction of γtrue so that wider intervals are tolerated for high 

values of γtrue and tighter neighborhoods are imposed for values of γtrue near the minimum 

dose Xmin. Such a statistic was used for single agent dose finding trials in (Van Meter, 

Garrett-Mayer and Bandyopadhyay, 2011) and dose combination trials in (Tighiouart, 

Piantadosi and Rogatko, 2014).

The discrete dose simulations used a set of six dose levels evenly distributed on the original 

dose range at increments of 80 mg/m2, which corresponds to the set {0, 0.2, 0.4, 0.6, 0.8, 1} 

on the standardized dose scale. We considered a case where the lower bound might be 

extended by one dose level to 50 mg/m2 (−0.125 standardized dose) if the stopping rule 

indicates a high posterior probability of toxicity. Similarly, the upper bound might be 

extended to 600 mg/m2 (1.25 standardized dose). The true MTDs were chosen to be the 

same as in the continuous dose simulation scenarios. The calculation of the next dose 

proceeded as in the continuous case, but the next dose assigned was the highest discrete dose 

that was less than the dose recommended by the algorithm. Under each scenario of the true 

MTD m = 1000 trials were simulated with the same stopping rules in place to expand the set 

of doses either below or above the original range. In addition to these dose expansion 

simulations, m = 1000 trials were run with no stopping rule and no dose expansion as a 

comparison to original EWOC with the six discrete doses. Each set of m = 1000 trials was 

summarized by calculating the true probability of DLT at each dose level, the percent of 

patients in all trials allocated to each dose level, and the percent of MTD recommendation.

Model robustness was studied using a normal link function (true model) so that the 

probability of toxicity at the true MTD was θ, and the probability of toxicity at the minimum 

dose, ρ0, was higher or lower than the corresponding logistic function (working model). 

There were two normal models for each scenario of the true MTD. For the logistic 

parameters (ρ0, ρ1) = (0.45, 0.95) the two scenarios for misspecification chosen were (A) ρ0 

= 0.55 and (B) ρ0 = 0.42. For the (ρ0, ρ1) = (0.05, 0.8) logistic model the two normal models 

chosen were (C) ρ0 = 0.15 and (D) ρ0 = 0.01, and for the (ρ0, ρ1) = (0.01, 0.2) logistic model 

the two normal models chosen were (E) ρ0 = 0.1 and (F) ρ0 = 0.0001. The probabilities of 

toxicity as a function of standardized dose for these models are shown in the response 

profiles of Figure 1. The model misspecification simulations were run with the stopping 

rules to expand the dose range in the same way as in the main simulation results.

3.2 Results

Table 1 gives the probability of expanding the dose range under the three scenarios along 

with the median trial sample size where the dose range was expanded and 90% confidence 

interval. When γtrue is below the minimum dose Xmin, the probability of expanding the dose 

range from below is 0.81 with a median sample size of 11. The probability of expanding the 

dose range from above is 0.96 when γtrue is above the maximum dose Xmax and the 

corresponding median sample size is 6. Similar results are obtained when using discrete 
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dose levels. When the model is misspecified, the probability of expanding the dose range 

depends on the location of γtrue and the toxicity probability of the true model relative to the 

working model around γtrue. For instance, when the true MTD is below Xmin, the 

probability of expanding the dose range from below when the true model is the normal link 

function (B) is 0.66 and this probability increases to 0.99 under the normal link function (A). 

This is expected since the probability of DLT under (B) is much lower relative to the logistic 

link function and is higher under (A) relative to the logistic link function as shown in the 

right panel of Figure 1. Similar patterns are observed when the true MTD is above Xmax 

when the true models are the normal links (E) and (F), see the right panel of Figure 1. We 

conclude that the probability of expanding the dose range when the true MTD is outside the 

dose range is reasonably high under slight departure from the true model around the true 

MTD.

3.2.1 Trial Safety—Table 2 shows that when the true MTD is below the minimum dose 

available in the trial, the average percent of DLTs computed using (3.1) is lower using the 

proposed design (DE) relative to a design where no stopping rule is used (NS) or the design 

that stops the trial but does not expand the range of doses (NDE). When the true MTD is in 

the middle of the dose range, the average percent of DLTs is close to the target probability of 

DLT θ = 0.33 for all three designs. In the case where the true MTD is above Xmax, aveDLT 

using design DE is much closer to the target θ = 0.33 than the other two designs. The high 

DLT rate of 45.9% using DE is probably due to the fact that a much higher rate of DLT is 

observed prior to the dose range expansion from below. The same conclusion holds for the 

percent of trials with an excessive DLT rate. When the true MTD is either in the middle of 

the dose range or above Xmax, the percent of trials with DLT rate exceeding θ computed 

using (3.2) are 4.7% and 0.1%, respectively. When the true MTD is below Xmin, this percent 

is lower using design DE relative to the other two designs, but is still high in the order of 

79%. Again, this is due to the fact that the median sample size before expanding the dose 

range is 11.

Comparing the different response functions under model misspecification showed similar 

average rates of DLTs within each scenario of the true MTD, but larger differences in the 

proportion of trials that exceeded a DLT rate of 0.43 when he true MTD is below Xmin. The 

percent of trials that were unsafe was 79% for the logistic response model, but was 89.2% 

for model (A) and 72.1% for model (B). When the true MTD was in the middle of the dose 

range all three models had average DLT rates within one percent of each other near the 

target DLT rate of 33%. The percent of unsafe trials for the logistic model in this scenario 

was 4.7%, whereas model (C) had 6.9% and model (D) had 4%. When the true MTD was 

above the dose range all models were under the target average DLT rate of 33%. The logistic 

response model and model (F) had the same average DLT rate of 28.2%, and model (E) had 

a slightly lower average of 26.6%. The percent of unsafe trials was less than one percent in 

all three response models in this case. We conclude that the logistic model is reasonably 

robust with respect to the safety of the trial.

Simulation results in the case of discrete doses using the dose expansion rule also had a 

lower proportion of DLTs and lower proportion of trials with excessive DLT rates when the 

true MTD was below the minimum dose compared to the designs NDE and NS, see Table 3. 
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All of the discrete dose simulations had DLT rates that were below the target rate of 0.33 

when the true MTD was in the middle of the dose range or above the maximum dose. The 

trials with dose expansion rules achieved an average DLT rate closer to the target rate than 

the designs NDE and NS.

3.2.2 Trial Efficiency—Table 2 shows that the average bias of the estimate of the MTD 

computed using (3.3) is always lower when using the proposed design DE relative to the 

other two designs when the true MTD is outside the range of doses available in the trial. 

This is expected since designs NDE and NS cannot allocate doses or recommend MTD 

estimates outside the dose range [Xmin, Xmax]. When the true MTD is in the middle of the 

dose range, the average bias is very small, similar to the NS design. Similar conclusions hold 

for the RMSE computed using (3.4). Similarly, the percent of trials with estimated MTD in a 

neighborhood of the true MTD as measured by (3.5, 3.6) is almost always higher when using 

design DE relative to the other two designs when the true MTD is outside the range of doses. 

When the true MTD is in the middle of the dose range, design NS does better than design 

DE with an excess of 4 to 5% in the percent of trials with MTD estimate within a given 

neighborhood of the true MTD. In the case of discrete dose levels, Table 3 shows that when 

the true MTD is below the minimum dose available in the trial, designs NDE and NS 

recommend the minimum dose as the MTD 99% of the time whereas design DE 

recommends this dose 28% of the time. However, design DE does recommend the expanded 

dose from below 72% of the time. Similar conclusions can be drawn when the true MTD is 

above the maximum dose available in the trial. When the true MTD is in the middle of the 

dose range, there is essentially no difference in the three design in recommending either 

dose level 3 or 4 as the MTD. Based on these results, we conclude that the method is useful 

in estimating the MTD efficiently and is an improvement over the original EWOC design in 

the case where the true MTD turns out to be outside the range of doses available in the trial.

3.2.3 Model misspecification—Model robustness was assessed by comparing the 

operating characteristics of the DE model using the logistic link function as the true model 

to the DE models using normal link functions as the true models. Table 4 shows that the 

average rate of DLTs are similar across all scenarios for the three models and the percent of 

trials with an excessive rate of DLT are fairly close except when γtrue is below Xmin and 

when using model (A), the model with the greatest departure from the true logistic model, 

see the third panel of Figure 1. Based on these results, we conclude that safety of the trial is 

in general not compromised. The largest difference in the average bias between the true and 

misspecified model is 0.09 and is achieved when using model (E), again a model with the 

highest departure from the logistic model. In any case, this highest difference corresponds to 

9% of the dose range and is practically not very significant. Similar conclusions can be 

drawn using the RMSE for the various models. When using the measures of efficiency REC1 

and REC2 in equations (3.5–3.6), there is a big difference in the percent of trials 

recommending the MTD in a neighborhood of the true MTD, with the largest differences 

obtained when using models with big departures from the logistic model (A, C, E). This is 

probably due to the small sample size, width of the interval around the true MTD defining 

the neighborhood, and extent of the departure from the true model. These differences are 

less pronounced when using discrete dose levels (results not shown). In the case of discrete 
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doses, Table 3 shows that the percent selection of the MTD using the proposed design is 

72% when γtrue is below the minimum dose and is 51% when γtrue is above the maximum 

dose. The corresponding percentages for the proposed design and the design with no dose 

range expansion are very close. Similar conclusions are achieved when comparing the 

number of patients treated at or near the true MTD between the two designs.

Finally, operating characteristics comparing the performance of the proposed design (DE) 

and the design starting with the expanded dose range (ERD) for the continuous and discrete 

dose levels cases are listed in Tables 5 and 6, respectively. As expected, the percent of DLTs 

for the ERD design is lower relative to the DE design when the true MTD is below Xmin and 

the ERD design is more efficient in estimating the MTD since the dose range (Xmin − L, 

Xmax + U) includes the true MTD. However, when the true MTD is within the range (Xmin, 

Xmax) or above Xmax, safety of the trial is not compromised but there is a significant loss of 

efficiency of the estimate of the MTD when using the ERD design relative to the DE design 

since the dose range has been extended from (100, 500) to (0, 700), an increase of 75% in 

the width of the dose range. For instance, when γtrue = 1.22, the average bias using the ERD 

design is −0.213 compared to −0.004 for the DE design and the percent of trials with MTD 

estimate within a neighborhood of γtrue is much higher using the ED design relative to the 

ERD design, see the last four rows of Table 5 when γtrue = 0.53, 1.22. Similar conclusions 

can be made for the discrete dose level case, see Table 6.

4. Discussion

We described a dose finding design for cancer phase I clinical trials which uses a flexible 

dose range. In this design, clinicians propose a dose range [Xmin, Xmax] for searching for the 

MTD with the flexibility to expand this range to [Xmin − L, Xmax + U] if there is statistical 

evidence that the lowest dose is too toxic or the largest dose level is too safe. The approach 

is an extension of the method described in (Babb et al., 1998) and is more general than the 

extension described in (Tighiouart et al., 2005). When there is evidence that the lowest dose 

is too toxic or the highest dose has a low probability of DLT, the method has several 

advantages over previous approaches. For instance, there is no need to suspend accrual, 

amend the clinical protocol, or close the trial since the consequences of expanding the dose 

range are evaluated using the design operating characteristics at the design stage of the trial. 

However, this approach may not prevent future amendments to the trial if the expanded dose 

range is not wide enough to include the true MTD.

We assessed the performance of the approach using three scenarios for the true MTD and by 

comparing the proposed design with a design that does not expand the range of doses and a 

design that does not use a statistical stopping rule as in the original EWOC. We showed that 

our method is safer and can estimate the MTD more efficiently. Specifically, about 36% of 

the patients are treated at the MTD when γtrue is below the minimum dose level available in 

the trial initially and 40% are treated at the MTD when γtrue is above the maximum dose 

using our approach compared to 0.0% if the dose range is not expanded. Model robustness 

was assessed using various link functions and we found that safety of the trial was not 

compromised in general. Furthermore, the method was fairly robust when comparing the 

average bias between the true and misspecified models but the percent of MTD 
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recommendations can differ substantially between the true and misspecified model 

depending on the width of the interval around the true MTD defining the neighborhood. 

Although these differences are less pronounced for trials that use discrete dose levels (results 

not shown), these considerations should be carefully evaluated at the design stage of the trial 

and discussed with the clinician before the trial is moved forward. For instance, alternative 

statistics such as percent of trials with MTD estimate within 20% or 25% of the dose range 

around the true MTD may also be considered to assess the performance of the method. 

Furthermore, when the true MTD is outside the range of doses, the probability of expanding 

the dose range is consistently high under model misspecification. Based on these results, we 

conclude that the method is fairly robust under small departures from the true model around 

the true MTD.

We further compared the performance of the proposed design with the one starting with the 

expanded dose range instead. We found that if the true MTD is below the minimum dose 

available in the trial, the later design is safer and more efficient than the DE design but the 

DE design is worth using when the true MTD is within the dose range or above the 

maximum dose available in the trial as assessed by the high gain in efficiency of the estimate 

of the MTD. In any case, the choice of the minimum dose in a real prospective trial is based 

on the clinician’s best knowledge of the drug from other similar trials or is taken as a small 

fraction of the lethal dose in 10% of mice or rats (LD10) for new agents. If this dose happens 

to be too toxic, then the DE design is superior relative to the NDE and NS designs as 

discussed above. Although the methodology described here uses EWOC, it can be applied to 

any model based dose finding method such as CRM (O’Quigley et al., 1990) or mTPI (Ji 

and Wang, 2013) designs. We plan to adapt the methodology to dose combination trials by 

extending the work described in (Tighiouart, Li and Rogatko, 2017).
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Figure 1. 
Response profiles for probability of toxicity as a function of standardized dose in logistic 

and normal models for each scenario of the true MTD. Dotted lines show dose and 

probability of the true MTD under the three scenarios.
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Table 1

Probability of expanding dose range and CI for sample size n where stopping rule was applied.

Logistic response True MTD

−0.16 0.52 1.22

Continuous doses P(expand) 0.810 0.048 0.960

Median n 11 6 6

90% CI for n [4, 27] [6, 6] [6, 19.1]

Discrete doses P(expand) 0.804 0.025 0.931

Median n 11.5 7.0 7.0

90% CI for n [4, 27] [6.2. 11] [7, 22]

Normal response (B) (D) (F)

P(expand) 0.664 0.010 0.985

Median n 12.5 6.0 6.0

90% CI for n [4, 27] [6, 6] [6, 18]

Normal response (A) (C) (E)

P(expand) 0.987 0.139 0.643

Median n 8.0 6.0 6.0

90% CI for n [4, 19] [6, 18.1] [6, 25]
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