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Summary

Ribosome profiling (Riboseq) is a powerful technique for measuring protein translation, however, 

sampling errors and biological biases are prevalent and poorly understand. Addressing these 

issues, we present Scikit-ribo (https://github.com/schatzlab/scikit-ribo), an open-source analysis 

package for accurate genome-wide A-site prediction and translation efficiency (TE) estimation 

from Riboseq and RNAseq data. Scikit-ribo accurately identifies A-site locations and reproduces 

codon elongation rates using several digestion protocols (r = 0.99). Next we show commonly used 

RPKM-derived TE estimation is prone to biases, especially for low-abundance genes. Scikit-ribo 

introduces a codon-level generalized linear model with ridge penalty that correctly estimates TE 

while accommodating variable codon elongation rates and mRNA secondary structure. This 

corrects the TE errors for over 2000 genes in S. cerevisiae, which we validate using mass 

spectrometry of protein abundances (r = 0.81) and allows us to determine the Kozak-like sequence 

directly from Riboseq. We conclude with an analysis of coverage requirements needed for robust 

codon-level analysis, and quantify the artifacts that can occur from cycloheximide treatment.
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New open-source statistical learning software package enables accurate analysis of translational 

efficiency from Riboseq and RNAseq data. Using it corrects the biases for thousands of genes in S. 

cerevisiae, which enables improved estimates of relative protein abundances and the discovery of 

the Kozak-like regulatory sequence in yeast from Riboseq data.

Introduction

First introduced by Ingolia et al in 2009(Ingolia et al., 2009), ribosome profiling (Riboseq) 

allows researchers to investigate genome-wide in vivo protein synthesis through deep 

sequencing of ribosome-protected mRNA footprints(Ingolia, 2014). Since the original 

introduction, several improved versions have been developed to mitigate 

biases(Gerashchenko and Gladyshev, 2014, 2017; Weinberg et al., 2016) and address new 

biological questions(Archer et al., 2016; Oh et al., 2011). After the protocol became 

standardized in 2012, there was a rapid increase in adoption(Ingolia et al., 2012), leading to 

discoveries of translational defects in different forms of cancer(Hsieh et al., 2012; Sendoel et 

al., 2017; Wurth et al., 2016), other important human diseases(Schafer et al., 2015), and the 

identification of novel drug targets(Su et al., 2015). Riboseq has also revealed new insights 

into many steps in the translation process itself(Brar and Weissman, 2015; Michel and 

Baranov, 2013).

Riboseq provides genome-wide insights into the regulation of gene expression at the level of 

translation. A key metric of measuring translational control is translational efficiency (TE), 

defined as the level of protein production per mRNA(Ingolia et al., 2009; Li, 2015). 

Assuming minimal ribosome fall-off, Li showed that TE effectively measures translation 

initiation efficiency (TIE) in the steady state(Li, 2015). Shah et al showed that TIE is the rate 

limiting factor for translation(Shah et al., 2013). In practice, this metric is calculated for a 

given gene as the ratio of the ribosome density from Riboseq to the mRNA abundance 

measured by RNAseq. We refer to this ratio as RPKM-derived TE (ribosome density per 

mRNA, Equation 1), because both values have RPKM units, reads per kilobase of transcript 

per million mapped reads (Equation 2). Although this metric is commonly used in the 

literature, it is not a direct measure of protein output but ribosome density, and the two are 

only correlated assuming the same elongation rate across genes(Li, 2015). However, this 
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assumption does not hold in many cases, especially genes with extensive ribosome 

pausing(Mohammad et al., 2016; Quax et al., 2013; Radhakrishnan et al., 2016; Zhang et al., 

2016).

Technical shortcomings in the Riboseq workflow can introduce bias and systematic error 

into the analysis. Ribosome footprints vary depending on the organism, nuclease, and cell 

lysis conditions, making it difficult to identify the ribosome position on the fragment and 

potentially yielding misleading results(Mohammad et al., 2016). Another source of the noise 

is ligation bias in cloning ribosome footprints and amplification by PCR(Lecanda et al., 

2016). Finally, early protocols used antibiotics such as cycloheximide (CHX) to arrest 

translation prior to cell lysis but CHX treatment distorts ribosome profiles because initiation 

continues even though elongation is blocked(Gerashchenko and Gladyshev, 2014). This 

artifact leads to high levels of ribosome density at alternative initiation sites at the 5’-end of 

ORFs, and masks the local translational landscape (Hussmann et al., 2015). Weinberg et al 
produced excellent quality reference datasets and showed that RNAseq libraries are also 

subject to their own problems including isolating mRNA through interaction with the poly-A 

tail (Weinberg et al., 2016).

Addressing these problems analytically, it is first essential to correctly determine the 

location of the codon bound in the ribosomal A-site within the Riboseq reads. Decoding of 

the A-site codon by incoming aminoacyl-tRNAs is rate limiting during elongation(Michel 

and Baranov, 2013); low levels of specific aminoacyl-tRNA species lead to pausing as 

indicated by changes in the codon-specific elongation rate (ER). Precise determination of the 

A-site codon is needed to determine whether a given read belongs to the canonical open 

reading frame (ORF) of a gene, especially when genes are overlapping. RiboDeblur(Wang et 

al., 2016) models ribosome profiles as blurred position signals, but it is not suitable for 

downstream analysis. Most other studies followed the 15-nucleotide (nt) rule from Ingolia et 

al(Ingolia et al., 2009), based on the work of Wolin and Walter(Wolin and Walter, 1988); the 

A-site codon starts at 15 nt in 28mer reads produced by RNase I. Reads of other lengths are 

commonly excluded from consideration, significantly reducing the data available, and 

perhaps missing important signals that affect footprint size. Correct identification of the 

ribosome position is particularly problematic in bacteria(Hwang and Buskirk, 2017; 

Mohammad et al., 2016) and Arabidopsis(Hsu et al., 2016) where MNase generates a broad 

distribution of footprints(Hwang and Buskirk, 2017).

Secondly, in almost every published Riboseq study, the distributions of RPKM-derived log 

TE are severely skewed with a long tail on the negative side(Dunn et al., 2013; Gonzalez et 

al., 2014; Ingolia et al., 2009) (Figure S1A). This observation is also reported by Weinberg 

et al in their analysis of wild-type S. cerevisiae data from ten different labs(Weinberg et al., 

2016). One of the main reasons for the skewed distribution is sampling error from low-

abundance genes: the range of gene expression level spans 8 to 11 orders of magnitude, but a 

limited amount of sequencing coverage is available. As a result, the sampling of low-

abundance transcripts is more error-prone (Figure 1A), yielding higher dispersion of RPKM 

among low-abundance genes, and subsequently even higher dispersion of RPKM-derived TE 

(Figure 1A). To address this problem in analyses of RNAseq data, fold change shrinkage 

methods (e.g. empirical Bayesian shrinkage) have been widely adapted in differential 
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expression (DE) methods such as DEseq2(Love et al., 2014) and edgeR(Robinson et al., 

2010). In order to perform shrinkage with between-sample normalization, these methods 

rely on at least three replicates, which are not typically available in Riboseq studies. Even 

where multiple replicates are available, it is not appropriate to use RNAseq DE methods to 

compute TE, because those methods were developed to estimate changes of gene expression 

under perturbation, while TE reflects the level of translation control under a single condition 

(Albert et al., 2014; Csardi et al., 2015).

Finally, traditional techniques for mRNA quantification and DE testing rely on a strong 

assumption: random fragmentation and uniform sequencing of mRNA molecules. However, 

this assumption does not apply to Riboseq data given that the abundance of ribosome-

protected fragments is strongly influenced by local translational elongation rates, causing 

peaks due to paused ribosomes (Figure 1B) (Schuller et al., 2017; Woolstenhulme et al., 

2015; Zhang et al., 2016). Two major determinants of ribosome pausing are slow 

codons(Thanaraj and Argos, 1996) and downstream mRNA secondary structure(Doma and 

Parker, 2006) (Figure 1B), although their importance and relative contributions have been 

controversial (Chen et al., 2013; Gorochowski et al., 2015; Mohammad et al., 2016). The 

presence of paused ribosomes problematizes the use of ribosome density for calculating 

TE(Quax et al., 2015) (Figure 1C). Genes with paused ribosomes have more reads than 

expected, depleting coverage on other genes. Traditional read counting methods do not 

control for these biases (when using RPKM to derive TE).

Earlier attempts to more accurately model TE have significant restrictions and have seen 

limited application so far. Pop et al developed a queuing model for translation, but it failed to 

recover significant correlation between codon dwell time and cognate tRNA availability, and 

the source code is not available(Pop et al., 2014). Weinberg et al proposed a comprehensive 

model to estimate TE(Weinberg et al., 2016) in S. cerevisiae using the analytical 

approximations of initiation probability, but this required parameterizations from a whole-

cell simulation from Shah et al(Shah et al., 2013), making it difficult to apply to other 

organisms. Duc and Song developed a simulation-based inference algorithm to estimate 

translation initiation and local elongation rates, but it could only be applied to ~900 (13%) 

genes in S. cerevisiae, because it requires extensive filtering (Dao Duc and Song, 2017). 

None of these methods addressed the prevalent sampling errors and biological biases in 

Riboseq data described above.

Here, we present Scikit-ribo (https://github.com/schatzlab/scikit-ribo), an open-source 

software package for accurate genome-wide TE inference from Riboseq data (Figure 2). 

Scikit-ribo is very fast; it can analyze more than 6000 genes from a high-coverage S. 
cerevisiae Riboseq data (over 75 million reads) in less than one hour with single-codon 

resolution. We applied it to 10 Riboseq data sets and demonstrated its robustness to a variety 

of different mRNA digestion methods and low-abundance genes while automatically 

correcting biases across different genes. We next show that the commonly used RPKM-

derived TE is sensitive to sampling errors and biological biases, creating substantial 

discrepancies in previous studies. To address this, we developed a codon-level generalized 

linear model (GLM) with a ridge penalty to shrink the TE estimates. The GLM also serves 

as a mechanistic model for translation elongation and initiation, incorporating codon-
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specific elongation rates, local mRNA secondary structure, and gene-specific translational 

initiation efficiencies. We validate the model using in silico analysis and experimental mass 

spectrometry data and show a high correlation in predicted protein abundance (r=0.81). This 

successfully corrects the biases for ~2000 genes, and resolves the negative skew in TE 

observed in previous studies. Finally, we show the importance of accurate TE estimation for 

interpreting Riboseq data, including recovering the Kozak-like consensus sequence in S. 
cerevisiae.

Results

Accurate A-site codon prediction with different organisms and nuclease digestion

Using a supervised learning approach, Scikit-ribo trains a model for identifying the A-site 

codon using reads that contain start codons (Figure 2A). The algorithm uses a random forest 

model to evaluate eight features of how the Riboseq reads align to the genome: the length of 

the read, the distance from the 5’ or 3’ end of the read to the start codon, and the nucleotides 

flanking the ends of the Riboseq reads (STAR Methods). Unlike other methods, Scikit-ribo 

can accommodate different types of Riboseq data using a recursive feature selection 

technique and cross validation (CV). For a given dataset, Scikit-ribo finds the optimal 

features with the lowest prediction error. This helps remove irrelevant features and avoids 

overfitting an unnecessarily complex model.

Using this approach on the S. cerevisiae data prepared with RNase I by Weinberg et al, the 

accuracy of the prediction of the A-site codon was extremely high (mean accuracy=0.98, 

SD=0.003, 10-fold CV)(Weinberg et al., 2016). Unlike the basic 15-nt rule, our model’s 

predictions are consistent across reads with different lengths or A-site locations (Figure 

S2A). This means that it can utilize the full complement of reads for downstream analysis; 

this is especially helpful for low-abundance genes. Our model also achieved high accuracies 

in seven other S. cerevisiae datasets (Table S1). Interestingly, for all eight S. cerevisiae 
datasets the most important features were the phase of the 5’-end of a read (whether it falls 

in the first, second, or third frame) and the read length (Figure S3A). This is consistent with 

the previous findings that RNase I was not always precise in generating ribosome 

footprints(Gerashchenko and Gladyshev, 2017). By examining elongating ribosomes within 

the canonical ORF (not overlapping the start codon), 94.3% of the predicted A-sites are in 

the correct frame, confirming Scikit-ribo’s high accuracy.

To test how Scikit-ribo performs in different model organisms or with different digestions 

protocols, we next applied it to the Riboseq data from E. coli. Bacterial ribosome profiling 

protocols use MNase instead of RNase I because RNase I is inhibited by bacterial 

ribosomes. The resulting read distributions are broad and have posed challenges in assigning 

ribosome position(Li et al., 2012; Woolstenhulme et al., 2015). One promising approach is 

to employ MNase together with the endonuclease RelE, taking advantage of RelE’s ability 

to precisely cleave the A-site codon within the ribosome. In the resulting ribosome 

footprints, the A-site codon is found at the 3’-end of reads, rather than 12 to 18 nt away from 

the 5’-end of a read as in S. cerevisiae. In spite of these differences, the accuracy of Scikit-

ribo was still high (mean accuracy=0.91, SD=0.041, 10-fold CV, Figure S3B) and showed 

99.8% assignment of the A-site codon to canonical ORFs for reads not overlapping the start 
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codons. Interestingly, for the RelE data, the optimal feature was the phase of 3’-end of a 

read, while the 5’-end did not have a strong effect (Figure S3B). This is consistent with the 

report in Hwang et al that RelE preferentially cleaves at the ribosome A-site codon, 

generating precise 3’-ends(Hwang and Buskirk, 2017). Using Scikit-ribo, we also analyzed 

E. coli Riboseq libraries prepared with MNase alone, but the accuracy was lower (0.70) than 

those with RelE. This indicates that RelE improves the precision of the ribosome sub-codon 

position and thus is a better nuclease for analyses requiring codon resolution.

Paused ribosomes and biological biases of TE

Ribosome pausing (RP) events are prevalent in many organisms(Zhang et al., 2016), 

occurring for several reasons, including slow recruitment of tRNAs and mRNA secondary 

structure(Gorochowski et al., 2015). These biological effects can introduce biases in 

ribosome profiles and lead to overestimation of TE in genes with high levels of pausing. In 

Weinberg et al(Weinberg et al., 2016), the distribution of RPKM-derived log2 TE is 

negatively skewed with a mean of −0.5 (Figure S1B). We hypothesized that the distribution 

of RPKM-derived TE was skewed largely due to RP events. To illustrate this, we simulated 

both Riboseq and RNAseq data, with and without paused ribosomes in S. cerevisiae (STAR 
Methods). Upon comparing log2 TERP (i.e. the log2 TE in the data with RP) with log2 

TEBaseline (i.e. the log2 TE in the data without RP), we observed that several genes had 

inflated TEs, while the remaining majority had decreased estimates. We also observed that 

the log2 TERP distribution for paused data was broader and negatively skewed, similar to 

what has been observed in previous reports. These results show that this skew can arise from 

genes with significant pausing as they will have more Riboseq reads and higher RPKM-

derived TE, although their protein abundance remains the same. Pausing also reduces the 

available Riboseq reads available on other non-paused genes, so that their TE estimates are 

deflated.

Since pauses can be induced by non-optimal codons and downstream mRNA secondary 

structure(Gorochowski et al., 2015), we developed a statistical model to jointly correct for 

these effects that we refer to as biological biases. Since the observed ribosome profiles are 

affected by changes in elongation rates, and not simply initiation rates, Scikit-ribo uses a 

codon-level generalized linear model (GLM) to separate out these two processes, 

considering three categorical covariates and one continuous covariate (STAR Methods, 

Equation 5–6). This models that at a codon position, the ribosome coverage is proportional 

to mRNA abundance and gene specific TE, reflecting initiation levels, as well as 

downstream mRNA secondary structure and codon specific dwell time, reflecting limiting 

steps in elongation rates (Figure 2B).

Sampling errors for low abundance genes using Riboseq

Another difficulty in estimating TE is sampling error for low-abundance genes due to lack of 

sequencing depth. Similar trends have been reported in DE analysis of RNAseq data, where 

low abundance genes can have extreme fold changes if not corrected (Love et al., 2014). 

This is a side-effect of modeling high-dispersion count data; measurements are inherently 

noisier when counts are low(Love et al., 2014). Riboseq data shares the same issue, and 

since most Riboseq experiments are done with two or fewer replicates, estimation of 
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between-sample variability and subsequent shrinkage of dispersion has not been 

feasible(Albert et al., 2014). Thus, most published Riboseq studies used the RPKM-derived 

TE: RPKMRibo/RPKMmRNA (Equation 1)(Ingolia et al., 2009). However, low abundance 

genes, especially those with a “transcripts per million” (TPM, Equation 3) value less than 

one, show much more dispersed TE values compared with other genes (Figure 1A). This is 

true even if the TPM cutoff is increased to 10 (Figure S1D). Consequently, the standard 

deviation (SD) of log2 TE in low abundance genes from the Weinberg et al(Weinberg et al., 

2016) data was 3-fold higher than for other genes (Levene test, p-value=3 × 10−89), the 

overall range in TE was 5-fold larger (99 vs 20), and the median absolute deviation (MAD) 

was also larger (1.9 vs 1.0). The high dispersion of TEs was driven by the high variance of 

the ratio between the numbers of reads per gene (Equation 4).

One ad-hoc solution is to remove low abundance genes from downstream analysis, although 

the threshold is arbitrary and cannot be determined rigorously. Furthermore, this approach 

reduces the sensitivity of finding genuinely extreme TE genes and reduces the power of 

finding significance. Instead of imposing arbitrary thresholds, Scikit-ribo uses a shrinkage 

method based on ridge penalty to account for the sampling uncertainty for low abundance 

genes (STAR Methods, Equation 7–8). This method helps address the sampling issues even 

without replicates, and enables Scikit-ribo to report balanced log2 TE distributions (Figure 

S1).

Accurate inference reveals the interplay between cognate tRNA availability and mRNA 
secondary structure

Having described how Scikit-ribo addressed the errors and biases, we analyzed the CHX-

free S. cerevisiae Riboseq data from Weinberg et al(Weinberg et al., 2016). The codon dwell 

time (DT) estimates from the GLM are the inverse of the codon elongation rates (ER). 

Scikit-ribo almost perfectly reproduced the codon DT (Pearson r = 0.99) from Weinberg et 
al(Weinberg et al., 2016), in which the three slowest codons are CGG, CGA, and CCG 

(Figure 3A). The tRNA adaptation index (tAI) measures the efficiency of a coding sequence 

recognized by the intra-cellular tRNA pool, taking into account each gene’s codon 

compositions, mRNA expression levels, and the availability of the conjugate tRNA(dos Reis 

et al., 2004). Reis et al(dos Reis et al., 2004) estimates tAI as the geometric mean of its 

codons’ relative adaptiveness value (RAV). A codon with lower RAV is sub-optimal for 

translation elongation, i.e. slower codon. We found CGG, CGA, and CCG have low RAV 

values(dos Reis et al., 2004) and are among the rarest codons in the S. cerevisiae 
transcriptome. Following Weinberg et al and others(Dao Duc and Song, 2017; Gorochowski 

et al., 2015; Weinberg et al., 2016; Zhang et al., 2016), we compared the relative codon ERs 

with RAV and their cognate tRNA abundance measured by microarray(Weinberg et al., 

2016), and reproduced a positive correlation against both (Spearman ρtAI = 0.54, ρtRNA = 

0.47, Figure 3B–C).

Although our findings confirm that ribosomes have lower DT on codons with higher cognate 

tRNA levels, it cannot solely explain the variation in ER given the imperfect correlation. We 

hypothesize part of the missing contribution was from downstream mRNA secondary 

structure, and adjusted the within-gene ribosome densities by the inferred codon ERs, which 
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controlled for the codon-specific effects on local translational elongation. We also used 

RNAfold(Lorenz et al., 2011) to predict the optimal mRNA secondary structure and test if 

large downstream stem-loops would increase ribosome density (STAR Methods). We found 

that the ribosomes move slower in the presence of downstream mRNA stem-loops (t-test, p-

value= 5 × 10−3), and noted a peak in the average adjusted ribosome density in a five-codon 

sliding window at the junction (Figure 3D). This finding is consistent with previous reports 

that downstream stem-loops decrease the ribosome ER, i.e. increase the DT as ribosomes 

wait for the downstream stem-loops to be unfolded(Chen et al., 2013; Mao et al., 2014; Zur 

and Tuller, 2016). Together our analyses show that ribosome elongation rates are affected by 

a complex interplay of cognate tRNA availability and downstream mRNA secondary 

structure. These results also confirm that Scikit-ribo accurately estimates codon-specific DT 

and the effect of mRNA secondary structure, after it correctly predicted the A-site codon and 

fit the GLM.

Simultaneously correcting sampling errors and biological biases for TEs

To understand how Scikit-ribo corrects the biases in the Riboseq analysis, we compared the 

Scikit-ribo log2 TE with the RPKM-derived log2 TE from the Weinberg et al data (Figure 

4A). The correlation between the estimates was high (r=0.82), but the RPKM-derived TE 

estimates showed clear trends of systematic biases (negative skew) that were corrected by 

Scikit-ribo (Figure 4B). We calculated the differences between the two estimates, Δ log2 TE 
= log2 TEscikit–ribo – log2 TERPKM, and colored them as green for Δ log2 TE > 0.5, 

previously underestimated; orange for Δ log2 TE < −0.5, previously overestimated; and gray 

for neutral genes (Table S2). The green points in the left half of the plot shifted upward from 

the diagonal line, while the points in the right half were more consistent (Figure 4A). There 

were 1957 genes with large differences (|Δ log2 TE| > 0.5); 897 being under-estimated and 

1060 being over-estimated. Compared with RPKM-derived TE, we found the log2 TE of 

some genes were previously underestimated by as much as 11 (2048 fold), while other genes 

were overestimated by almost 3 (8 fold) (Figure S4B).

We further defined six regions based on Δ log2 TE and the sign of Scikit-ribo log2 TE. For 

example, region 1 corresponds to genes with Δ log2 TE greater than 0.5 with negative Scikit-

ribo log2 TE (n=629); most of these genes were of low abundance with a TPM less than 10 

(Figure 4C, Figure S4). This means given 75 million reads, these genes had fewer than 750 

reads on average, i.e. ~2 reads per codon. The sampling of such genes is highly unstable, 

causing the ratio of the read counts to have high variance. As a result, the RPKM-derived TE 

reports a high dispersion and incorrect TE estimates in region 1, while Scikit-ribo 

successfully corrected the sampling errors with its shrinkage estimates.

While improvements in TE estimates in region 1 arise from a better correction of sampling 

error on low abundance genes, how can we address differences in regions with more highly 

expressed genes? For this analysis, we excluded low abundance genes (TPM < 10) to focus 

on the effects on biological covariates, codon specific ER and mRNA structure. There were 

268 and 981 genes in the highly-translated regions 4 and 6, respectively. If downstream 

mRNA secondary structure had an effect, the RPKM-derived log2 TE of genes with high 

levels of structure would be inflated as additional ribosomes are paused at the loop; the Δ 
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log2 TE becomes smaller with a higher stem loop density (normalized by ORF length). We 

found this was indeed the case: there is a negative correlation between Δ log2 TE and stem 

loop density (Figure 4D, Spearman ρ = −0.33). This bias was corrected by the mRNA 

secondary structure covariate of the GLM as we found an enrichment of 15% greater 

ribosome density when there was a downstream secondary structure.

Second, we investigated the influences of variation in codon-specific ER values. The gene 

level tRNA-adaptation index (tAI) indicates whether a gene is enriched for optimal or non-

optimal codons: higher tAI means the gene is enriched for faster codons, while a lower tAI 

means it is enriched for slower codons. The middle regions, 2 and 5, served as baseline for 

genes with negative and positive log2 TE, respectively (Figure 4E). For negative log2 TE, 

genes, there were no significant difference of tAI between genes in regions 1 and 2, but the 

region 3 genes had significantly lower tAI than those in region 2 (Table S2, t-test, p-value=2 

× 10−6). We conclude that the differences in TE for region 1 is not due to tAI but is instead 

due to the shrinkage estimates via the ridge penalty of the Scikit-ribo model. In contrast, the 

TE values of region 3 genes were previously overestimated because they contained more 

slow codons. When log2 TE is positive, tAI values have a stronger effect: region 4 genes had 

much higher tAI values than region 5 genes (t-test, p-value=1 × 10−17) while genes in region 

6 had lower tAI (t-test, p-value=5 × 10−55). This means the genes in the region 4 and 6 were 

previously underestimated and overestimated, respectively, because their genes tend to 

enrich for fast and slow codons.

We further found the region 4 genes are enriched for the biological process of cytoplasmic 

translation [GO:0002181] (Table S3, p-value=3 × 10−25), consistent with previous reports 

showing genes encoding ribosomal proteins are enriched for optimal codons (Gingold and 

Pilpel, 2011). Since ribosomes move faster on mRNAs encoding ribosome proteins, RPKM-

derived TE values are underestimated but are corrected by Scikit-ribo. These observations do 

not depend on the use of the tAI metric that is based on gene expression data, including 

ribosome proteins: the same conclusion holds true using the species-specific tAI (stAI)(Sabi 

and Tuller, 2014) metric developed to provide a similar measurement of codon efficiency 

without gene expression data (Figure S5).

Scikit-ribo discovers Kozak-like consensus in S. cerevisiae

The Kozak consensus sequence, GCCRCCATGG, promotes translation initiation in 

vertebrates(Kozak, 1987). In S. cerevisiae, the Kozak-like sequence was shown to be 

AAAAAAATGTCT(Hamilton et al., 1987), and has been widely used as a positive control 

to train translation initiation start (TIS) site prediction methods(Lee et al., 2012; Michel et 

al., 2014; Raj et al., 2016). The Kozak sequence has been re-discovered in Riboseq studies 

in humans (homo sapiens), mice (Mus musculus) and maize (Zea mays) (Cenik et al., 2015; 

Chew et al., 2016; Lei et al., 2015). However, it has not been found using Riboseq data in S. 
cerevisiae, and only a weak resemblance of it, 4 out of 12 bases, has been reported(Pop et 

al., 2014).

We examined whether the improved TE estimates from Scikit-ribo can discover this mRNA 

element as it is associated with high TE. We collected the 5’UTR sequences from genes with 

log2 TE > 2, and scanned for enriched sequences using HOMER(Heinz et al., 2010). Based 
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on HOMER’s suggested p-value threshold, there were two statistically significant 

sequences. Strikingly, the top hit exactly matches the Kozak-like sequence from Hamilton et 
al(Hamilton et al., 1987), AAAATGTCT (p-value=1 × 10−21, Figure 4F). This is the first 

report of the exact Kozak-like sequence in the S. cerevisiae Riboseq analyses. The other 

enriched sequence was AAATAAGCTCCC, which has not been reported in vivo (p-value=1 

× 10−11, Figure S6). Interestingly, this sequence contains the motif ATAAG, one of the top 

five sequences that leads to higher TE in a large-scale HIS3 reporter assay from Cuperus et 
al(Cuperus et al., 2017). In contrast, using the same threshold, RPKM-derived TE failed to 

discover either of these sequences, and found a weak signal for CAACATGGCT with a 

much less significant p-value (1 × 10−11) and weak resemblance to the Kozak-like sequence 

(Figure S6). This failure of RPKM-derived TE to yield the Kozak-like motif was likely 

because that approach provided skewed estimates where some lower TE genes had 

artificially high RPKM-derived TE. This contaminated the gene set for enrichment analysis, 

and prevented it from finding the correct motif.

Large-scale validation showed Scikit-ribo’s accurate TE estimation, especially for low-
abundance genes

To further understand the discrepancies between Scikit-ribo and RPKM-derived TE, we 

performed a large-scale validation using the selected reaction monitoring (SRM) mass 

spectrometry data from a recent reference proteome dataset containing high quality 

measurements in S. cerevisiae(Lawless et al., 2016). Based on the master equations relating 

mRNA transcription and protein translation (Equation 9)(Li, 2015), the relative protein 

abundance (PA) is proportional to the product of mRNA abundance and TE, assuming a 

consistent protein degradation rate across genes (Equation 10). There were 1,180 genes in 

the validation set, with a mean of 55,012 copies per cell, ranging from 6 to 4,366,751. The 

correlation between the protein abundance derived by Scikit-ribo and by mass spectrometry 

was high (Pearson r = 0.81, Figure 5A) and the fitted line was close to the diagonal (linear 

regression, β = 0.83). When we further considered protein degradation rates from Christiano 

et al(Christiano et al., 2014), the correlation became even higher (Pearson r = 0.83, Figure 

S8). In contrast, RPKM-derived log PA reported a lower correlation (Pearson r = 0.77) and 

the fitted line is more distant from the diagonal (β = 0.75, Figure 5C). In addition, many of 

the outliers in the RPKM-derived PA were low abundance genes, suggesting a systematic 

bias (Figure 5C). Focusing on a set of 933 lower abundance genes with a TPM less than 100, 

the Scikit-ribo derived log PA maintained a high correlation with mass spectrometry derived 

log PA (Pearson r = 0.6, β = 0.48, Figure 5B) while the RPKM-derived PA became more 

inaccurate with a much lower correlation (Pearson r = 0.35, β = 0.29, Figure 5D). This 

demonstrates that Scikit-ribo more accurately estimates genome-wide TE regardless of 

mRNA abundance, including low abundance mRNAs.

Coverage and data quality requirements for accurate Riboseq analysis

Above we showed how Scikit-ribo can recover many additional insights from the codon-

level analysis of the Riboseq data. However, it is of crucial importance to understand the 

practical requirements of our method, especially: 1) How much coverage is needed for 

robust codon-level analysis; and 2) What kind of artifacts may be present, especially those 

from CHX treatment?
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To answer the first question, we performed an in silico down-sampling of the Weinberg et 

al(Weinberg et al., 2016) Riboseq data using between 10% to 90% of its original coverage 

(77 million reads) in 10% increments. We found that the correlation drastically increases 

between 7.7 million (Pearson r = 0.44) to 30.8 million (Pearson r = 0.96) reads, while the 

improvement saturates with 38.5 million or more reads (Pearson r = 0.98, Figure 6A). This 

observation is consistent with our analysis of two biological replicates in Radhakrishnan et 
al which had a Pearson correlation of 0.96 between the 80-million and 39-million read 

datasets (Figure S9). Interestingly, the estimation of codon relative DT does not require as 

much coverage and a Pearson r = 0.97 is achieved with only 7.7 million reads and a Pearson 

r = 1.0 is achieved with only 23.1 million reads (Figure 6B), consistent with the biological 

replicate analysis (Figure S10). This is because the codon relative DT is the coefficient of a 

shared covariate across genes, with on average 48,666 occurrences of each codon across the 

S. cerevisiae transcriptome. In contrast, the log2 TE is the coefficient of the gene-specific 

covariate with only ~467 codons per gene. Thus, for a fixed amount of overall coverage, 

Scikit-ribo’s statistical model effectively has ~100 times as much information to estimate 

codon relative DT than to estimate TE. Overall, in S. cerevisiae, at least 30 million reads are 

needed to achieve the highest accuracy of TE estimation. The requirements for other species 

will scale linearly with the total transcriptome length, and about 200 million reads will be 

needed for Homo sapiens and Mus musculus.

Cycloheximide (CHX) has been shown to distort ribosome profiles and dramatically alter 

codon-specific elongation rates, including downstream “waves” of artificial ribosome 

densities(Hussmann et al., 2015). Because of these waves, the measured positions of 

ribosomes after CHX treatment do not reflect the amount of time ribosomes spend at each 

position in vivo(Hussmann et al., 2015). These artifacts can be problematic for Scikit-ribo, 

as it relies on the accurate ribosome positioning for the codon-level analysis.

To investigate, we compared the CHX-treated data in McManus et al(McManus et al., 2014) 

(41 million reads) with the CHX-free data in Weinberg et al (both from S. cerevisiae). Even 

after excluding genes with RNA TPM less than 10, we observed a poor correlation of log2 

TE estimates (Pearson r = 0.77) between CHX-treated and CHX-free data (Figure 6C). 

Compared to the SRM mass spectrometry data the log2 TE estimates from the CHX-treated 

data had an appreciably lower correlation than those from the CHX-free data (Pearson r: 
0.73 vs 0.81); the CHX treatment reduces the accuracy of TE estimation. To further 

investigate this artifact, we compared the codon relative DT between these two datasets, and 

observed a low and negative Pearson correlation (Pearson r = −0.1, Figure 6D). This means 

that CHX substantially disrupts the positioning of the ribosomes, leading to the incorrect 

codon relative DT estimates and subsequently reducing the accuracy of log2 TE estimates. 

Consequently, we recommend using Scikit-ribo with CHX-free Riboseq data only.

Discussion

For nearly 60 years, the central dogma of molecular biology has been the guiding model for 

explaining how genetic information flows from DNA to RNA and then to proteins. Through 

widespread genome and transcriptome sequencing, the first half of this process has been 

extensively explored, however relatively little is known about the later phases of this 
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process, largely because of the difficulties in acquiring high throughput and high quality data 

about translation and translational control. Riboseq is a powerful approach poised to fill this 

void.

Several methods have been developed for selected aspects of Riboseq analysis, including 

differential TE testing(Larsson et al., 2011; Olshen et al., 2013; Xiao et al., 2016; Zhong et 

al., 2017), identifying ORFs and alternative translation initiation sites(Malone et al., 2017; 

Zhang et al., 2017), and predicting the shape of ribosome profiles(Liu and Song, 2016). But 

few practical methods have been developed for robust TE estimation and most previous 

analyses were not performed in a systematic fashion. This had led to conflicted findings 

about the roles of codons and mRNA secondary structure on translation, and has prevented 

biological discoveries from being made. Here, through a systematical characterization and 

validation using mass spectrometry data, we exposed some of the more troubling issues of 

RPKM-derived TEs, including sampling errors and biological biases, especially for the low 

abundance genes.

We demonstrated that Scikit-ribo is a statistically robust model and open-source software 

package for accurate genome-wide TE inference from Riboseq data. The core of Scikit-ribo 

is a codon-level generalized linear model that unifies our study of translation elongation and 

initiation. When paired with a powerful ridge regression regularization method, Scikit-ribo 

corrects the negative skew in TE observed in most previous papers, especially for low 

expressed genes. Using three case studies involving ten different datasets, we showed how 

these advances allow universal improvement to Riboseq data analysis. This particularly 

improves the estimation of genome-wide TE, allowing us to discover the Kozak-like 

consensus sequence in S. cerevisiae. From a practical perspective, we demonstrated that at 

least 30 million reads are needed to achieve a high accuracy of TE estimation in S. 
cerevisiae. We further demonstrated that CHX-treatment can induce substantial artifacts and 

recommend only using CHX-free data with Scikit-ribo. Once CHX-free mammalian 

Riboseq data become available, Scikit-ribo can be used to deepen our understanding of 

mammalian translational control.

Our findings showcase the interplay between biology and statistics; biological knowledge 

informs statistical methods development, and statistical improvement yields novel biological 

insights. Together, we demonstrate that Scikit-ribo substantially improves Riboseq analysis 

and our understanding of translation control. In the future, we foresee more researchers 

applying Riboseq to address their biological questions related to protein translation in many 

samples and conditions, and Scikit-ribo can unlock the full potential of this technique.

STAR Methods

Overview of Scikit-ribo

Scikit-ribo has two major modules (Figure 2): (1) Ribosome A-site codon location 

prediction, and (2) TE inference using a codon-level generalized linear model (GLM) with 

ridge penalty. A complete analysis with Scikit-ribo involves two steps: 1) data preprocessing 

to prepare the ORFs and codons for a genome of interest, 2) the actual model training and 

fitting. The few inputs to Scikit-ribo includes the alignments of Riboseq reads (i.e. BAM 
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file), gene-level quantification of RNAseq reads (i.e. from Salmon(Patro et al., 2017) and 

Kallisto(Bray et al., 2016)), a gene annotation file (i.e. gtf file) and a reference genome (i.e. 

fasta file) for the model organism of interest. The main outputs include log2 TE estimates for 

the genes, and the translation elongation rates for the 61-sense codons. Scikit-ribo also has 

modules to automatically produce diagnostic plots of the random forest model and the GLM. 

The ribosome profile plots for each gene can also be plotted using Scikit-ribo. For details of 

preparing the inputs, see data processing steps in Methods. For a complete workflow from 

raw sequencing reads to results, see Figure S11.

Ribosome A-site codon prediction

Scikit-ribo uses a random forest(Breiman, 2001) classifier from Scikit-learn(Pedregosa et 

al., 2011) to predict the ribosome A-site locations over the 61-sense codons in the ORFs 

after excluding the start and stop codons. (Figure 2A). Low mapping quality (MAPQ<20) 

and clipped alignments are removed from downstream analysis. After filtering out 

overlapping genes, it collects all reads that intersect the start codons as training data. In the 

Weinberg et al data, the sample size of the training data is ~700,000, with ~85,00 in each 

class. The feature set of the classifier include 1) read length, 2) reading frame phase of the 

5’-end and 3’-end nucleotides (1st, 2nd, or 3rd), 3) the edge and the flanking nucleotides of 

the Riboseq reads. In the RNase I data, the label of the training data is the distance between 

the 3’-end of the start codon and the 5’-end of the read. In the RelE data, the label of the 

training data is the distance between the 3’-end of the start codon and the 3’-end of the read, 

which is enabled by the flag –r of the Scikit-ribo program.

The training of the random forest classifier involved two steps: recursive feature selection 

with CV, and training the classifier with reduced feature set. The first step of the training 

uses CV to find the optimal features that gives the lowest prediction error. During each step 

of the CV, the features are re-ranked and the lowest ranked feature is dropped. This is similar 

to finding the “elbow” point in the feature importance plot (Figure S3), which indicates the 

last sharp decrease of feature importance. Once the optimal feature set is selected, Scikit-

ribo performs another ten-fold CV to measure the accuracy (1 - error rate) of the model and 

learns the weights for each feature. After this, the learned classifier is applied to all the reads 

in the ORF and the A-site location on each read is predicted. Finally, Scikit-ribo compares 

the A-site locations to the canonical ORF, and reads that do not match it will be dropped 

from downstream analysis.

Calculating RPKM-derived TE

We refer to ribosome density per mRNA as RPKM-derived TE. It is a commonly used proxy 

for TE, which can be calculated by the ratio of RPKM for a given gene i(Ingolia et al., 2009; 

Li, 2015):

Equation 1
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where  and  are the relative abundance of gene i in the Riboseq data 

and RNAseq data, respectively.

RPKM and TPM are defined by:

Equation 2

Equation 3

where Ri, li are the sequencing coverage and coding sequence length of a gene, respectively.

In Riboseq studies, rather than using fragments per kilobase of gene per million reads 

mapped (FPKM), RPKM is employed (Equation 1). This is because the Riboseq reads are 

single stranded, and the companion RNAseq libraries were also made using a single stranded 

protocol to mimic the Riboseq data. Since li is a shared term between the two data, RPKM – 

derived TEi can be further derived as:

Equation 4

The total number of reads  and  are fixed normalization factors shared 

between genes. Thus, the variance of the nominator, the ratio of the number of reads, 

determines the dispersion of RPKM – derived TEi. That is why low abundance genes, either 

in the Riboseq or RNAseq data, report highly dispersed TE derived with RPKM.

Correcting for biological biases with the Scikit-ribo GLM

The joint inference of TE and codon DT is achieved via a codon-level GLM with a penalized 

likelihood function(Friedman et al., 2010) (Equation 5). The model can be fit using a python 

implementation of glmnet (https://github.com/hanfang/glmnet_python(Balakumar, 2017)). 

In Scikit-ribo, the design matrix is loaded as a scipy(Jones et al., 2001) compressed sparse 

column matrix. This can effectively reduce memory usage, as the size of the design matrix 

grows exponentially with respect to the number of categorical variables. As a quality 

control, low MAPQ regions and genes with TPM less than one are excluded from the 

analysis. If a gene has fewer than 10 effective codons remaining, it is also excluded. The 

model assumes that the number of ribosomes Yij for each codon at position j of gene i 
follows a Poisson distribution with the mean equal to μij (Equation 5). A log link function is 

employed.
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Equation 5

To correct for the biological biases, Scikit-ribo considers the below three categorical 

covariates and a continuous covariate (Figure 2B, Equation 6). The first continuous covariate 

 represents mRNA abundance in TPM and its coefficient is fixed to be one, indicating 

the ribosomes are proportional to mRNA abundance. Before putting into the model, the log 

TPMi values are normalized by their mean and SD. The coefficients  (in loge scale) of the 

first categorical covariate  represent TE/TIE for each gene. The log2 TEi can further be 

computed by using median normalization: . The second 

categorical covariate  represent the 61-sense codons. Their coefficients, βc (in loge scale) 

are proportional to the relative codon DT, which are the inverse of codon ERs. The start and 

stop codons in each ORF are excluded, because of their relevance to translation initiation 

and termination, rather than elongation. Finally, the third categorical covariate  indicates 

whether a likely double-stranded stem loop exists within 18 nt downstream of the current 

ribosome, as predicted from the optimal minimum free energy structure from 

RNAfold(Lorenz et al., 2011). The current ribosome is likely to reside at a single strand part 

of the mRNA molecule.

Equation 6

where g(․) is a log link function, μij = E[Yij],

 is the mRNA abundance for gene i with its coefficient fixed to 1,

 is the translational efficiency coefficient for gene i,

βc is the codon dwell time (inverse of elongation rate) for codon c,

 denotes whether secondary structure exists downstream of position j in gene i,

β0 is the intercept.

Correcting for sampling errors with ridge penalty

To correct for the sampling errors, i.e. the high dispersion of TE among low-abundance 

genes, Scikit-ribo employs a GLM with a ridge penalty(Friedman et al., 2010) (l2 norm) to 

provide shrinkage estimates of TEs (Equation 7 and 8). This is computed by setting the α 
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parameter in glmnet to zero. The lasso penalty is not considered here because we wish to 

infer all the coefficients (e.g. TEs of all genes), rather than performing variable selection. To 

optimize the log-likelihood, Scikit-ribo calls glmnet(Friedman et al., 2010), which uses a 

Newton quadratic approximation (outer loop) and then coordinate descent on the resulting 

penalized weighted least-squares problem (inner loop). A ten-fold CV is performed to find 

the optimal λ, which controls the strength of l2 norm regularization. If one wishes to utilize 

or inspect the coefficients from an un-penalized GLM, this could be done by setting λ = 0 

when printing the coefficients.

The log likelihood for the observations {xij, yij} is given by

Equation 7

We optimize the l2 norm penalized log likelihood w. r. t. a total of N observations and K 

parameters:

Equation 8

where the optimal λ with the smallest Poisson deviance is decided via CV.

Deriving relative protein abundance

As per the master equations for mRNA transcription and protein translation from Li(Li, 

2015), for a gene i,

Equation 9

where Mi and Pi are the concentration of mRNA and protein, respectively.  and  are the 

transcription and translation efficiency, while  and  are the degradation rates of mRNA 

and protein. Under steady state, , thus, the relative protein abundance (PA) can be 

derived from Riboseq and RNAseq data using:

Equation 10

where TEi is the translation efficiency, Mi is the relative mRNA abundance in TPM, and DRi 

is the relative protein degradation rates, which can be assumed identical across genes. For 

the Riboseq data alone, Pi approximates to the relative ribosome density/abundance in TPM.
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Sequencing reads processing

The complete sequencing reads processing workflow is shown in Figure S15. Each time a 

new fastq file is generated, it is recommended to run fastqc to ensure the expected outcome 

and replace runs with excessive quality errors. For both Riboseq and RNA-seq data, the first 

step is to identify and trim the 3’-end adapters from each read using cutadapt(Martin, 2011) 

(v1.13). The first base of the reads’ 5’-end is also clipped to avoid contamination on the 5’-

end. To filter out ribosomal RNA (rRNA) sequences, the resulting reads are aligned to the 

known rRNA using Bowtie(Langmead, 2010) (v1.2.0). As a quality control, the reads that 

are too short or too long are removed using Prinseq(Schmieder and Edwards, 2011), keeping 

reads in a range from 15nt to 35nt (v0.20.4). In E. coli, the size range of the Riboseq reads is 

larger, so this filtering step on read size should be adjusted accordingly. The remaining reads 

are then aligned with STAR(Dobin et al., 2013) (v2.4.0j) in a single pass mode with 

parameters tuned for short reads (--sjdbOverhang 35). The quality control report file of the 

resulting bam is generated using Qualimap(Okonechnikov et al., 2016) (v2.0.2). From there, 

the RNAseq data is used to quantify the gene-level mRNA abundance in TPM using a 

quantifier. Salmon(Patro et al., 2017) and Kallisto(Bray et al., 2016) are recommended here 

because they are extremely fast and their file formats are automatically supported by Scikit-

ribo.

Scikit-ribo input processing

Scikit-ribo uses the pandas(McKinney, 2010) data frame as the main data structure: a codon-

level data frame for the GLM, and a read-level data frame for A-site prediction. The codon-

level data frame consists of the following variables: chromosome, start, end, codon, 

secondary structure pairing probability, mRNA abundance in TPM, number of ribosomes at 

this codon. Scikit-ribo filters and converts the provided Riboseq bam file into a bed file 

using pysam(v0.10.0)(Li et al., 2009) and pybedtools(v0.7.9)(Dale et al., 2011; Quinlan and 

Hall, 2010), which is subsequently converted into a read-level data frame. To prepare the 

codon-level data frame, it retrieves the cDNA sequence (includes ORF, 5’/3’-UTR) given a 

reference genome and a gene annotation file. The 24 nucleotides in both the 5’UTR and 3’-

UTR are included for calculating mRNA secondary structure. The cDNA sequence is then 

used to predict the optimal secondary structure under minimal free energy using 

RNAfold(v2.3.4)(Lorenz et al., 2011). By parsing the postscript files, Scikit-ribo finds the 

lbox entries, which represent the pairing of nucleotides in the optimal structure. With that, it 

identifies the positions on the ORF with a likely stem loop downstream (i.e. nine nucleotides 

downstream of the A-site), while the ribosome is residing at a likely single-strand region (i.e. 

from six nucleotides upstream to nine nucleotides downstream). Due to the uncertainty of 

RNAfold prediction, a likely stem loop requires at least 17 out of the 18 nucleotides to be 

paired, while a single-strand region requires no more than three nucleotides paired. Given 

the canonical ORF of a gene, Scikit-ribo splits the sequences into tri-nucleotides as codons.

Data and statistical analysis in this paper

For the wild-type S. cerevisiae analysis and validation, the Riboseq (flash-freeze protocol) 

and RNA-seq (Ribo-zero protocol) data were from Weinberg et al(Weinberg et al., 2016). 

The accession numbers are GSM1289257, GSM1289256. For the CHX comparison, the 
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CHX-treated data is SRR948553 and the RNA-seq data is SRR948551, from McManus et 

al(McManus et al., 2014). The reference genome of S. cerevisiae used is S288C R64-2-1. 

The gene annotation file was the SGD annotation downloaded from UCSC. For the E. coli 
analysis, the Riboseq (RelE protocol) and RNA-seq data were from Hwang et al(Hwang and 

Buskirk, 2017). The accession number is GSE85540. The reference genome of E. coli used 

is the MG1655 genome. For more details of how these data were generated, please refer to 

the original papers. All the figures in the paper were plotted using matplotlib(Hunter, 2007) 

(v2.0.0) and seaborn(Waskom and Wagner, 2017) (v0.7.1). The Pearson correlation and 

Spearman correlation are denoted as r and ρ, respectively.

Simulation, sequence enrichment, and gene enrichment analysis

The simulation of the S. cerevisiae Riboseq and RNAseq data were done with 

polyester(Frazee et al., 2015) and the log TEbaseline, followed a balanced normal distribution. 

To mimic paused ribosomes, we randomly sampled 2500 sites (occurring within ~20% of 

the genes) and added 1000 additional reads into these locations of the Riboseq data. We then 

sampled back to the same number of reads as the original data and computed the new 

RPKM-derived log TERP. For the sequence enrichment analysis, we collected 5’UTR 

sequences from genes with log2 TE greater than two. The 5’UTR region is from 50 nt 

upstream to 6nt downstream of the translation start site. Then we used HOMER (v4.9) to 

scan for enriched sequences from the 56nt windows(Heinz et al., 2010), using the HOMER 

recommended p-value cutoff of 1 × 10−10 Gene set enrichment analysis was done on the 

website: http://www.yeastgenome.org/(Cherry et al., 2012).

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Michael C Schatz (mschatz@cs.jhu.edu).

DATA AND SOFTWARE AVAILABILITY

The source code of Scikit-ribo is freely available at https://github.com/schatzlab/scikit-ribo. 

Scikit-ribo can be easily installed with a single command: “pip install scikit-ribo”. The 

documentation of Scikit-ribo is available at http://scikit-ribo.readthedocs.io/. To ensure 

reproducibility, all source codes for data processing, statistical analyses and figure plotting 

are available in the iPython notebooks under the GitHub repository: https://github.com/

schatzlab/scikit-ribo_manuscript

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Scikit-ribo predicts A-sites and estimates translation efficiency from Riboseq 

data

- TE estimation is prone to biases, especially for low-abundance genes

- Scikit-ribo corrects the biases using a generalized linear model with ridge 

penalty

- Results validated by mass-spec and quantifies the artifacts from 

cycloheximide
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Figure 1. Sources of biases using ribosomes densities per mRNA (RPKM-derived TE) as a proxy 
for TE
(A) Sampling biases towards low abundance genes (left), and biological biases due to paused 

ribosomes (right). (B) Idealized ribosome footprints distribution without biases (left), or 

with downstream mRNA secondary structure and low conjugate tRNA availability for the A-

site codon (right). (C) Confounding effects of translation initiation and elongation on 

Riboseq profiles, figure adapted from Quax et al 2013. Initiation rate should be proportional 

to actual protein yield.
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Figure 2. Overview of the analysis workflow in Scikit-ribo
The complete workflow consists of Ribosome A-site classifier training, A-site codon 

prediction and mapping, and translation efficiency inference. (A) Ribosome A-site training 

and prediction, gray text boxes denote the major steps. (B) Illustration of the covariates in 

the codon level generalized linear model. In the model, the mRNA abundance (in TPM) are 

considered as offset with fixed coefficient equal to one. Codon dwell time and mRNA 

secondary structure are shared covariates across genes. Translation efficiencies are gene 

specific covariates.
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Figure 3. Accurate inference of codon elongation rates and mRNA secondary structure
(A) Almost perfectly reproduced codon dwell time (DT), inverse of elongation rate) from 

Weinberg et al (r=0.99). (B) Correlation with the codon’s adaptiveness value (RAV, r=0.5), 

(C) Correlation with tRNA abundance (r=0.47). In A–C, the gray dashed line denotes the 

diagonal line; y=x. The RAV scales from 0 to 1. A codon with lower RAV means that it is 

less optimal for translation elongation, i.e. slower codons. (D) Meta gene analysis of the log 

ratio of adjusted DT (ADT), divided by the mean adjusted DT. The solid line denotes the 

average ADT in a five-codon sliding window. A log ratio greater than zero means ribosomes 

at this position are faster than average. The log ratios on the left were significantly higher 

than the ones on the right (T-test, p-value= 5 × 10−3). The unit of the distance is codon.

Fang et al. Page 27

Cell Syst. Author manuscript; available in PMC 2019 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Pair-wise comparisons of estimates between Scikit-ribo and RPKM-derived TE
(A) Scatter plot of Scikit-ribo and RPKM derived log2(TE). Difference in log2(TE): Δ 

log2(TE). Δ log2(TE) > 0.5, previously underestimated (green), Δ log2(TE) < −0.5, 

previously overestimated (orange), and other genes in between (gray). The genes with Δ 

log2(TE) less than −8 are indicated by triangles. (B) Histograms of scikit-ribo and RPKM-

derived log2(TE), log2(TE) values less than −10 are adjusted to −10 (C) Histograms of 

ribosome TPM in all genes (blue), and region 1 (green). (D) Violin plots of Δ log2(TE) by 

the number stem loops. (E) Violin plots of tAI for genes in the six regions, left: Δ log2(TE) 

< 0, right: log2(TE) > 0. (F) The Kozak consensus sequence, AAAATGTCT, found with the 

TE estimates from Scikit-ribo (p-value=1 × 10−21). The lower panel is adapted from the 

original paper, Hamilton et al (1987).
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Figure 5. Large-scale validation with mass spectrometry data confirmed Scikit-ribo’s accurate 
TE estimates, especially for low-abundance genes
(A) Scikit-ribo derived protein abundance (PA) for all genes in the validation set (r = 0.81, β 
= 0.83). (B) Scikit-ribo derived PA for genes with TPM less than 100 (r = 0.6, β = 0.48). (C) 
RPKM-derived PA for all genes in the validation set (r = 0.77, β = 0.75). (D) RPKM-derived 

PA for genes with TPM less than 100 (r = 0.35, β = 0.29). The black dashed line denotes the 

identity line; y=x.
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Figure 6. Practical considerations of using Scikit-ribo for Riboseq analysis
Pearson correlations between the down-sampled data and the original data (Weinberg et al) 

on (A) log2(TE), the gray dashed horizontal line denotes Pearson r = 0.95. (B) The same 

down-sampling comparison for the codon relative dwell time (DT). (C) Scatter plot of log2 

TE on Riboseq experiments treated with cycloheximide (CHX) and CHX free data, (D) 
Same comparison for the codon relative dwell time (DT). The CHX free data is from 

Weinberg et al, and the CHX-treated Riboseq data is from McManus et al. Both data are in 

S. cerevisiae. The black dashed line denotes the identity line; y=x.
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