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Abstract

Background—Despite consistent evidence of the heritability of alcohol use disorders (AUDs), 

few specific genes with an etiological role have been identified. It is likely that AUDs are highly 

polygenic; however, the etiological pathways and genetic variants involved may differ between 

populations. The aim of this study was thus to evaluate whether aggregate genetic risk for AUDs 

differed between clinically ascertained and population-based epidemiological samples.

Address for correspondence: Jeanne Savage, savagej@vcu.edu; Danielle Dick, PO Box 842018, Richmond, VA 23284-2018, Tel: 
+18048288756, Fax: +18048282237, ddick@vcu.edu. 

DR. JEANNE E SAVAGE (Orcid ID : 0000-0002-2034-8341)
DR. JESSICA ELIZABETH SALVATORE (Orcid ID : 0000-0001-5504-5087)
DR. ALEXIS C. EDWARDS (Orcid ID : 0000-0002-4006-9710)
DR. GRACE CHAN (Orcid ID : 0000-0002-1257-6889)
DR. BRIEN P. RILEY (Orcid ID : 0000-0002-2408-8268)
DR. DANIELLE DICK (Orcid ID : 0000-0002-1636-893X)

The authors report no conflicts of interest.

HHS Public Access
Author manuscript
Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 March 01.

Published in final edited form as:
Alcohol Clin Exp Res. 2018 March ; 42(3): 520–530. doi:10.1111/acer.13589.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods—Four independent samples were obtained: two from unselected birth cohorts 

(ALSPAC, N=4304; FinnTwin12, N=1135) and two from families densely affected with AUDs, 

identified from treatment-seeking patients (COGA, N=2097; IASPSAD, N=706). AUD symptoms 

were assessed with clinical interviews, and participants of European ancestry were genotyped. 

Genome-wide association (GWA) was conducted separately in each sample and the resulting 

association weights were used to create polygenic risk scores in each of the other samples (12 total 

discovery-validation pairs), and from meta-analyses within sample type. We then tested how well 

these aggregate genetic scores predicted AUD outcomes within and across sample types.

Results—Polygenic scores derived from one population-based sample (ALSPAC) significantly 

predicted AUD symptoms in another population-based sample (FinnTwin12), but not in either 

clinically ascertained sample. Trend level associations (uncorrected p < .05) were found for 

polygenic score predictions within sample types but no or negative predictions across sample 

types. Polygenic scores accounted for 0-1% of the variance in AUD symptoms.

Conclusions—Though preliminary, these results provide suggestive evidence of differences in 

the genetic etiology of AUDs based on sample characteristics such as treatment-seeking status, 

which may index other important clinical or demographic factors that moderate genetic influences. 

Although the variance accounted for by genome-wide polygenic scores remains low, future studies 

could improve gene identification efforts by amassing very large samples, or reducing genetic 

heterogeneity by informing analyses with other phenotypic information such as sample 

characteristics. Multiple complementary approaches may be needed to make progress in gene 

identification for this complex disorder.
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Introduction

Alcohol use problems, including pathological alcohol use disorders (AUDs), are a leading 

contributor to the global burden of disease, responsible for substantially increasing risk for 

premature death, disability, and preventable illness (World Health Organization, 2009). 

Extensive work in genetic epidemiology using twin and adoption studies has shown that 

AUDs are heritable, with genetic factors accounting for about half of the inter-individual 

variation in risk (Verhulst et al., 2015). However, the transition from statistical studies of 

latent genetic risk to molecular genetic studies identifying the actual genes involved in the 

etiology of alcohol problems has had limited success.

Current evidence indicates that AUDs have a complex, highly polygenic architecture driven 

by the aggregation of hundreds or thousands of common genetic variants of very small 

individual effect (Sullivan et al., 2012). Heritability estimates using measured genotypes of 

common variants (23-33%: Yang et al., 2014; Mbarek et al., 2015), while somewhat lower 

than those from twin studies, confirm that current genotyping platforms harbor genetic 

variants of importance to AUDs, but few of these have been identified despite considerable 

research efforts. Candidate gene studies and the more stringent, atheoretical genome-wide 

association studies (GWAS) have found only a few replicable genetic variants underlying 

Savage et al. Page 2

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alcohol use and alcohol problems, and even the most robust of these account for a minimal 

proportion of the heritability (Hart and Kranzler, 2015). Polygenic risk score methods that 

sum genetic liability across many variants at nominal thresholds of association (i.e. The 

International Schizophrenia Consortium, 2009) have had some success in predicting 

individual risk for AUDs (Hart and Kranzler, 2015), but as of yet the variance accounted for 

by such scores is generally less than 3%, well below clinical prediction utility.

The slow progress in gene identification at both the individual variant level and the 

aggregate polygenic level is likely due in part to the heterogeneous pathways by which many 

different individuals develop alcohol problems, even though alcohol problems are typically 

classified in research by a single binary case-control diagnostic status for AUD (Hart and 

Kranzler, 2015). AUDs have numerous and heterogeneous demographic predictors (Grant et 

al., 2015), and a long history in the literature suggests that there are multiple “types” of 

alcoholism that display different epidemiological patterns and may represent divergent 

syndromes despite their shared symptoms (Leggio et al., 2009; Babor et al., 1992; Cloninger 

et al., 1988). An AUD diagnosis is itself a constellation of many possible subsets of 

symptoms that fall under both the physical (e.g. tolerance; withdrawal) and psychosocial 

(e.g. impairments in work and social functioning) domains, and some evidence suggests that 

distinct genetic factors underlie different symptom clusters (Kendler et al., 2012). The 

development of AUDs may thus be driven in different groups of individuals by distinct 

physiological and/or psychological factors whose genetic etiologies are not perfectly 

overlapping (Hines et al., 2005).

Failure to account for such heterogeneity, when it exists, decreases power to detect clear 

genetic associations in samples where such groups are combined. Differential genetic effects 

have already been identified as a function of certain sample characteristics such as age of 

AUD onset and patterns of associated personality traits and comorbid disorders (Ali et al., 

2015; Cloninger et al., 1988; Dick et al., 2007; Kuo et al., 2008). There are many additional 

lines along which such etiological differences may split, given the complex biological, 

psychological, and social influences impacting alcohol problems. One such possibility is the 

source of the population, which in research studies is usually either clinical samples of 

treatment-seeking patients or unselected population-based cohorts. Ascertained samples 

have, by definition, a higher prevalence of alcohol problems than the general population and 

a different distribution of AUDs and alcohol-associated traits. The burden of comorbid 

illness (beyond AUDs) is known to be higher in clinical samples (Kaufmann et al., 2014) 

and they differ on a number of demographic and disease-related characteristics (Blanco et 

al., 2015). It is also plausible that the mechanisms underlying alcohol problems in treatment-

seeking individuals differ from those driving alcohol problems in the general population, 

particularly when clinical samples are obtained based on family history of AUD, which can 

represent both different genetic predispositions and contextual risk factors associated with 

the familial environment. Proposed typologies of alcoholism (e.g. Cloninger et al., 1988) 

also suggest that individuals with a prominent family history of AUDs have a more strongly 

genetically influenced form of the disorder, although it is not known whether the genetic 

influences may also differ qualitatively from those involved in sporadic onset cases.
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The question of genetic heterogeneity as a function of sample ascertainment has not been 

explicitly tested, but the emerging literature in this area suggests an imperfect 

correspondence between the genetic influences on alcohol use behaviors across populations. 

For example, while alcohol metabolism genes show reliable associations across multiple 

alcohol-related phenotypes in multiple samples, other genes/genetic variants have not 

replicated across clinical case-control samples (Hart and Kranzler, 2015) and population-

based studies of alcohol consumption (Schumann et al., 2016) and problems (Sanchez-Roige 

et al., 2017). Hansell et al. (2009) have previously found evidence for differences in genetic 

associations for alcohol outcomes between unselected samples versus participants 

ascertained for a family history of AUDs. Further, the genetic correlations between alcohol 

consumption and problems, and between alcohol phenotypes and other psychiatric traits, 

show different patterns in general population samples (Sanchez-Roige et al., 2017) and in 

ascertained case-control studies like the Psychiatric Genomics Consortium (Walters et al., in 

preparation). The aim of the present study was thus to investigate whether there may be 

differences in the genetic liability for alcohol problems across two sample types: unselected, 

population-based epidemiological cohorts and clinically ascertained families densely 

affected with AUDs. To test this hypothesis, we use polygenic risk scoring methods to 

predict aggregate genetic risk for AUD symptoms across four independent birth cohort or 

clinically ascertained samples with in-depth clinical assessments of AUDs.

Materials and Methods

Participants

The present study includes secondary analysis of data from four ongoing studies with 

measures of AUDs: two population-based samples drawn from unselected regional birth 

cohorts and two clinically ascertained samples recruited from alcohol treatment programs 

and hospitals. Study procedures for collecting all samples were approved by the relevant 

institutional review boards, including the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees, Ethics Committee of the Hospital District of Helsinki and 

Uusimaa and university IRBs from each study site. All participants provided informed 

consent. These studies have been described in detail elsewhere; a summary of each can be 

found below and in Table 1.

Population-based samples

ALSPAC—The Avon Longitudinal Study of Parents and Children (ALSPAC) sample 

(Golding et al., 2001; Boyd et al., 2013) includes children born in Avon, UK in 1991-1992. 

ALSPAC recruited a total of 15,458 children from a birth cohort of 15,247 pregnancies, 

most of whom have been followed longitudinally since birth and assessed at multiple waves. 

Please note that the study website contains details of all the data that is available through a 

fully searchable data dictionary at http://www.bris.ac.uk/alspac/researchers/data-access/data-

dictionary. The present study uses data from the follow-up assessment at age 18 (M = 17.9, 

range = 16.3 – 20.0), which included an in-person, computer-assisted clinic assessment of 

alcohol problems, supplemented by imputed data from a similar assessment at age 16.5 for 

those with missing data (Edwards et al., 2015). Included in the present study were 4,304 
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individuals (57.0% female) of European ancestry who had both phenotypic and genotypic 

data available for analysis.

FinnTwin12—The FinnTwin12 (FT12) sample includes five birth cohorts of twins born in 

Finland from 1983 to 1987, identified from national birth records (Kaprio, 2006; Kaprio et 

al., 2002). These twins have been assessed longitudinally with self-report surveys from age 

12 through approximately age 22, and a subset of the epidemiological sample was selected 

for “intensive” study, receiving in-person clinical assessments at ages 14 and 22. Included in 

the present study are 1,135 individuals from 652 families in this intensive subset who 

completed clinical assessments of AUDs at age 22 (M = 22.4, range = 20-26), and who also 

provided a DNA sample for genotyping. The sample was 53.6% female, with 39.4% 

monozygotic (MZ) twins, 30.5% same-sex dizygotic (DZ) twins, 29.8% opposite-sex DZ 

twins, and 0.3% single (unpaired) twins of unconfirmed zygosity.

Clinically ascertained samples

COGA—The Collaborative Study on the Genetics of Alcoholism (COGA) sample 

(Begleiter and Reich, 1995) was recruited from treatment programs around six research sites 

in the United States, with probands and their extended families undergoing structured 

clinical interviews about alcohol use behaviors at the initial assessment and in multiple 

waves of follow up assessments. A subset of 118 families of European ancestry was selected 

for genotyping, as described by Wang et al. (2013). The maximum number of AUD 

symptoms across waves/ages was used for analysis, and this data was available for 2097 

individuals (53.6% female), with a mean age at maximum AUD symptoms of 35.1 (range: 

13-88). For more direct comparison with the younger population-based samples, we also 

replicate some analyses (see Data Analysis section below) in a subset of 879 young adults 

from the COGA families (M age = 20.9, range: 15-26).

IASPSAD—The Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) sample 

(Prescott et al., 2005) included alcoholic probands recruited from hospitals and community 

alcohol treatment facilities in Ireland and Northern Ireland. Eligible probands of European 

ancestry underwent a clinical interview for AUDs and provided information on potentially 

affected siblings, who were also assessed with a clinical interview. This sample included 591 

probands and 610 affected siblings, all of whom met DSM-IV criteria for an alcohol 

dependence diagnosis. Phenotypic and genotypic data were available for a subset of this 

sample, resulting in a total of 706 participants from 430 families (34.3% female; M age = 

41.8, range = 17 – 71) included in the present analyses.

Measures

Alcohol Problems Phenotypes—In the ALSPAC sample, the measure of alcohol 

problems (in the past year) was a factor score derived from items assessed in a computer-

assisted clinic interview: the 10-item Alcohol Use Disorders Identification Test (AUDIT; 

Babor et al., 2001), the seven DSM-IV alcohol dependence items (American Psychiatric 

Association, 2000), and three additional alcohol consequences items, as previously 

described (Salvatore et al., 2014; Edwards et al., 2015). Values for the alcohol problems 

factor score ranged from −0.45 to 4.18. In FT12, COGA, and IASPSAD, the measure of 
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alcohol problems was a sum score of lifetime DSM-IV alcohol dependence symptoms 

(range: 0-7) assessed with a personal interview using the Semi-Structured Assessment for 

the Genetics of Alcoholism (Bucholz et al., 1994). The mean (SD) numbers of alcohol 

dependence symptoms for FT12, COGA (all ages/under age 27), and IASPSAD were 1.1 

(1.4), 2.2 (2.3)/1.7 (1.8), and 6.4 (1.0), respectively. Across all studies, participants who had 

not initiated alcohol use at the time of assessment were coded as missing for the AUD 

measures, and were not included in the genetic analyses or the sample sizes reported above.

Genotypes—Blood or saliva samples were collected from participants in all four samples 

for DNA extraction and genotyping on a microarray chip. Each study employed a different 

genotyping platform, but used the genotyped polymorphisms to impute to a common set of 

variants in the 1000 Genomes Phase 1 reference panel (Abecasis et al., 2012) after applying 

standard quality control procedures. A summary of the methods for genotyping, quality 

control filtering, and imputation procedures across samples can be found in Table 1. All 

samples were assessed for population stratification using multidimensional scaling 

modeling, and only participants of European ancestry were included for analysis.

Data Analysis

The analyses conducted in this study involved testing whether the genetic variants 

underlying alcohol problems in one sample type (e.g. population-based or ascertained) were 

associated with alcohol problems to the same degree in independent samples from the same 

versus different sample types. We used polygenic risk score methods to take information 

about which genetic variants, or single nucleotide polymorphisms (SNPs), were associated 

with alcohol problems in one sample and applied this to create individual-level genetic risk 

scores (aggregated across genomic loci) in each of the other samples. Our analytic plan thus 

included two steps: first, obtaining SNP weights from a GWAS of alcohol problems in each 

“discovery” sample, and second, creating polygenic scores and testing how well they 

predicted alcohol problem risk in each independent “validation” sample. As an additional 

attempt to improve discovery power, we also conducted a meta-analysis of the individual 

GWAS within each sample type (ALSPAC+FT12 and COGA+IASPSAD) and used these 

meta-analysis summary statistics to create additional polygenic scores in the two samples of 

the other type. Each of the four study samples was therefore used once as a discovery GWAS 

sample and four times as a validation sample for testing the value of the polygenic scores in 

predicting alcohol problems.

Discovery GWAS—In ALSPAC and IASPSAD, GWAS of the alcohol problems 

phenotypes described above have previously been reported (Edwards et al., 2015; Adkins et 

al., 2017). Covariates included in these analyses were sex (both studies) and age (IASPSAD; 

ALSPAC was age-standardized). We use SNP-level summary statistics from those reports to 

create polygenic risk scores. In FT12 and COGA, we conducted a GWAS of DSM-IV 

alcohol dependence symptom counts, using residuals of these symptom counts after the 

effects of relevant covariates were regressed out. These covariates included sex for the age-

standardized FT12 sample, and sex, age at maximum AUD symptoms, and the first two 

ancestry principal components for COGA. These analyses were run in the GenABEL 

package (Aulchenko et al., 2007) for R version 3.2.1 (R Core Team, 2015), using the 

Savage et al. Page 6

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



polygenic (Thompson and Shaw, 1990) and mmscore (Chen and Abecasis, 2007) procedures 

to control for the non-independence of related subjects, in parallel to the methods used in the 

IASPSAD GWAS. In FT12, one twin from MZ pairs was excluded from the GWAS for a 

total discovery n = 905. In both FT12 and COGA, GWAS of DSM-IV alcohol dependence 

symptoms have previously been conducted (see Wang et al., 2013; Meyers, 2012); however, 

we repeat the analyses here because the datasets have been imputed to the 1000 Genomes 

reference panel since the original reports and additional follow-up assessments have been 

collected for some participants. No new genome-wide significant SNP associations were 

found in these analyses. Meta-analyses of the GWAS summary statistics were also 

conducted for the population-based (ALSPAC+FT12) and ascertained (COGA+IASPSAD) 

sample results using METAL (Willer et al., 2010), with a sample size-weighted scheme. 

Additional meta-analyses were run for each pair of samples, within and between sample 

type, to test for heterogeneity in SNP association statistics between them using a random 

effects meta-analysis model.

A potential confounding factor in comparing the population-based and clinically ascertained 

samples is the difference in age between sample types. The ALSPAC and FT12 samples are 

young adults, aged approximately 17 to 26, while the COGA and IASPSAD samples, being 

initially recruited from treatment-seeking patients, include many more middle-aged and 

older adults. There are known differences in the heritability of alcohol use between 

adolescence and adulthood (Edwards and Kendler, 2013; Bergen et al., 2007), which may 

affect cross-sample replication. To reduce this possibility, we also conducted the same 

GWAS procedure in a subset of the COGA families of corresponding age to ALSPAC/FT12 

(age < 27, n = 879) who were mostly ascertained as children or extended family members of 

the recruited probands. We use these to supplement polygenic risk score analyses in the 

larger sample. There were too few individuals of comparable age in IASPSAD to perform 

complementary analyses.

Polygenic score creation—To create comparable polygenic risk scores across samples, 

we selected a set of SNPs that were available in all four samples with a minor allele 

frequency (MAF) > 5% and an imputation quality INFO/R2 score > .90 (n = 3,116,334). 

These SNPs were then used to create polygenic scores with the software package PRSice 

(Euesden et al., 2015), which automates the implementation of the score procedure in 

PLINK v. 1.9 (Chang et al., 2015) to optimize selection of the most informative pairwise 

polygenic score. Best-guess genotypes with a certainty above 0.9 were used in creating the 

polygenic scores for all samples.

Using PRSice, the list of common SNPs was pruned based on linkage disequilibrium (LD) 

to obtain a set of autosomal SNPs in approximate linkage equilibrium (R2 < .10) for each 

discovery-validation pair with a sliding 250kb window. PLINK’s clump procedure was used 

to prioritize the selection of SNPs with stronger association signals in the discovery GWAS 

to index these LD blocks, in order to enhance the predictive ability of the scores. PLINK’s 

score method then summed the total number of minor alleles from the set of score SNPs for 

each individual in the validation sample, weighting each score SNP by the magnitude and 

sign of its GWAS association statistic (c.f. The International Schizophrenia Consortium, 

2009). For each discovery-validation sample pair, this list of score SNPs was further filtered 
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based on association p value thresholds in the discovery sample to create a series of SNP 

sets with decreasing stringency of nominal GWAS association (thresholds of p < .001 to p 
< .50). PRSice implements this in a high-resolution fashion in p value increments of 0.01 

and selects the threshold yielding scores with the strongest phenotypic prediction in the 

validation sample.

Polygenic score prediction—After creating polygenic scores in each of the validation 

samples, we used these scores to predict the alcohol problems outcomes by fitting a series of 

linear models, using the lme4 package (Bates et al., 2015) in R version 3.2.1 (R Core Team, 

2015). Scores from the best p value threshold selected by PRSice in each discovery-

validation pair were entered into a regression model, along with the same covariates as in the 

respective discovery GWAS, with the alcohol problems measure as the dependent variable. 

All polygenic scores were approximately normally distributed with a mean of zero and a 

range between 0.0003 and 0.126 units. To account for non-independent observations in 

family-based samples, we used a linear mixed model framework with the family unit as a 

random effect. We used a generalized linear model (lm/lmer functions) to predict the alcohol 

problems factor score in ALSPAC and the alcohol dependence symptom counts in FT12, 

COGA, and IASPSAD (log+1 transformed to adjust for the zero-inflated distributions). To 

account for multiple testing, we performed a Bonferroni p-value correction by dividing α=.

05 by the number of discovery-validation pairs of analyses (23 pairs, αadj=.0022), given that 

scores from multiple p value thresholds within a discovery-validation set are necessarily 

nested within each other and not independent tests. We calculated the variance explained by 

the polygenic scores by comparing the R2 change between the full model and a model in 

which the score was dropped and only the covariates remained (Nagelkerke’s pseudo-R2 for 

the generalized linear mixed models, as implemented in the R package MuMIn (Bartoń, 

2016)). We conducted power analyses using the pwr package in R (Champely, 2015) in 

order to estimate our ability to find significant effects of the polygenic risk at levels detected 

in studies with similar methodology.

Results

Heterogeneity in genetic effects

We tested for heterogeneity in the SNP association statistics between individual sample 

GWAS using random-effects meta-analysis. The proportion of SNPs meeting a nominal 

heterogeneity test p value (<.05) in each pair of samples ranged from 0.0417 to 0.0512, on 

par with the expected chance proportion of 0.05, and the patterns did not systematically 

differ between pairs of the same versus different sample types (full results available upon 

request).

Polygenic score prediction

Table 2 displays the results of the linear models assessing how well the polygenic risk scores 

predict alcohol problems in each validation sample. Each “block” of the table represents a 

discovery-validation set, with the discovery GWAS sample in the row and the validation 

sample in the column. Within the population-based samples of ALSPAC and FT12 (upper 

blocks of Table 2), polygenic scores estimated based on weights from the ALSPAC GWAS 
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were highly significant, accounting for 1.03% of the variance in AUD symptoms in FT12. In 

the reciprocal analyses, scores based on GWAS weights from the smaller FT12 sample were 

positively but not significantly associated (p =.006) with alcohol problems in the ALSPAC 

validation sample. Within the clinically ascertained samples of COGA and IASPSAD (lower 

blocks of Table 2), polygenic scores weighted in one sample did not significantly predict 

AUDs in the other, although there was a nominal trend (p = .03 to p = .07) in the expected 

direction.

Looking across ascertained and population-based sample types (shaded grey blocks), there 

were no significant associations between polygenic scores created in one sample type and 

AUDs predicted in the other (i.e., population-based to ascertained and vice versa). We note 

that there was a suggestive trend in which all cross-sample predictions between different 

sample types, save one (ALSPAC to IASPSAD), were in a negative direction with a nominal 

level of statistical significance (p < .05) but would not be considered significant after 

correction for multiple testing. Similar patterns were observed for polygenic scores based on 

the meta-analyses of each sample type, with non-significant levels of prediction for all 

discovery-validation pairs.

Replication in young adults

We repeated these polygenic risk score analyses in a subset of adolescents/young adults 

from the COGA sample. Results from this replication are shown in Table 3, with the top 

panel indicating the set of analyses in which the COGA young adults made up the validation 

sample for GWAS and score weighting, and the bottom panel indicating the analyses in 

which they were the discovery sample for score prediction. There were no statistically 

significant associations between polygenic scores and AUDs in this set of analyses. The 

pattern of association (negative across sample type, positive within sample type, at nominal 

significance levels) was the same as in the full COGA sample.

Power

Table 4 presents calculations of the expected power each validation sample had to detect 

associations for polygenic scores accounting for 0.2% to 5% of the phenotypic variance. All 

samples had adequate power to detect associations accounting for 2% or more of the trait 

variance, which is comparable to or less than what others have found using the same 

genome-wide polygenic risk scoring method (The International Schizophrenia Consortium, 

2009; Salvatore et al., 2014; Hart and Kranzler, 2015).

Discussion

Using four independent samples with clinical assessments of problem alcohol use behaviors, 

we found a differential prediction of polygenic scores for alcohol problems across clinically 

ascertained samples and population-based epidemiological samples. We found significant 

cross-prediction within our two population-based birth cohort samples, with aggregate 

genetic variants identified in ALSPAC predicting AUDs in FT12, albeit only contributing to 

a small identifiable proportion of the variance. However, similar scores derived from 

ALSPAC did not predict risk for AUDs in either of two clinically ascertained samples 
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(COGA; IASPSAD), despite COGA having a sample size nearly double that of FT12. 

Cross-sample polygenic risk prediction based on the other three discovery GWAS weights 

were less conclusive, with no significant risk prediction found within the two clinically 

ascertained samples or between any pair of samples from different types. We observed a 

consistent trend towards positive cross-prediction within sample types but null or negative 

prediction from population-based samples to clinically ascertained samples and vice versa, 

but this effect requires replication given the lack of robust statistical support. The 

consistency in the pattern of results in two samples from each type encourages confidence.

As with most other existing GWAS of alcohol phenotypes, we are limited in power by the 

sample sizes for estimating genetic risk associations and thus consider our results 

preliminary. However, these findings provide suggestive evidence that genetic heterogeneity 

in the construct of AUDs/alcohol problems may exist between, and even within, different 

types of populations. Previous studies have identified phenotypic and genetic heterogeneity 

underlying alcohol phenotypes attributable to other sample-specific factors such as age of 

onset, patterns of symptom endorsements, and psychiatric comorbidities (Kuo et al., 2008; 

Dick et al., 2007; Cloninger et al., 1988; Edwards and Kendler, 2013), and so it seems that 

heterogeneity may be the rule rather than the exception for alcohol use disorders and other 

complex psychiatric and behavioral traits. This phenomenon is important to consider in light 

of the knowledge that heterogeneity can have major consequences on power for gene 

identification studies (Manchia et al., 2013), so even smaller studies such as this can provide 

insight into potential challenges to consider when designing large scale efforts in the future. 

Indeed, though gene identification efforts for alcohol-related outcomes are still in their 

infancy compared to some other complex traits, our results fit into the emerging pattern of 

results demonstrating that different genes and genetically correlated traits appear to be 

linked to alcohol problems in ascertained and population studies (Hart and Kranzler, 2015; 

Sanchez-Roige et al., 2017; Schumann et al., 2016: Walters et al., in preparation). Such 

studies should consider testing for heterogeneity as a function of population type (in addition 

to several other sample characteristics) when meta-analyzing across multiple samples to 

confirm or refute the suggestive results found here.

It is not immediately clear what might be the driving force behind differences in genetic 

influences on AUD symptoms/problems between ascertained and epidemiological samples. 

Heritability estimates calculated either by GCTA (Yang et al., 2011) or GenABEL differed 

between samples, but not systematically across sample types (ALSPAC: 0.06, FinnTwin12: 

0.32, COGA: 0.35, COGA young adults: 0.25, IASPSAD: 0.04). Post-hoc sample 

comparisons did not indicate obvious systematic differences between the sample types based 

on characteristics such as internalizing/externalizing disorder symptoms (e.g. major 

depression, anti-social personality disorder) or related traits and behaviors (e.g. personality, 

other substance use), although differences in the measures collected between studies 

preclude a direct statistical comparison of many such characteristics (details available upon 

request). However, the polygenic risk scores based on GWAS weights for alcohol problems 

did not show a differential pattern of predicting these traits across population-based and 

ascertained samples either, indicating that the differential prediction of alcohol problems 

outcomes between sample types seen in our results was not simply driven by sample 

Savage et al. Page 10

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in internalizing/externalizing traits or comorbidities, as suggested by some AUD 

typologies (e.g. Cloninger et al., 1988).

We speculate that the genetic influences on alcohol problems in clinically ascertained 

populations may differ, in quantity or quality, from those within the general population. 

Symptom profiles or motives for alcohol use could, for example, define mechanisms by 

which different individuals develop the same AUD outcome, and these might differ 

systematically between populations. Clinical samples of substance dependent individuals are 

often not representative of the broader population (Blanco et al., 2008), and treatment-

seeking individuals often have more severe illness and additional comorbidities (Kaufmann 

et al., 2014). Overall symptom endorsement rates are higher in clinical samples, but there 

could also be differences in endorsement profiles, since the syndromic criteria for AUD 

allows for many possible combinations of symptom subsets. Some evidence indicates unique 

genetic influences between symptom clusters (Kendler et al., 2012). There is also evidence 

that drinking for coping motives is more strongly tied to psychological dependence, while 

drinking for social or sensation-seeking motives are associated with heavy/frequent use 

(Kuntsche et al., 2005), but despite different underlying mechanisms both could lead to 

AUD symptoms/diagnoses. If any one of these pathways is overrepresented in clinical 

samples (due perhaps to ascertainment bias from greater severity or medical/psychiatric 

comorbidities that increase treatment-seeking), the etiological overlap with AUD phenotypes 

in the general population would be reduced.

It could also be that the environments of individuals growing up in families densely affected 

with alcoholism differ substantially from other subsets of the population, and thus a set of 

genes enriched for interaction effects with certain environmental factors might be influential 

to AUDs only in this subgroup. Gene-environment interaction has a strong influence on 

alcohol use and misuse, and a variety of socially restrictive environments including parental 

monitoring, marital status, and legal barriers to alcohol access have been shown to moderate 

genetic risk for AUDs (Dick and Kendler, 2012; Young-Wolff et al., 2011). Differences in 

either the types of genetic/environmental risk factors experienced or their degree of 

prevalence between populations contributes to the persistent difficulty in identifying a 

robust, coherent set of influences involved in the etiology of alcohol problems.

Regardless of the reason, if genetic heterogeneity between samples is indeed at play, this 

study’s findings have implications both for the field’s understanding of AUDs and for the 

design of research protocols. The results suggest, first, that sample characteristics (including, 

but also beyond the typical demographic contenders like sex and age) may play a critical 

role in defining distinctive genetic and/or phenotypic etiologies. The poor polygenic 

prediction across sample types in this study, and even now in some consortia, is evidence of 

a massive degree of heterogeneity across populations that must be better confronted. Second, 

these findings suggest caution in research methods that combine participants across different 

populations, e.g. in large-scale meta-analyses and replications. Combining across genetically 

heterogeneous populations can undermine a study’s power to detect or replicate true effects. 

Although a brute force approach with large sample sizes can certainly be effective (e.g. 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), it may be 

less tractable for disorders like AUDs that have stronger environmental and gene-
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environment interaction effects. Smaller studies can take complementary approaches to 

increase power by conducting more in-depth phenotypic assessments and identifying 

homogeneous subgroups or homogenous etiological pathways and thereby advance the 

understanding of complex disorders like AUDs. The examination of intermediate traits 

(endophenotypes) that link the biology to the disorder, such as alcohol metabolism, is an 

additional complementary tactic to improve gene identification success.

This study has several limitations that should be considered, most notably the lack of 

harmonization across phenotypic, genotypic, and analytic methods. Because the data was 

taken from multiple ongoing studies designed and implemented independently, it is not 

feasible for measures and analytic protocols to be identical. Importantly, all sample 

genotypes were imputed to a common reference panel and screened to select a set of 

common markers meeting common quality control thresholds, and the phenotypes in all 

studies included a common set of DSM-IV alcohol dependence symptoms. We note 

specifically that the ALSPAC phenotype differed from the others in order to take advantage 

of existing GWAS results; however, the past-year factor score measure is also a more 

appropriate for this younger sample given that AUD symptoms are quite rare in this age 

range, when most initiation has only recently occurred and frequent consumption is still a 

deviant behavior (Substance Abuse and Mental Health Services Administration, 2014). Age 

difference between samples is also an important limitation, although we note that previous 

studies have found that the same genetic factors influence AUDs in both adolescence and 

adulthood (Palmer et al., 2013), and the replication in the young adult subset of COGA 

demonstrated consistency of our results.

Lack of cross-study harmonization is evident across several aspects of the methods, but is 

not systematic across one group of samples or another, so we would expect this to make our 

results more conservative rather than to induce spuriousness. This may have reduced our 

ability to detect true associations of the polygenic risk scores, especially given the small 

effect sizes that were found. However, we were well powered to detect effects accounting for 

>2% of the variance in AUDs, which would not be expected of a single gene but is 

reasonable for an aggregate genome-wide score. A combination of methods to improve gene 

identification (e.g. larger and less heterogeneous discovery samples, more precise 

phenotyping, integration of bioinformatics information) could be helpful in creating more 

accurate polygenic risk scores in the future, in addition to potentially identifying 

individually important genetic variants.

Despite these limitations, this study provided modest but consistent evidence across multiple 

samples and multiple sets of polygenic scores that suggests a genetic architecture underlying 

alcohol use disorders and problems that does not wholly overlap between population-based 

versus clinically ascertained samples. Our findings indicate that these and, likely, other 

sample characteristics need to be taken into account in the design and implementation of 

research studies, and in our efforts to understand the genetic and environmental etiology of 

the costly and challenging public health problem of alcohol use disorders.
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Table 1

Sample descriptives and genotyping procedures in four studies of alcohol use disorders.

ALSPAC FT12 COGA IASPSAD

N 4,304 1,135 2,097 706

% Female 57.0 53.6 53.6 34.3

Mean age (SD) 17.9 22.4 35.1 41.8

Recruitment strategy Birth cohort Twin birth cohort Families of treatment-
seeking patients

Siblings of treatment-
seeking patients

Phenotype Factor score of DSM-
IV and AUDIT AD 
symptoms

DSM-IV AD symptoms DSM-IV AD symptoms DSM-IV AD symptoms

Genotyping platform Illumina Human 

Hap550 Quada
Illumina Human670-QuadCustom BeadChipa Illumina Human 

OmniExpress array 

12.VIa; Illumina 
Human 1M-Duo 

BeadChipa

Affymetrix Human 

SNP Array 6.0b

Quality control filtering MAF < 1%, call rate 
< 95%, HWE p < 5 × 
10−7, missingness > 
3%, heterozygosity 
outliers, gender 
mismatch, cryptic 
relatedness (IBD > 
10%)

MAF < 1%, call rate < 95%, HWE p < 10−6, 
missingness > 5%, heterozygosity outliers, 
gender mismatch, cryptic relatedness (outside 
of known families)

MAF < 5%, GenCall 
score < .15, HWE p < 
10−6, inconsistent calls 
between Omni and 1M 
arrays, Mendelian 
errors, cryptic 
relatedness (outside of 
known families)

MAF < 1%, call rate < 
97%, HWE p < 10−6, 
missingness > 3%, 
cryptic relatedness 
(IBD > 5% outside of 
known families)

1000 Genomes version Phase 1 v3, March 
2012

Phase 1 v3, March 2012 Phase 1 v2, December 
2010 (EUR)

Phase 1 v3, March 
2012

Reference genome build GRCh37 GRCh37 GRCh37 GRCh37

Imputation software MACH/Minimacc ShapeITe; IMPUTE2f BEAGLE 3.3.1d ShapeITe; IMPUTE2f

Number of imputed 
SNPs

8,458,542 (MAF>.01) 6,729,635 (MAF>.01) 4,150,783 (MAF>.05) 8,347,617 (MAF>.01)

Reference for full 
genotyping details

Edwards et al. (2015); 
Fatemifar et al. 
(2013)

Salvatore et al. (2014); Konttinen et al. 
(2015)

Kapoor et al. (2014); 
Wang et al. (2013)

Adkins et al. (2017)

AD = alcohol dependence, MAF = minor allele frequency, HWE = Hardy-Weinberg equilibrium, IBD = identity-by-descent, SNP = single 
nucleotide polymorphism.

a
Illumina, Inc., San Diego, CA, USA,

b
Affymetrix, Santa Clara, CA, USA,

c
Li et al., 2010,

d
Browning & Browning, 2007,

e
Delaneau et al., 2012,

f
Howie et al., 2009
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Table 2

Polygenic score association results predicting alcohol use disorder-related phenotypes across four independent 

samples.

DISCOVERY SAMPLE

VALIDATION SAMPLE

ALSPAC

Score P threshold Beta p R2

ALSPAC – – – –

FT12 <0.030 16.7 0.006 0.18%

COGA <0.036 −7.1 0.229 0.04%

IASPSAD <0.001 −2.1 0. 031 0.11%

Meta (COGA/IASPSAD) <0.010 −0.4 0.161 0.05%

FT12

DISCOVERY SAMPLE Score P threshold Beta p R2

ALSPAC <0.004 252.2 5.4E−04 1.03%

FT12 – – – –

COGA <0.001 −6.1 0.049 0.28%

IASPSAD <0.010 −29.7 0.011 0.47%

Meta (COGA/IASPSAD) <0.011 −0.6 0.297 0.03%

COGA

DISCOVERY SAMPLE Score P threshold Beta p R2

ALSPAC <0.130 −604.3 0.067 0.09%

FT12 <0.116 −81.5 0.020 0.21%

Meta (ALSPAC/FT12) <0.023 2.3 0.067 0.09%

COGA – – – –

IASPSAD <0.115 61.7 0.070 0.11%

IASPSAD

DISCOVERY SAMPLE Score P threshold Beta p R2

ALSPAC <0.014 88.0 0.042 0.41%

FT12 <0.006 −7.1 0.026 0.53%

Meta (ALSPAC/FT12) <0.067 −1.7 0.048 0.39%

COGA <0.015 9.8 0.026 0.53%

IASPSAD – – – –

Shaded boxes indicate prediction across different sample types (ascertained to population-based or vice versa). Bolded values are significant (p < .
05) after correcting for multiple testing. “Score P threshold” indicates the GWAS P-value threshold for selecting which SNPs were included in the 
polygenic score based on best cross-sample prediction.
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Table 3

Polygenic score association results predicting alcohol use disorder-related phenotypes between the young 

adult (age 16-26) subset of the COGA sample and three independent samples.

DISCOVERY SAMPLES:

VALIDATION SAMPLE:
COGA young adults

P threshold Beta p R2

ALSPAC <0.006 −242.4 0.027 0.42%

FT12 <0.062 −91.9 0.013 0.59%

Meta (ALSPAC/FT12) <0.129 −10.9 0.016 0.50%

IASPSAD <0.203 111.8 0.094 0.20%

DISCOVERY SAMPLE:
COGA young adults

VALIDATION SAMPLES: P threshold Beta p R2

ALSPAC <0.021 −8.2 0.020 0.13%

FT12 <0.305 −48.1 0.177 0.07%

IASPSAD <0.013 4.1 0.135 0.17%

Shaded boxes indicate prediction across different sample types (ascertained to population-based or vice versa). Bolded values are significant (p < .
05) after correcting for multiple testing. “Score P threshold” indicates the GWAS P-value threshold for selecting which SNPs were included in the 
polygenic score based on best cross-sample prediction.
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