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Abstract As geroscience research extends into the role
of epigenetics in aging and age-related disease, re-
searchers are being confronted with unfamiliar molecular
techniques and data analysis methods that can be difficult
to integrate into their work. In this review, we focus on
the analysis of DNA modifications, namely cytosine
methylation and hydroxymethylation, through next-
generation sequencing methods. While older techniques
for modification analysis performed relative quantitation
across regions of the genome or examined average

genome levels, these analyses lack the desired specificity,
rigor, and genomic coverage to firmly establish the nature
of genomic methylation patterns and their response to
aging. With recent methodological advances, such as
whole genome bisulfite sequencing (WGBS), bisulfite
oligonucleotide capture sequencing (BOCS), and bisul-
fite amplicon sequencing (BSAS), cytosine modifica-
tions can now be readily analyzed with base-specific,
absolute quantitation at both cytosine-guanine dinucleo-
tide (CG) and non-CG sites throughout the genome or
within specific regions of interest by next-generation
sequencing. Additional advances, such as oxidative bi-
sulfite conversion to differentiate methylation from
hydroxymethylation and analysis of limited input/sin-
gle-cells, have great promise for continuing to expand
epigenomic capabilities. This review provides a back-
ground on DNA modifications, the current state-of-the-
art for sequencing methods, bioinformatics tools for
converting these large data sets into biological insights,
and perspectives on future directions for the field.

Keywords Epigenetics .Methods . DNAmethylation

DNA modifications and aging

Epigenetic changes as a regulator of the aging process
have been an area of research interest for a number of
decades (Waddington 1940), even prior to the discovery
of DNA methylation (Hotchkiss 1948). The roles of
DNA methylation in regulation of genome organization
and gene expression have progressed from solely being
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a mechanism of permanent gene inactivation to one in
which DNA methylation is also a dynamic gene regu-
lator (Schubeler 2015), though the degree of dynamism
is a matter of debate (Bestor et al. 2015). The concept of
non-sequence-based changes to the genome and how
their accumulation with advancing age may adversely
affect lifespan and cellular function have obvious rele-
vance to geroscience research (Lopez-Otin et al. 2013;
Kennedy et al. 2014). Early efforts sought to examine
total levels of DNAmethylation and resulted in a theory
of genomic hypomethylation (decreased methylation
levels across the genome) with aging (Vanyushin et al.
1973; Wilson and Jones 1983). While the hypomethy-
lation hypothesis is often referenced as dogma
(Zampieri et al. 2015; Sen et al. 2016), the general
consensus has shifted to rejecting this hypothesis based
on data from modern quantitative techniques
(Unnikrishnan et al. 2017a). Thus, the field has moved
toward identifying specific genomic sites and regions
with differential methylation in animal models
(Maegawa et al. 2010) and humans (Rakyan et al.
2010). A number of recent reports have provided the
first comprehensive analyses of altered DNA methyla-
tion with aging in a range of mouse tissues (Cole et al.
2017; Hahn et al. 2017; Masser et al. 2017b; Petkovich
et al. 2017; Stubbs et al. 2017). Human studies have also
advanced by examining age-affected tissues (e.g.,
Zykovich et al. 2014) and through the development of
a variety of chronological aging Bclocks^ (Hannum et al.
2013; Horvath 2013; Weidner et al. 2014; Chen et al.
2016). While these clocks have reproducible predictive
validity for chronological age and potentially mortality
(Marioni et al. 2015), their relevance to biological aging
processes remains to be determined. This is particularly
evident given the counterintuitive results from recent
reports regarding the relationship between Bmethylation
age^ and tissue function (Marioni et al. 2016; Kim et al.
2017; Kozlenkov et al. 2017; Simpkin et al. 2017).
Overall, there is clearly a need for epigenetic studies of
aging. This review is focused on the epigenetic domain
of DNA modification—namely cytosine modifications.
Given the demonstrated importance of the genetics of
aging (Jeck et al. 2012), a similar effort is needed to
understand how the epigenome changes in response to
the various stimuli encountered throughout the lifecycle.
Further review of the current state of scientific findings
in the epigenomics of aging is beyond the scope of this
review, but several recent publications provide an over-
view of findings in different models and organ systems

(Valdes et al. 2013; Benayoun et al. 2015; Jones et al.
2015; Sen et al. 2016). The purpose of this review is to
examine the technical approaches that can be used in
these studies to best meet individual experimental goals
and educate geroscience researchers in designing and
interpreting epigenomic studies.

Nature and regulation of DNA modifications

Epigenetic mechanisms are classically defined as
chromatin structure and DNA modifications (Allis
and Jenuwein 2016). While chromatin structure and
histone modifications are an area of intense interest
for aging research (Benayoun et al. 2015), the focus
of this review is on DNA modifications due to their
regulation of chromatin (Martinowich et al. 2003),
the long-lasting nature of DNA modifications (Bird
2002), and because these modifications to the ge-
nome can be passed to daughter cells (Holliday
2006). The primary DNA modifications are methyla-
tion (mC) and hydroxymethylation (hmC) of cytosine
at the 5′ position of the pyrimidine ring (Globisch
et al. 2010). Hydroxymethylation is especially abun-
dant in brain tissues as compared to other tissues/
organs (Kriaucionis and Heintz 2009; Lister et al.
2013). Much rarer modifications of formylcytosine
(fC) and carboxylcytosine (caC) exist as well (He
et al. 2011; Ito et al. 2011) (Fig. 1a). Non-cytosine
modifications, though rarer still, are also beginning to
be investigated (Yao et al. 2017).

DNA methyltransferases (DNMTs) maintain meth-
ylation patterns in CG contexts during cell division
(DNMT1) and de novo methylate cytosines
(DNMT3a and DNMT3b) in response to stimuli
(Okano et al. 1999). Tet methylcytosine dioxygenases
(TETs) oxidize mC into hmC, as well as fC and caC
before the cycle is completed back to unmodified C
(He et al. 2011) (Fig. 1b). This final stage of the cycle
can also occur through thymine DNA glycosylase
(TDG) and base excision repair (BER) (Maiti and
Drohat 2011). Modifications occur on cytosines in
both CG and CH (H being C, A, or T) dinucleotide
contexts. Importantly, mCG is mirrored across the
DNA strands because of the palindrome nature of
the CG dinucleotide motif. On the other hand mCH
is, by its nature, strand-specific (Fig. 1c) (He and
Ecker 2015). Historically, CG methylation has been
the focus of investigation. However, methylation of
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Fig. 1 Fundamental principles of DNAmodifications. a Cytosine
bases exist in an unmodified form and with methyl, hydroxymeth-
yl, formyl, and carboxy additions at the five positions of the
pyrimidine ring. b Over the last decade, advances in the under-
standing of modification regulation have characterized the cycle of
modification addition and oxidation. DNA methyltransferases
(DNMTs) add methyl groups in which Tet methylcytosine
dioxygenases (TETs) sequentially oxidize modifications back to
an unmodified cytosine or include base excision repair (BER)
through thymine DNAglycosylase (TDG). cCytosines are present
in palindromic CG contexts with methylation paralleled between
the two strands while CH (where H is A, C, or T) modifications are

by nature strand specific. d Changes in DNA modifications can
occur across different forms of genomic elements with differing
functional outcomes. CpG islands are areas of high CG density
that are flanked by shore and shelf regions upstream and down-
stream. Similarly, methylation of promoter regions has tradition-
ally been a focus but intragenic regions, either in exons or introns
are an area of growing interest and play a role in gene expression
regulation. e CG methylation is typically low over CG islands but
higher in shores and shelves. f CG methylation across promoters
often varies greatly across a relatively narrow region with lowest
methylation typically observed around the transcription start site
(TSS), even in un-expressed genes
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CH sites and hydroxymethylation of CG sites are
prevalent in several organ systems, particularly the
central nervous system (Lister et al. 2013; Kinde
et al. 2015). The high levels of hmCG and mCH in
the brain stand in contrast to other organs (Nestor
et al. 2012) and suggest the possibility that the
epigenomics of the aging brain is substantially differ-
ent from other tissues (Masser et al. 2017a).

CG dinucleotides occur far less frequently (< 1%
of dinucleotide pairs) than any other dinucleotide
pairs (Bird 1980; Karlin and Mrázek 1997) and are
clustered together in regions termed CG islands
(Lander et al. 2001). Definitions for the regions
around CG islands have also been established (Fig.
1d). The context of cytosine modification—promot-
er vs intergenic, intergenic vs intragenic—can result
in different functional outcomes. For example, mCG
in promoter regions typically represses gene expres-
sion whereas promoter hmCG levels are greater in
highly expressed genes (Chapman et al. 2015).
Within gene bodies, both mCG and hmCH are pos-
itively associated with gene expression (Lister et al.
2013; Lou et al. 2014). Promoter mCH is inversely
correlated to gene expression and gene body mCH
varies in its relationship to gene expression, being
either repressive or associated with increased ex-
pression (Lister et al. 2013; Kinde et al. 2015;
Lister and Mukamel 2015). The relationship of
hmCH to gene expression is unknown, although it
does appear that hmCH levels are extremely low
(Hadad et al. 2016).

Although mC and hmC are recognized by com-
mon DNA binding proteins, they also have
modification-specific binders (Spruijt et al. 2013),
thereby providing a potential mechanism for the
differential effects on gene expression between mC
and hmC (Xu et al. 2011). Additionally, TET en-
zymes may prefer CG sites (Hu et al. 2013) which
raises the intriguing possibility that mCH may be
resistant to oxidation and elimination. Our under-
standing of the effects of mC/hmC on gene expres-
sion and genome organization with aging is in its
infancy. A critical task for the field is to generate the
data needed to test how, or whether, these general
concepts apply to epigenomics of aging. From a
geroscience perspective, it is essential that we clar-
ify and expand our understanding of aging-
associated alterations of epigenetic processes to de-
termine their contribution to health and disease.

Historical methods for analysis of DNA
modifications

The focus of this review is on current, next-generation
sequencing (NGS) approaches to analyzing DNA mod-
ifications that provide base-specific, absolute quantita-
tion. The differentiating factor of the historical methods
from the current generation of NGSmethods is that now
absolute quantitation of modifications can be performed
in a base-specific manner for either the whole genome or
at least significant portions of it. However, a brief per-
spective of the approaches that lead to the current NGS
methods is worthwhile. As the epigenomic field devel-
oped, the first assays were for total levels of cytosine
modifications in the genome. High-performance liquid
chromatography (HPLC) was one of the first methods to
detect global methylation levels through column chro-
matography of hydrolyzed DNA (Reddy and Reddy
1990). Samples were then compared to a set of standards
with known methylation levels (Reddy and Reddy
1990; Fuke et al. 2004). Updates to this method include
replacing UV detection with mass spectrometry (Song
et al. 2005). For more simple assays, enzyme-linked
immunosorbent assays (ELISA) use antibodies that are
specific for mC or hmC with an in vitro generated
standard curve to measure the global levels of methyla-
tion in a given sample (Kalani et al. 2014). Challenges
with this method are that many of the standards used in
ELISAs contain different CG densities than mammalian
genomes, resulting in inaccurate quantitation of methyl-
ation levels (Hadad et al. 2016) and modifications at CG
and CH sites cannot be differentiated. The same anti-
bodies developed for ELISAs can be used for immuno-
histochemistry (IHC) (Almeida et al. 2012), but great
care must be taken as IHC is generally not quantitative
and spurious conclusions can be drawn from simple
densitometry of tissue sections. Another commonly pro-
posed surrogate measure for total genomic methylation
levels is pyrosequencing of repetitive elements (Yang
et al. 2004). Repetitive elements constitute a large por-
tion of the genome (de Koning et al. 2011), and analysis
by relatively simple pyrosequencing approaches is a
potentially facile approach to estimating genome-wide
methylation.While methylation of repetitive elements is
of biological interest in and of themselves, care should
be taken to not simplistically assume they are an accu-
rate marker of genome-wide methylation. Methylation
levels vary greatly over the genome (Lister et al. 2013),
and there is, in fact, very little evidence to support a
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strong relationship between repeat element methylation
level and other genomic regions (Blueprint_consortium
2016; Hadad et al. 2016; Crary-Dooley et al. 2017).

All of these traditional methylation analysis ap-
proaches have been applied to a number of aging re-
search studies but with varying degrees of limitations.
Many of the findings have not been recapitulated across
studies (see Unnikrishnan et al. 2017a), especially given
the large magnitude of changes often presented. At times,
the technical limitations of these methods have resulted
in nonsensical findings like the sum of methylation and
hydroxymethylation being greater than 100% (Mei et al.
2015). This argues for better analytical methods and
analysis procedures that can reproducibly quantify
DNA modifications. Preventing progress to more quan-
titative methods were the barriers of the cost of generat-
ing large amounts of sequencing data and the difficulty in
differentiating modified and unmodified cytosines.

Affinity enrichment NGS

With the advent of high throughput sequencing
(Shendure and Ji 2008), now commonly known as
NGS, generating large amounts of accurate sequencing
data become economical. This led initially to develop-
ment of affinity-based methods in which modified DNA
was Bpulled^ out from unmethylated DNA by immuno-
precipitation in a manner similar to chromatin immuno-
precipitation sequencing (ChIP-Seq) (Furey 2012).Meth-
ylated DNA immunoprecipitation (meDIP-Seq) (Weber
et al. 2005; Jorgensen et al. 2006), methyl-binding do-
main sequencing (MBD-Seq) (Rauch and Pfeifer 2005;
Serre et al. 2010), and a number of variations of these
techniques (see Lister and Ecker 2009; Laird 2010) were
developed. However, the limitation to any affinity-based
approach is that the specific methylation sites (or
hydroxymethylation; Tan et al. 2013) cannot be deter-
mined, only a general genomic region of methylation.
While this was a significant advance, the primary limita-
tions of these approaches, relative quantitation across
regions and lack of base-specific data analyses, diminish
the insight that could be garnered from such approaches.

Base-specificity of DNA modifications

Base-specificity in DNAmodification analysis is critical
for four principle reasons: (1) levels of DNA

modifications demonstrate large differences over nar-
row genomic regions, (2) age-related changes appear
to occur in a base-specific manner, (3) base-specificity
is required to differentiate CG from CH methylation,
and (4) with base-specific absolute quantitation, meta-
analysis and comparisons between studies can be read-
ily performed. Starting with the first point, it has become
apparent across a large number of studies that methyla-
tion levels differ dramatically over relatively short ge-
nomic distances (e.g., Edgar et al. 2014; Zhao et al.
2014; Schultz et al. 2015). This is especially true at
transcription start sites (TSSs) and at CpG islands which
tend to be minimally methylated. Methylation levels
then rise dramatically upstream and downstream of
these genomic features. For example, taking base-
specific whole genome bisulfite sequencing data from
mouse prefrontal cortex, nadirs of methylation are evi-
dent at CpG islands and TSSs (Fig. 1e, f). Therefore,
averages over regions that are 1–10 kb wide provide
limited insight into the true pattern of methylation. Fur-
thermore, a number of reports have described base-
specific changes in methylation with aging (Maegawa
et al. 2010; Mangold et al. 2017a; Petkovich et al. 2017;
Stubbs et al. 2017). Moreover, given the growing im-
portance of examining methylation at both CG and CH
sites, site-specific quantitation is required to differentiate
between these two.We have previously demonstrated in
the mouse hippocampus, for example, the majority of
changes in methylation with aging are in the CH con-
text, which cannot be differentiated fromCG bymeDIP-
Seq and MBD-Seq techniques outlined above (Masser
et al. 2017a). Lastly, absolute quantitation in a base-
specific manner allows data from multiple studies to
be combined to increase power, test reproducibility,
identify biomarkers, and compare between species
(Horvath 2013; Masser et al. 2017a; Petkovich et al.
2017; Stubbs et al. 2017). Taken together, these points
provide strong justification that to fully understand dif-
ferences in DNA modifications with aging, base-
specific resolution is required.

The concept of examining base-specific methylation
levels is not new. In the past, this has generally been
performed on small genomic regions (< 100 bp) at spe-
cific genomic loci through bisulfite conversion and pyro-
sequencing or Sanger sequencing. Bisulfite conversion
works through deamination of unmodified cytosines to
uracils which are then copied as thymines during subse-
quent amplification (Frommer et al. 1992; Clark et al.
1994). Methylated and hydroxymethylated cytosines are
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protected from this conversion. Thus, modification status
is turned into a base difference that can easily be read by
sequencing (Fig. 2a). The methylation level in the sample
is determined by collecting a number of sequencing reads
over the region and counting the number of cytosines and
thymines at a specific site.Methylation level equals C/C +
T (Fig. 2b). Sequencing was traditionally performed by
pyrosequencing (Dupont et al. 2004) or standard Sanger
sequencing (Parrish et al. 2012). These methods have
been used in a wide range of studies and perform

comparably (Reed et al. 2010). However, they provide
coverage over only a small region, usually just a few
cytosines. Additionally, pyrosequencing requires multiple
sequencing primers and Sanger sequencing traditionally
required cloning of PCR products, a laborious task
(Zhang et al. 2009). Nevertheless, these techniques have
been used to great effect to generate base-specific analysis
of selected regions and changes in methylation, but not
hydroxymethylation, with aging (Noer et al. 2007;
Maegawa et al. 2010; King et al. 2012).

Bisulfite sequencing methods

As stated above, developments in NGS allowed rapid
and efficient generation of massive amounts of high-
quality sequencing data and bisulfite conversion ap-
proaches make base-specific quantitation possible. In a
natural progression, these techniques were combined
into a new generation of methods. Whole-genome
bisulfite sequencing (WGBS) was first introduced to
quantify total genome methylation levels in the plant
Arabidopsis (Cokus et al. 2008; Lister et al. 2008) but
was rapidly adapted for use in mammalian genomes
(Lister et al. 2009). For WGBS, genomic DNA librar-
ies are created and subsequently bisulfite converted,
sequenced, and mapped back to the reference genome.
Subsequent versions of WGBS perform library con-
struction after bisulfite conversion (Miura et al. 2012;
Khanna et al. 2013) (Fig. 3a) or use alternative
transposase-mediated library construction (Adey and
Shendure 2012). The benefits of WGBS are obvious;
it provides the most comprehensive, base-specific, ab-
solute quantitation of DNA methylation at potentially
all cytosines in a genome. The challenge with WGBS
is the amount of sequencing data needed. Humans and
standard rodent laboratory animals have genomes of ~
3 billion bases (3 Gb) per DNA stand. Sufficient
sequencing depth (5–15×) over any given base is
needed to accurately quantify methylation (Ziller
et al. 2015) and thus across the whole genome requires
> 25 Gb of sequencing per sample, after accounting
for losses due to quality control and alignment effi-
ciency. This makes WGBS studies very large under-
takings and not reaching needed sequencing depths
can impair identification of statistically significant
group differences. NGS costs have come down in
recent years, but the depth requirements as detailed
by the scientific community have increased. Therefore,
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tion. a Whole-genome bisulfite sequencing (WGBS) in general
principle consists of bisulfite modification of genomic DNA and
then creation of a sequencing library. Variants may switch the
order of bisulfite conversion and library preparation. This ap-
proach gives quantitation across the genome but requires very
large amounts of sequencing. b A long-standing approach to the
analysis of large portions of the genome, but without the expense
of WGBS is reduced representation bisulfite sequencing (RRBS).
Genomic DNA is digested at CG sites, and then, the resulting
smaller molecular weight fragments are isolated. These fragments
are made into a sequencing library and bisulfite converted prior to
sequencing. This approach focuses the data on CG rich regions of
the genome. c Bisulfite oligonucleotide capture sequencing
(BOCS) is analogous to exome sequencing techniques. In this
approach, a whole genome library is made and then bisulfite
converted. Genomic regions of interest are then captured with

oligonucleotide probes greatly enriching for regions of interest
and thereby decreasing the amount of sequencing required. d
Often, analysis of a specific genomic loci is desired, e.g., a gene
of interest. With bisulfite amplicon sequencing (BSAS), the spe-
cific regions are amplified from bisulfite converted DNA and then
made into a sequencing library. In effect, the PCR amplification
greatly enriches for the region of interest. eWhile not a sequencing
approach, one of the most common approaches to methylation
quantitation is with a microarray format. This is a modification of
SNP microarrays where probes are designed to detect a converted
(T) or unconverted (C) at a CG site. Genomic DNA is bisulfite
converted and amplified prior to hybridization to a microarray were
the two different Balleles^ have different reported colors. This
is a high throughput approach, but a microarray must be available
for the CG sites of interest and the species being examined.
Currently, only human microarrays are commercially available
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more sequencing is required to meet expectations of
the community for the validity of the quantitative data.
These factors make WGBS an expensive approach and
the analytical methods required to process the data
daunting, especially when including detailed analysis
of all cytosine contexts (CG and CH), which can
increase the number of analyzed cytosines by orders
of magnitude. One approach to decreasing the scale of
WGBS is to perform low coverage sequencing and
eliminate base-specific analyses. With this approach,
patterns of methylation can be examined by collapsing
genomic elements, e.g., promoters, CpG islands
(Hadad et al. 2016). This is very useful for getting
initial insights into the total levels and general patterns
of DNA modifications but goes against the goal of
determining base-specific differences with aging.
Thus, a number of approaches have been developed
to target sequencing to only a portion of the genome
and thus greatly reduce the amount of sequencing
required.

Reduced representation bisulfite
sequencing—RRBS/eRRBS

The first sequencing approach to reducing the amount of
the genome covered utilized the use of restriction en-
zymes. This was built on prior work that used combi-
nations of methyl-sensitive and insensitive restriction
enzymes (Cedar et al. 1979; Reilly et al. 1982). Reduced
representation bisulfite sequencing (RRBS) uses the
restriction enzyme MspI to cleave CCGG motifs
(Meissner et al. 2005) (Fig. 3b). Libraries are then made
and only lower weight fragments (40–200 bp) (Gu et al.
2011) are selected. This enriches for CG-rich regions
like CpG islands, and promoter regions containing CpG
islands. However, coverage over other genome elements
like CpG island shores and some enhancer elements is
limited (Gu et al. 2011). With refinements to the meth-
od, enhanced RRBS (ERRBS) coverage in some of the
less CG dense regions was improved (Akalin et al.
2012b; Garrett-Bakelman et al. 2015). The primary
limitation to these methods is the dependence on the
location of restriction sites in the genome and inability
to tune coverage to regions of interest. Additionally, the
size selection step is critical to which genomic regions
are analyzed which is why there are often very limited
overlapping sites between different RRBS datasets
(Stubbs et al. 2017).

Oligonucleotide capture

Selecting regions of interest for sequencing is not a new
concept. For a number of years, what is popularly
termed exome sequencing has been used in genetics to
focus sequencing on protein coding regions of the ge-
nome (Mamanova et al. 2010). An analogous approach
can be applied to DNA modification analyses. Combin-
ing bisulfite sequencing with oligonucleotide capture
offers the potential to focus analyses on genomic regions
of interest while maintaining base-specific, absolute
quantitation (Fig. 3c). We term these approaches as
bisulfite oligonucleotide capture sequencing (BOCS).
Several very similar approaches have been developed
for assessing the human (Wang et al. 2011; Ivanov et al.
2013; Allum et al. 2015; Li et al. 2015), mouse (Hing
et al. 2015; Li et al. 2015), and rat (Masser et al. 2016)
genomes. In all of these approaches, capture of targeted
regions is by complimentary oligonucleotide probes.
Slight differences in the oligonucleotides and whether
capture is performed before or after bisulfite conversion
are the main differences between these methods. These
approaches, which provide base-specific absolute quan-
titation over ~ 80–200 Mb of relevant genomic regula-
tory regions, are poised to be a widely employed ap-
proach for aging research studies. Recently, we have
described the use of this approach for geroscience re-
search (Hadad et al. 2017a; Masser et al. 2017c).

Generation of the oligonucleotide probes by an indi-
vidual lab would be impractical and a variety of com-
mercially available BOCS approaches are available.
Roche, Agilent, and Illumina offer probesets for humans
and mice. Regardless of the specific capture approach/
supplier used, the ability to tune the regions of the
genome being examined (Ziller et al. 2016) and the
relatively straightforward nature of building probesets
for other species (Masser et al. 2016) make this a prom-
ising approach for the future.

Amplicon sequencing

While both whole genome and BOCS approaches are
well suited to discovery studies, often experimental goals
only require analysis of a specific genomic locus or set of
loci. Highly focused sequencing decreases the cost per
sample and increases throughput. Additionally, very high
sequencing depth is easily achieved when only small
amounts of (< 1 Mb) of the genome are being tested.
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For hypothesis testing experiments, several approaches
have been developed that still take advantage of the
power of bisulfite conversion and NGS. To achieve this,
PCR primers can be designed to amplify bisulfite con-
verted DNA, and the resultant amplicons are used to
generate sequencing libraries. We term these approaches
bisulfite amplicon sequencing (BSAS) (Masser et al.
2013; Masser et al. 2015) (Fig. 3d). Several other BSAS
variations include using restriction enzymes (Varley and
Mitra 2010), use of microdroplets for the PCR (Komori
et al. 2011), further evolutions of the library preparation
(Bernstein et al. 2015; Bhat et al. 2016), and the addition
of analyzing hydroxymethylation (Chen et al. 2017).
These approaches provide base-specific absolute quanti-
tation in up to 96 samples of 1–10 kb targeted regions,
making this method highly valuable for hypothesis-
driven aging research. Additionally, this approach is
much less expensive compared to whole genome or
genome-wide capture techniques making it accessible to
more laboratories. Recent aging studies have employed
this technique demonstrating its usefulness in any tissue
or cells with multiple targets of interest (Franzen et al.
2017; Mangold et al. 2017a; Unnikrishnan et al. 2017b).

The primary technical hurdle to amplicon based ap-
proaches is the design and validation of the PCR
primers. They must be designed against bisulfite con-
verted genomic sequence and generally avoid having
CG sites in the primer binding region (Masser et al.
2015). In some cases, such as highly rich CG regions,
primer design can be difficult and may preclude analysis
of a specific locus.

Methylation microarrays

The primary alternate approach to methylation analysis
that does not use NGS is high density microarrays
(Bibikova et al. 2009; Bibikova et al. 2011). These
micorarrays are adaptations of SNP microarrays wide-
ly used in the genetics field, coupled with bisulfite
conversion. This method works through bisulfite con-
version of the sample DNA and hybridization to oli-
gonucleotide probes on a microarray slide. The detec-
tion probe used is either complimentary to C—if the
base was methylated and protected from bisulfite con-
version, or complimentary to A—when the cytosine
was unmodified and not protected from bisulfite con-
version (Fig. 3e). Different fluorophores are conjugat-
ed to the different detection probes allowing

discrimination. Microarray slides are scanned and au-
tomated software computes a beta (β) value equivalent
to methylation percentage. Recently, a new generation
of these microarrays which cover 850,000 CG sites in
the human genome have been released (Moran et al.
2016), although there are questions about the repro-
ducibility of this platform as compared to prior micro-
arrays (Logue et al. 2017). The advantages of this
method are the relatively simple workflow, compara-
tively low cost per sample, and automated data analy-
sis. This method is also amenable to high throughput
analysis of large numbers of human samples (Chen
et al. 2016). The primary limitations of methylation
microarrays are that they are available only from one
company (Illumina) and only for the human genome.
As well, these arrays have been designed only against
CG sites and cover far fewer sites than can be obtained
through WGBS or BOCS. Nonetheless, this has been a
valuable method for clinical geroscience studies and
has seen wide utility in the field (Christensen et al.
2009).

Comparison of sequencing methods

As a researcher new to the study of DNAmodifications,
it would be entirely reasonable to be left overwhelmed
by the variety and complexity of all the methods now
available for DNAmethylation analysis. Analytical per-
formance of some of these methods has been compared
(Harris et al. 2010; Blueprint_consortium 2016).
Among focused analyses, bisulfite amplicon sequencing
approaches performed better than pyrosequencing or
methylation microarrays (Blueprint_consortium 2016).
In-depth comparisons of WGBS, BOCS, and RRBS
have not been performed although this is desperately
needed by the field. Both BOCS (Li et al. 2015; Masser
et al. 2016) and RRBS (Gu et al. 2011) have been
compared in a limited manner to WGBS, though more
in-depth comparisons are needed. It has been suggested
that post-bisulfite library construction approaches may
be better (Olova et al. 2017). If all bisulfite sequencing
methods are considered technically sound, the choice of
methods is a balance of the degree of genome coverage
needed scientifically and practical reality of the re-
sources available. Considering genomic coverage re-
quirements, sample throughput, and resources available
(Fig. 4), the current range of technologies can meet most
needs.
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Bioinformatics

So far, we have considered the methods for collection of
methylation data, but this is only the first part of any
study. Analysis of bisulfite sequencing data and the
subsequent tertiary analysis are a complex topic. While
a full discussion is beyond the scope of this review,
recent publications provide greater detail (Bock 2012;
Krueger et al. 2012; Baubec and Akalin 2016; Shafi
et al. 2017). Nonetheless, the basic steps of sequencing
data analysis consist of the following: quality control,
alignment, quantitation, differential methylation deter-
mination, and tertiary analysis where patterns of meth-
ylation are integrated with other forms of annotation
such as genomic features, other epigenomic data (e.g.,

chromatin and enhancers), gene expression, and
pathways.

Quality control uses many of the same tools available
for genomic and transcriptomic studies and consist of
filtering out low-quality sequencing reads, contaminat-
ing adaptor sequences, etc. The principle quality control
step specific to bisulfite sequencing is positive controls
for complete bisulfite conversion of unmethylated cyto-
sines to uracils. Estimation of conversion efficiencies
was previously performed using non-CG sites as it was
assumed that non-CG methylation did not exist, and
therefore, any methylation signal at non-CG sites was
failed conversion (Sun et al. 2015). This is clearly
unwise given our current understanding of non-CG
methylation as a common and biological relevant
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phenomenon. Therefore, the current best practice for
conversion controls is exogenous unmethylated spike-
in sequences such as PhiX that are known to be
unmethylated. When included at the beginning of
workflow for each sample, conversions rates can be
calculated and corrections can be applied on a sample-
by-sample basis.

Alignment of bisulfite sequencing data also differs
from standard sequencing alignments. Bisulfite conver-
sion has created an ambiguous base at cytosines that can
now be either C or T. Bismark is generally the most
frequently used aligner for bisulfite sequencing data
(Krueger and Andrews 2011), though other sequence
aligners have been reported including BSMAP (Xi and
Li 2009), BS Seeker (Chen et al. 2010), and others
(Bock 2012). Bisulfite sequencing alignment is compu-
tationally intensive and can take days and weeks of
processing time. Some new approaches seek to utilize
computer hardware differently to greatly speed bisulfite
sequencing alignments (Klus et al. 2012; Koster and
Rahmann 2014; Manconi et al. 2014). With quality
controlled and aligned sequencing data, quantitation of
methylation levels is the next stage of analysis. It should
be noted that sometimes an approach of Bcalling^
whether methylation is present or not is employed at
this stage. We have found this to be counter-productive
as it oversimplifies and creates missing data. Rather,
treating methylation as a continuous variable from 0 to
1 is the most useful approach to employ.

Most studies are performed to determine differential
methylation between conditions. The primary decisions
at this stage are whether to analyze differential methyl-
ation in a base-specific or regional fashion and whether
or not to examine CH methylation. Based on our expe-
rience in brain aging research (Hadad et al. 2016;
Hadad et al. 2017c; Mangold et al. 2017b; Masser
et al. 2017a), we would advocate for base-specific and
inclusion of CH analysis. To provide visualization of
the advantage of base-specific analysis, we include an
example comparing methylation between two different
brain regions at an MHCI promoter by BSAS (Mangold
et al. 2017a). This promoter region contains a number
of CG and CH sites, as well as a range of transcription
factor motifs (Fig. 5a). Examining CG methylation with
base resolution a pattern of lower methylation nearer
the TSS is evident with significantly higher methylation
in the cortex at CGs in the promoter region than in the
cerebellum (Fig. 5b). Similarly, differences in CHmeth-
ylation between cortex and cerebellum throughout the

promoter region and into the intragenic regions are
evident (Fig. 5c). Clearly, not examining CH data
would have missed a number of differences in the
methylation pattern between these brain regions. If
quantitation is performed in a regional manner (1 kb
region), higher cortical CG methylation (Fig. 5d) and
higher cerebellar CH methylation (Fig. 5e) are evident.
However, all resolutions as to where the specific differ-
ences are and their relationship to introns, exons, pro-
moters, and transcription factors (Fig. 5a) are lost. It
seems reasonable that if sufficient sequence depth is
achieved, that base-specific analysis is superior to
region-based analyses. The primary reason to perform
regional analyses is when sequencing depth is limited
and combining data across a region provides for more
data.

For base-specific quantitation, a number of different
software packages are available including MethylKit
(Akalin et al. 2012a), DSS (Park and Wu 2016),BSmooth
(Hansen et al. 2012), and Limma (Pacheco et al. 2011). In-
lab developed R or Python scripts are also commonly
performed, requiring development of programming skills.
This does require commitment of time to training but opens
up many new possibilities in data analysis (Tippmann
2015). Whether as a base-specific or regional analyses,
the outcome is a listing of differentially methylated cyto-
sines (DMCs) or regions (DMRs). Interpreting the genomic
localization and potentially relationships to gene expression
is the next step of analysis—typically referred to a tertiary
analysis.

Tertiary analysis requires a review of its own but is
an important aspect of experimental design and out-
put. For a brief summary, it is best to think of inte-
gration with genomic feature data, other epigenetic
data, and gene expression data. For genomic features,
this often takes the form of determining if changes
are more or less likely than chance to occur in a
certain feature such as a promoter, intron, and CG
island. A number of examples exist from recent stud-
ies (Cole et al. 2017; Dozmorov 2017; Hadad et al.
2017b; Masser et al. 2017a; Wang et al. 2017). For
integration with other epigenomic data, the process is
similar but the comparison is with other epigenomic
data such as ChIP-Seq. This requires data from the
same tissue and ideally from the same sex and age.
Most directly, this can be viewed as comparing two
sets of genomic locations to determine where they
overlap and if there are statistically significant over-
or under-representat ions (Dozmorov 2017).
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Comparing methylation with gene expression pos-
sesses a unique problem given the base-specific data
to compare to transcript count data. The field is
working on packages for aiding in this analysis but
accepted solutions have not yet been developed.

Suffice it to say that simple correlations of region
methylation to transcript count may not fully reveal
the epigenetic control of a region. The best available
approach is to utilize data visualization such as by
methylPipe (Kishore et al. 2015).
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distinct, base-specific, profiles across the region examined. Differ-
ences in methylation levels between the cerebral cortex and cere-
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Other modifications

With the discovery of the abundance and specific func-
tional roles for alternate cytosine modifications (for
reviews, see Moore et al. 2013; Shi et al. 2017), new
methods have emerged in order to distinguish these
modifications (hmC, fmC, caC) from mC (Raiber et al.
2017). hmC is of the greatest interest given its preva-
lence and potential regulation with aging (Szulwach
et al. 2011). Because traditional bisulfite sequencing
cannot differentiate between mC and hmC, methylation
in a bisulfite sequencing experiment is really the sum of
methylation and hydroxymethylation. When methods
that distinguish mC from hmC are used up to a quarter
of what was previously assumed to be methylation is
actually hydroxymethylation depending on the tissue
(Fig. 6a). This is further supported by the base-specific

regulation of mC and hmC over small genomic regions
(Fig. 6b).

There are new methods that have been developed to
distinguish between mC and hmC including Ox-BS
(Booth et al. 2014) and TAB-seq (Yu et al. 2012).
Oxidative bisulfite sequencing (Ox-BS) includes an ox-
idation step to convert hmC to fmC (Fig. 6c) which is
then subject to bisulfite conversion. Parallel runs of
standard bisulfite sequencing and oxidative bisulfite
sequencing respectively give combined mC + hmC
and mC only data, respectively. hmC is then determined
by subtraction. Importantly, Ox-BS as a conversion
chemistry has been adapted to analysis of focused ge-
nomic regions (Chen et al. 2017). TAB-Seq uses glyco-
sylation of 5-hmC and then bisulfite conversion and
sequencing DNA libraries to quantify methylation
levels (Booth et al. 2012; Yu et al. 2012; Booth et al.

Traditional 
Bisulfite Sequencing

Oxidative
Bisulfite Sequencing

C
33%

C
33%

mC
67%

mC
51%

hmC
17%

Hippocampal DNA Modifications

0

25

50

75

100

0 30 60 90 120
Distance (bp)

%
 m

od
ifi

ed
 C

CG CG CG CG CG CGCG

Traditional BS “mC”
oxBS  ‘true’ mC
oxBS hmC

Fkbp6 Chr5: 135,289,451-135,289,565

A

B
PCR

C GTCT C G

Bisulfite

Oxidation

C GTCT C G

C GTUT GU

C GTTT GT

O
xi

da
tiv

e 
Bi

su
lfi

te
 C

on
ve

rs
io

n

C
methylcytosine

mC
hydroxymethylcytosine

hmC

C C
formylcytosine

fC

C
cystosine

T
thymine

G
guanine

U
uracil

C mC hmCC

oxBS = ‘true’ mC

BS - oxBS = hmC

Fig. 6 Hydroxymethylation analysis. Most DNA modification
analysis studies use bisulfite sequencing approaches that do not
differentiate between methylation and hydroxymethylation. How-
ever, hydroxymethylation is abundant in a number of tissues. For
example, using data from Hadad et al. (2016) who examined the
mouse hippocampus by oxidative bisulfite sequencing that differ-
entiates between methylation and hydroxymethylation, it is clear
(a) that one fourth of what would normally be called as methyla-
tion is in fact hydroxymethylation. Further demonstrating this

point, within a relatively small region (~ 120 bp of Fkbp6; b),
the levels of methylation and hydroxymethylation are clearly
regulated in a base-specific fashion. Hydroxymethylation can be
differentiated from methylation by an oxidation step (c) that de-
protects hydroxymethylation and allows a specific methylation
quantitation. When combined with bisulfite sequencing, a subtrac-
tive approach can be used to quantify methylation and
hydroxymethylation individually
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2013). RedBS-seq was developed to measure levels of
fmC through reducing the fmC base back to hmC in
order for quantify by sequencing, much like the Ox-BS
method (Booth et al. 2014). caC can be quantified using
CAB-seq, where EDC is used to chemically modify the
5-caC to prevent it from converting during bisulfite
conversion, and levels quantified by sequencing (Lu
et al. 2013). An alternative is methylation assisted bi-
sulfite sequencing (MAB-Seq) which can be used to
determine, in a base-by-base fashion combined caC
and fC (Neri et al. 2016).

Single cell/cell-type analyses

While the field has experienced rapid advances in
epigenomic analysis techniques, method development
continues, especially in the context of analyzing singe
cells, single cell types, or very small samples. Several
groups including those lead by Reik (Angermueller
et al. 2016; Clark et al. 2016; Clark et al. 2017), Vijg
(Gravina et al. 2015; Gravina et al. 2016; Yu et al. 2017),
Adey (Mulqueen et al. 2017), and Eckardt (Luo et al.
2017) have also demonstrated that methylation patterns
can be generated from single cells. However, the prin-
ciple caveat to these methods is that only a small amount
of the genome is analyzed (often around 5%) and the
same genomic regions are not analyzed in each cell,
making cell-to-cell comparisons of specific loci diffi-
cult. Clearly, there is a great need for these methods but
they require additional development to provide compar-
isons of individual single cells. Currently, the best op-
tion for dealing with cellular heterogeneity in complex
tissues is through existing methods for isolation of spe-
cific cell types that can then be analyzed (Mo et al. 2015;
Mo et al. 2016).

An alternate approach to the question of cellular
heterogeneity is through the use of algorithms that Bcor-
rect^ for cellular heterogeneity. This can either be based
on reference patterns of cell-type specific methylation
(Houseman et al. 2012) or without reference cell data
(Zou et al. 2014). Comparisons of these methods have
been performed (Kaushal et al. 2017; Teschendorff and
Relton 2017) with recent data casting doubt on the
accuracy of these correction methods (Zheng et al.
2017). Given the still limited data on the DNA modifi-
cation profiles of different cell types, and their response
to aging the accuracy of these methods, it needs to be

fully validated before they can see widespread usage in
aging studies.

Alternatives to conversion-based sequencing

As discussed above, the current standard for analysis of
DNA modifications is to use chemical conversion ap-
proaches to change modification status to a base differ-
ence that can be read with current next-generation se-
quencing approaches. This has strengths and weak-
nesses including controlling for conversion efficiency
and accurately aligning altered sequences to their refer-
ence genome. An alternative approach may be to use
nanopore sequencers to directly read different modifica-
tions from the DNA (Burgess 2017; Schatz 2017).
Nanopore sequencing uses pores through which nucleic
acid strands are Bpulled^ and the ionic pattern reveals
the nucleotide sequence, including modifications (Jain
et al. 2017; Shendure et al. 2017). These technologies
are still in the developmental phase but show great
promise (Rand et al. 2017). With continued technical
development, they may be employed to aging research
making direct analysis of DNA modification patterns
from un-manipulated DNA possible. An exciting possi-
bility of this single-molecule approach would be that
individual cells could potentially be interrogated, with-
out the need for extensive amplification (and the issues
this can cause) but this still requires additional method
development (Simpson et al. 2017).

Future directions

Employing the above described technologies offers
great promise to understand the nature and patterns
of DNA modifications as well as how they respond to
aging. In addition to performing these discovery stud-
ies, the greatest challenge for the field is transitioning
from much needed epigenome phenotyping studies to
interventional studies that seek to prevent or cause
age-related patterns of DNA modifications to deter-
mine the function. A major difficulty is that simplistic
manipulation of DNMT or TET enzyme activity, sim-
ilar to those typically performed in Bmechanistic^ stud-
ies through pharmacological or genetic manipulation,
does not seem appropriate here. As demonstrated by
studies described above, changes in DNA modification
are a complex set of hyper- and hypomethylation at
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specific genomic loci across the genome. The func-
tional role of these patterns will almost certainly not be
mechanistically unraveled by simply increasing or de-
creasing overall enzymatic activity and/or expression.
An alternative approach would be to enlist the current
generation of genome editing tools (Kim and Kim
2014) to modify the epigenome at specific genomic
locations. Recent reviews provide a good overview of
this potential paradigm shift (Voigt and Reinberg
2013; Thakore et al. 2016; Stricker et al. 2017;
Willyard 2017). Briefly, the concept is to use tools
like CRISPR (Vojta et al. 2016), zinc fingers
(Kungulovski et al. 2015) or transcription activator-
like effector (TALES) (Maeder et al. 2013) to drive
fusion proteins with DNMTs or TETs to a specific
location or locations in the genome to alter modifica-
tion status. This offers great promise to move
epigenomic patterns to more mechanistic investiga-
tions (Stricker et al. 2017). These approaches still
require more development and the concerns about the
specificity of these targeting mechanisms will need to
be addressed. Nonetheless, a pathway from discovery
to intervention is now feasible and should be able to,
in time, address many of the fundamental questions in
epigenomics of aging.

Conclusion

This review is intended to provide an overview and
primer on analysis of DNAmodifications in geroscience
studies, especially for those new to critically analyzing
or performing these studies. With previous hypotheses
of the epigenetic contribution to aging already being
refuted (Unnikrishnan et al. 2017a) and new era of
understanding the epigenetics of aging is likely upon
us (Lopez-Leon and Goya 2017). With a full under-
standing of how these new analytical techniques work,
their strengths and limitation, and possible future direc-
tions, geroscientists will be equipped to understand and
participate in these studies.
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