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Several impulse control disorders such as ADHD, mania, personality disorders

or substance abuse share common behavioural traits, like impulsiveness, risk-

taking or inflexible behaviour. These disorders are treated with drugs targeting

dopamine (DA) and/or serotonin (5-HT). However, the patient’s monoamine

imbalance that these neurotransmitters compensate is unclear. This study

aims to investigate the patterns of DA and 5-HT metabolisms at rest within

selected brain regions related to inter-individual variability in six main com-

ponents of impulsivity/compulsivity (anticipatory hyperactivity, premature

responses, delay discounting, risk-taking, perseveration, flexibility). Rats with

adaptive and highly inadaptive behaviours were identified in each task and a

sensitive biochemical approach allowed mapping of post-mortem endogenous

monoamine tissue content in 20 brain areas. Distinct patterns of 5-HT and DA

metabolisms were revealed according to the behavioural traits. Except for

hyperactive responses, lower control of actions was mainly associated with a

lower DA or 5-HT metabolism in prefrontal and/or subcortical areas (i.e. in

orbitofrontal cortex (DA), amygdala and anterior cingulate cortex (5-HT) for

inflexible and risk-prone rats). Our results reveal the complex nature of behav-

ioural traits related to impulse control disorders through their associated

monoaminergic networks at rest, paving the way for understanding the link

between mental disorders and drug therapeutic actions.

This article is part of the theme issue ‘Diverse perspectives on diversity:

multi-disciplinary approaches to taxonomies of individual differences’.
1. Introduction
Dimensional traits that are continuous with ‘normal’ conditions are thought

to characterize most mental disorders [1]. Impulsive/compulsive symptoms

occur in several impulse control disorders such as ADHD, mania, personality

disorders, pathological gambling or substance abuse and could represent

neurocognitive endophenotypes [2], i.e. behavioural and cognitive changes

associated with discrete deficits in defined neural systems, these deficits being

present in first degree relatives of patients without psychiatric disorder. Impulsiv-

ity is a multifactorial trait that has been defined as ‘actions which are poorly

conceived, prematurely expressed, unduly risky or inappropriate to the situation’

[3, p.23]. In experimental research, impulse-related behaviours have been divided

into different constructs that encompass risk-taking: impulsive choices (inability

to wait for a delayed greater benefit) and impulsive actions (inability to withhold

a response, i.e. premature responses or anticipatory hyperactivity) [4]. The com-

pulsivity construct refers to ‘actions which persist inappropriate to the situation,

have no obvious relationship to the overall goal and which often result in unde-

sirable consequences’ [4, pp. 681–682]. Compulsivity is typically demonstrated
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by inflexible behaviour (i.e. during reversal learning) and by

resistance to extinction as shown by perseverative behaviours.

Compulsivity, sometimes confused with impulsivity, is quite

different in nature: it reflects a maladaptive engagement in

stimulus–response habit learning [5], as opposed to goal-

directed behaviours that characterize impulsive behaviours.

These two constructs are mediated by overlapping as well as

distinct neural substrates and serotonin (5-HT) and dopamine

(DA) interact across these circuits to modulate aspects of

impulsivity and compulsivity [2,6,7]. The substantial gap in

our knowledge of the neurobiology that underlies these

mental disorders’ symptoms derives in part from the lack of

consideration of a dimensional and trans-nosological view of

mental disorders in experimental researches. In an attempt to

explore the neural basis of the impulsivity/compulsivity

dimension, we investigated inter-individual variability in six

main components of impulsivity/compulsivity: anticipatory

hyperactivity, perseverations, premature responses, delay dis-

counting, behavioural flexibility and risk-taking. Highly

adaptive versus maladaptive individuals were selected for

each behaviour and their neurochemical signatures were

characterized through the patterns of dopaminergic and sero-

tonergic turnovers and metabolisms at rest within a wide

number of brain regions of interest.
2. Material and methods
(a) Behaviour
Subjects and behavioural methods are described in detail in

the electronic supplementary material.

(i) Impulsive actions: premature responses
The fixed consecutive number of 16 lever press schedule (FCN16)

measures behavioural inhibition in operant chambers by testing

the rat’s ability to carry out a long chain of sequential lever

presses before obtaining a reward [8]. The schedule required a

fixed minimum number of 16 responses on one lever (FCN

lever), before a response on the second lever (reinforcement

lever) resulted in the delivery of one food pellet. A cue light is

maintained on until the completion of the sequence is reached,

thus predicting reward availability upon pressing the reinforce-

ment lever. Impulsivity was reflected by the proportion of

prematurely ended chains of presses on the FCN lever. These

chains reset the count and were not rewarded.

Data measure: The last FCN16 session was analysed because it

revealed the largest inter-individual behavioural differences.

Impulsivity was measured by the proportion of prematurely

ended chains. The number of sessions needed to reach the test

phase (learning score) was also considered. The distribution of

the mean number of chains of lever presses according to their

length was analysed.

(ii) Impulsive/compulsive actions: anticipatory hyperactivity and
perseveration

The multiple fixed-interval/extinction schedules of reinforce-

ment (FI-EXT) were performed in operant chambers equipped

with one lever. Two periods of fixed-interval schedule of

reinforcement (FI) alternated with two periods of extinction

(EXT) (FI-EXT–FI-EXT). Impulsive responses corresponded to

lever presses during FI, prior to light presentation that allowed

food delivering upon pressing the lever, a reflection of anticipat-

ory activity. Perseveration (compulsive actions) was indicated by

lever presses during EXT, when no reward can be obtained

(chamber’s light switched off ).
Data measure: The time-course of mean number of lever

presses during each FI and each EXT conditions was recorded.

(iii) Impulsive choice: delay discounting
The delay discounting task (DDT) measures impulsive choice in

an operant chamber by assessing the preference for an immediate

small reward (one pellet, when pressing the L1 lever) over a

larger one delivered after a delay (five pellets, when pressing

the L5 lever). The delay preceding the delivery of the larger

reinforcement was progressively increased between daily ses-

sions by 10 s from 0 to 40 s according to a criterion of stability

and was fixed for a given session.

Data measure: Percentage of L5 choice, total mean number of

lever presses, and presses during the delay and time-out periods

were measured. These parameters were calculated for each delay

as the mean of the last two stable sessions.

(iv) Behavioural flexibility
Behavioural flexibility was measured in a rat gambling task (RGT)

that requires successive choices among four options in an operant

cage adapted from the 5-CSRTT [9–11]. Rats could freely choose

between four nose-poke holes to obtain food pellets. RGT

measures, across successive trials, the ability to make the most

advantageous choices. In this task, the contingencies associated

with a higher immediate gain are disadvantageous in the long

run, due to unpredictable penalties. Behavioural flexibility was

measured the following day by reversing contingencies (advan-

tageous/disadvantageous outcomes are spatially exchanged):

maintaining the choice of the same location reveals behavioural

inflexibility (a compulsive-like behaviour), whereas shifting

choices reflects detection of the change and behavioural flexibility.

Data measure: Performances were calculated as the mean per-

centage of reversed choices, for the preferred contingency during

the RGT. The behaviours were classified into three categories:

flexible behaviour, with progressive reversion towards the new

location of their favourite options (more than 50% of reversed

choices), inflexible behaviour with perseveration of previously

learned choices instead of reversing choices (less than 15% of

reversed choices), the remaining being intermediate behaviour.

(v) Risk-taking
The light–dark emergence test allows assessment of spontaneous

risk-taking behaviour in rats [10,11]. Exiting from a dark, safe

compartment to a brightly illuminated one is a risky and stressful

situation for a rat.

Data measure: From the rat’s first entrance into the dark box,

the latency to emerge from this compartment to the illuminated

one was recorded (600 s cut-off ). Risk assessments were evalu-

ated by number of body stretches and by head protrusions in

the light compartment, with at least the hind limb remaining in

the safe compartment. Total time spent in the dark compartment

was also measured. An index of risk-taking was calculated

including these three parameters (number of risk assessments,

latency to emerge and time spent in safe compartment).

(b) Analysis of inter-individual differences
For each behavioural task, performances were split into sub-

groups to assess inter-individual differences in behaviour. The

interest of this approach is to identify and describe in detail the

opposite behaviours of individuals, within a normal population,

for one particular behaviour (risk taker or risk avoider; impulsive

or non-impulsive; flexible or inflexible) and to reveal differences

in basal monoamine functions related to this behavioural trait.

Rats were classified according to their scores in the most

representative parameter measured in a given task. Selection

was made by extracting subgroups of individuals with low or
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high scores according to the upper and the lower terciles in each

task (n ¼ 12+ 2), the remainder constituting an intermediate

group (n ¼ 12+2). This arbitrary separation offers the advan-

tage of magnifying differences between subjects [12–14]. In the

case that a rat from the intermediate animals had an identical

score to the following rat from an extreme tercile, it was included

in this latter group. The behaviour and basal monoamine

functions of the two extreme subgroups were then compared.

(c) Tissue processing for histological dissection and
chromatographic analyses of post-mortem samples

Rats were sacrificed one month after being tested. Brains were

removed rapidly, frozen using liquid nitrogen and stored until

use at 2808C. After thawing, dissection of brain areas was per-

formed on a cryostat in the frontal plane. The procedures were

published [15]. The monoamine content, the variability of which

can reliably be measured in the rat [15], was evaluated in the

brain areas encompassing enlarged prefronto–subcortical network.

Tissue dosages of monoamines and their metabolites were per-

formed using high-pressure liquid chromatography coupled to

electrochemical detection (see electronic supplementary material).

Basal dopaminergic and serotonergic turnover corresponded to

the ratio of the tissue content of 3,4-dihydroxyphenylacetic acid

(DOPAC) versus DA (DOPAC/DA) and 5-hydroxyindole-3-acetic

acid (5-HIAA) versus 5-HT (5-HIAA/5-HT), respectively. The full

neurochemical database for the molecules and turnovers has

already been reported [15] in the following areas: the dorsolateral

and lateral parts of the orbitofrontal cortex (DLO/LO), the medial

and ventral parts of the orbitofrontal cortex (MO/VO), the infralim-

bic (IL) and the prelimbic (PL) cortices, the motor cortex (M2), the

anterior (aCg) and posterior (pCg) cingulate cortices, the anterior

(aIns) and posterior (pIns) insular cortices. Subcortical measures

were made in the hippocampus (HPC), subthalamic nucleus

(STN), central nucleus (CE) and basolateral nucleus (BLA) of the

amygdala, nucleus accumbens core and shell, and the striatum

(ventromedial (VMS), ventrolateral (VLS), dorsolateral (DLS),

dorsomedial (DMS)).

(d) Data analysis
Comparisons of behavioural scores were made using two-way

analysis of variance (group factor and repeated-measures (RM)

for sessions) followed by post hoc comparisons (Newman–

Keuls; NK test), when appropriate (Statistica, Statsoft v. 7.1).

Mean scores for flexible behaviour in the RGT-reversal task

and mean percentage of choice for the large reinforcement in

the DDT were compared with indifference level (50%) using a

two-tailed t-test. The normality of the variable distribution was

verified using Shapiro–Wilk’s test. Student’s t-tests were used

to compare subgroup scores for behaviour or basal monoamine

functions (mean+ s.e.m.). Correlations between behavioural

scores, or between basal monoamine levels and behavioural

scores were made using the parametric Bravais–Pearson’s corre-

lation test (r) (Statistica, Statsoft v. 7.1). All comparisons were

made at the 5% level. Additional information is provided in

electronic supplementary material.
3. Results
As shown previously [11], no correlation was observed between

indexes of risk-seeking and behavioural flexibility (r ¼ 0.31;

d.f.¼ 31, ns). These two behavioural traits were unrelated to

scores of impulsivity with only one exception: risk seeking

was positively correlated with perseverative behaviour during

EXT (r ¼ 0.34; n ¼ 34, p , 0.05): rats showing perseverative be-

haviour were risk-takers or had an intermediate score for risk,
except one. No correlation was observed between the different

impulsive responses, except between the two measures asses-

sing the capacity to withhold a response: anticipatory

hyperactivity in the FI and perseveration during EXT, measured

during the same task. These two parameters were positively

correlated (r ¼ 0.65; d.f. ¼ 34, p , 0.001). However, we ana-

lysed separately inter-individual differences in these two

distinct tasks because the ability to extinguish behaviour

during EXT, and not during FI, has been related to higher

working memory capacities [13], suggesting differences in

underlying capacities. Among the 35 rats tested, 19 were identi-

cally classified in EXT and FI (54%), but 10 rats changed to a

higher impulsive score during EXT compared to FI whereas

six rats changed to a lower impulsive score.
(a) Differences in basal monoaminergic metabolisms
associated with premature responses in the
FCN task

Rats were split into two subgroups according to their mean per-

centage of rewarded chains of lever presses in the FCN task:

impulsive rats with a low percentage of rewarded chains (less

than 75%, n ¼ 11, IMP-FCN), and non-impulsive rats with a

high percentage (more than 85%, n ¼ 12, NIMP-FCN)

(figure 1a). The lower score was 43% and the maximum being

97%. The chain length distribution reveals a marked peak of

chains of 16 responses, which corresponds to the optimal

response (figure 1b). Although both IMP and NIMP-FCN

groups demonstrated a similar peak, the number of unre-

warded chains (less than 16) was higher for IMP-FCN

whereas it was lower for rewarded chains (greater than 16),

resulting in a lower proportion of rewarded chains (IMP-

FCN: 65.3%+2.7; NIMP-FCN: 90%+1.1; t ¼ 8.78, d.f. ¼ 21,

p , 0.001) (figure 1b). No correlation between learning score

and proportion of rewarded chains could be shown (r ¼ 0.04,

d.f. ¼ 34, ns) showing that premature responding is unrelated

to learning deficits. Both groups reached the FCN-16 test con-

dition at the same rate (learning scores: IMP-FCN ¼ 12.4+
0.5 sessions; NIMP-FCN ¼ 12.6+0.7 sessions, t ¼ 0.14, d.f. ¼

21, ns).
Among the 20 brain regions investigated for the dopamin-

ergic and serotonergic turnovers, only the regions in which

differences were significant are reported in the figures. The

origin of the difference in turnover (metabolite and/or neuro-

transmitter content) is indicated in parenthesis whenever

significant differences were observed (see electronic supplemen-

tary material, table S2 for details). We occasionally made

reference to the table 3 of the supplementary material reporting

the results for each molecule in each constituted subgroup.

Basal serotonergic turnovers were lower for IMP-FCN

compared to NIMP-FCN in DLO/LO (t ¼ 3.11, d.f. ¼ 20,

p , 0.01), and higher in VMS (t ¼ 2.43, d.f. ¼ 18, p , 0.05)

(figure 1c). The 5-HT and 5-HIAA contents were not signifi-

cantly different in DLO/LO and VMS, but were both higher

in LO for IMP-FCN (t ¼ 3.48, d.f. ¼ 15, p , 0.01; t ¼ 2.1,

d.f. ¼ 21, p , 0.05). Conversely, DA and DOPAC were lower

in core for IMP-FCN (t ¼ 2.84, d.f. ¼ 19, p , 0.02; t ¼ 2.7,

d.f. ¼ 19, p , 0.02). A positive correlation was found between

percentage of rewarded chains and serotonergic turnover

in DLO–LO (r ¼ 0.38, d.f. ¼ 31, p , 0.05), and a negative

correlation in VMS (r ¼ 0.38, d.f. ¼ 33, p , 0.05).
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Figure 1. Inter-individual differences in impulsive/compulsive actions and monoamines turnovers at rest. The figure reports the inter-individual differences in fixed
consecutive number of 16 lever press schedule (FCN16) (a), in the anticipatory activity (d ) or in perseverative behaviour (g), the mean behavioural performances in
subgroups for each task (b,e,h) and the corresponding regional changes of serotonergic and dopaminergic turnovers (mean+ s.e.m.) measured across 20 brain
regions (c,f,i). Premature responses in FCN (a) are reflected by the percentage of rewarded chains distinguishing rats with impulsive (IMP-FCN, scores ,75% presses)
and non-impulsive behaviour (NIMP-FCN, scores .85%); (b) frequency distribution (%) of chain length and mean percentage of rewarded chains (insert) of the two
groups. In the anticipatory activity during FI (d ), rats displayed impulsive (IMP-FI, scores .180 presses) and non-impulsive behaviour (NIMP-FI, scores ,80
presses); (e) mean number of lever presses by each group during the 1 min FI component as a function of 10 s segments of the FI period. Perseverative behaviour
(g) of rats during EXT highlighted compulsive (COMP-EXT, scores .110 presses) and non-compulsive behaviours (NCOMP-EXT, scores ,55 presses); (i) mean
number of lever presses by each group during the 5 min EXT component as a function of 30 s segments of the EXT period. In (b,e,h) dotted line or crosses indicate
median score. 8p , 0.001; **p , 0.01; *p , 0.05 (Student’s t test).
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(b) Differences in basal monoaminergic metabolisms
associated with anticipatory hyperactivity during FI

Large inter-individual differences were observed in activity

during FI with a minimum mean of lever presses of 41 and
a maximum of 298. Rats were split into two subgroups accord-

ing to their mean scores during FI: impulsive rats with a high

level of lever presses (greater than 180 lever presses, n ¼ 10,

IMP-FI), and non-impulsive rats with a low level of lever

presses (less than 80, n ¼ 11, NIMP-FI) (figure 1d). The time
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course of their activity within a 1-min fixed interval is rep-

resented in figure 1e. Although both groups significantly

increased their number of lever presses during FI (NIMP,

F5,50¼ 66.7, p , 0.001: IMP, F5,45¼ 81.3, p , 0.001), the mean

lever presses of IMP-FI (217.5+10.6) was 3.5 times higher

than that of NIMP-FI (61.9+4.5), the median score being

131.5 lever presses. The two groups did not differ in activity

level during the first 10 s of the FI period (NK, ns) and then,

IMP-FI developed readily a much higher level of activity

until food delivery. Consequently, the mean number of visits

to the empty tray of NIMP-FI (79.7+12.2 visits) was signifi-

cantly higher compared to IMP-FI (35.3+6.1 visits) (t ¼ 3.26;

d.f.¼ 19, p , 0.01). No significant difference between the

two groups was found between the latency to collect food

once delivered (IMP-FI: 0.92+0.28 s; NIMP-FI: 0.83+0.42 s;

t ¼ 0.24, d.f. ¼ 19, ns).
Basal serotonergic turnovers were higher in IMP-FI com-

pared to NIMP-FI in PL (t ¼ 2.51, d.f. ¼ 16, p ¼ 0.05;

increased 5-HIAA content), pins (t ¼ 2.3, d.f. ¼ 16, p , 0.05,

increased 5-HT content), HPC (t ¼ 3.03, d.f. ¼ 15, p , 0.01)

and VLS (t ¼ 2.27, d.f. ¼ 19, p , 0.05). Basal dopaminergic

turnovers were higher in IMP-FI compared to NIMP-FI in

PL (t ¼ 2.86, d.f. ¼ 17, p ¼ 0.01) and VLS (t ¼ 2.28, d.f. ¼ 19,

p , 0.05) (figure 1f ). DLO 5-HT and 5-HIAA contents were

lower in IMP-FI (t ¼ 3.2, d.f. ¼ 15, p , 0.01; t ¼ 3.05, d.f. ¼

18, p , 0.01). Positive correlations were found between

activity level and serotonergic turnover in HPC (r ¼ 0.47,

d.f. ¼ 27, p , 0.02), and VLS (r ¼ 0.37, d.f. ¼ 34, p , 0.05).
(c) Differences in basal monoaminergic metabolisms
associated with perseverative behaviour during
extinction

Large inter-individual differences were observed in activity

during EXT with a minimum mean of lever presses of 12

and a maximum of 206. Rats were split into two subgroups

according to their mean scores during EXT: compulsive rats

with a high level of lever presses (greater than 110 lever

presses, n ¼ 13, COMP-EXT), and non-compulsive rats with

a low level of lever presses (less than 55, n ¼ 11, NCOMP-

EXT) (figure 1g). The time course of their activity within

5 min of EXT is represented on figure 1h. The two groups dif-

fered in activity level all along the EXT period. Both groups

significantly increased their number of lever presses during

EXT (NCOMP, F9,90 ¼ 2.79, p , 0.01; IMP, F9,108 ¼ 7.71, p ,

0.001). However, NCOMP-EXT activity remained very low

whereas COMP-EXT activity increased rapidly to reach a pla-

teau after 1.5 min, and then decreased progressively. The

mean lever presses of COMP-EXT (161.6+9.8) was 4.7

times higher than that of NCOMP-EXT (34.2+ 4.6), the

median score being 72.7 lever presses. The mean number of

visits to the empty tray did not significantly differ between

groups (COMP-EXT: 21+ 1.4 visits; NCOMP-EXT: 28+ 5.4

visits) (t ¼ 1.32; d.f. ¼ 22, ns). The mean number of lever

presses during FI and EXT were positively correlated

(r ¼ 0.65, d.f. ¼ 34, p , 0.001).

One significant difference was revealed between COMP-

EXT and NCOMP-EXT for basal serotonergic turnovers

(figure 1i): it was higher in COMP-EXT compared to

NCOMP-EXT in PL (t ¼ 2.28, d.f.¼ 17, p , 0.05; increased 5-

HIAA content). Basal dopaminergic turnovers were higher in

COMP-EXT compared to NCOMP-EXT in PL (t ¼ 2.27, d.f. ¼
18, p , 0.05), and lower in both MO/VO (t ¼ 3.38, d.f. ¼ 15, p
, 0.01; increased DA content) and CE (t ¼ 2.5, d.f. ¼ 21, p ,

0.05) (figure 1i). A negative correlation was found between com-

pulsivity level and dopaminergic turnover in MO/VO

(r ¼ 20.53, d.f. ¼ 22, p , 0.01), and a positive one with

dopaminergic turnover in VLS (r ¼ 0.42, d.f.¼ 34, p , 0.02).
(d) Differences in basal monoaminergic metabolisms
associated with impulsive choices in the delay
discounting task

Large inter-individual differences were observed in the

mean proportion of choices for the large delayed reward at

delays 10 to 40 s, with a minimum mean percentage of

choice of 6% and a maximum of 99% (figure 2a). Rats

were split into two subgroups according to their mean per-

centage of choice for the large reward from delay 10 to 40 s:

impulsive rats with a low proportion of choices for the large

reward (less than 35, n ¼ 11, IMP-DD), and non-impulsive

rats with a high proportion for the large reward (greater

than 53, n ¼ 10, NIMP-DD). As expected, following the

training period, animals largely preferred the lever deliver-

ing the large reward when no delay was imposed (IMP-

DD: 86.3+ 3.8%; NIMP-DD: 86.5+ 2.2%). The preference

progressively shifted towards the small reward as the

delay increased for NIMP-DD whereas this preference

shifted much more rapidly for IMP-DD. The two groups lar-

gely differed in the time lapse at which they no longer

preferred pressing for the large reward (breakpoint): as

early as the 10 s delay for IMP-DD and at the 30 s delay

for NIMP-DD (figure 2b). The mean percentages of choice

for the large reward from delay 10 s to 40 s for the two

groups are represented in figure 2b. No correlation was

found between choice for the larger reward and the total

number of sessions required to reach each step of the test

(r ¼ 0.15, d.f. ¼ 31, ns).

Basal serotonergic turnovers were lower in IMP-DD com-

pared to NIMP-DD in CE (t ¼ 2.80, d.f. ¼ 17, p , 0.02;

figure 2c) and in VLS (t ¼ 2.26, d.f. ¼ 20, p , 0.05). Basal

dopaminergic turnover was lower in IMP-DD compared to

NIMP-DD in core (t ¼ 32.3, d.f. ¼ 18, p , 0.05, figure 2c).
(e) Differences in basal monoaminergic metabolisms
associated with behavioural flexibility capacities
in the RGT

Rats were split into two subgroups: rats with flexible behav-

iour (n ¼ 11; FLEX) during the RGT-reversal, with a score of

reversed choices above 50%, and rats with inflexible behav-

iour (n ¼ 15; INFLEX), with a score of reversed choices

below 15% (figure 2d ). The time-course of the percentage of

reversed choices during the RGT-reversal for FLEX and

INFLEX rats is represented on figure 2e. During the RGT-

reversal, FLEX rats started to sample the options randomly

before reorienting their choices toward the ones that they pre-

ferred during the RGT, until the end of the task. Conversely,

INFLEX rats persisted to choose the same location, indepen-

dently of the reversed contingencies, and remained on these

options all along the test. Three rats that did not display

preference for any particular option during the RGT were

discarded from the analysis.
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Basal serotonergic turnovers were lower in INFLEX

compared to FLEX in M2 (t ¼ 2.32, d.f. ¼ 15, p , 0.05),

aCg (t ¼ 2.14, d.f. ¼ 16, p , 0.05), pins (t ¼ 2.11, d.f. ¼ 17,
p ¼ 0.05) and amygdala (CE, t ¼ 2.37, d.f. ¼ 18, p , 0.05;

BLA, t ¼ 2.54, d.f. ¼ 17, p , 0.05). Basal dopaminergic turn-

overs were lower in INFLEX compared to FLEX in MO/VO
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(t ¼ 3.07, d.f. ¼ 13, p , 0.01; increased DA content), DLS

(t ¼ 2.22, d.f. ¼ 19, p , 0.05; increased DA content) and CE

(t ¼ 2.83, d.f. ¼ 20, p ¼ 0.01) (figure 2f ).
Positive correlations were found between the index of

flexibility and dopaminergic turnover in MO/VO (r ¼ 0.61,

d.f. ¼ 20, p , 0.01), and DLS (r ¼ 0.41, d.f. ¼ 30, p , 0.05)

as well as serotonergic turnover in BLA (r ¼ 0.48, d.f. ¼ 27,

p , 0.02), CE (r ¼ 0.40, d.f. ¼ 27, p , 0.05), M2 (r ¼ 0.41,

d.f. ¼ 22, p ¼ 0.05) and aCg (r ¼ 0.49, d.f. ¼ 25, p , 0.02).

( f ) Differences in basal monoaminergic metabolisms
associated with risk-taking in the light – dark
emergence task

Large inter-individual differences were observed in the index

of risk-taking, some rats remaining in the dark compartment

during the whole duration of the task, some others exiting

this compartment in less than 30 s. Rats were split into two

subgroups according to this index: risk-prone rats with a

low index (less than 170, n ¼ 11, RISK), and risk avoiders

with a high index (greater than 810, n ¼ 10, 0RISK)

(figure 2g). Risk-taking index was calculated on the basis of

the number of risk assessments, the latency to emerge into

the risky compartment and the total time spent in the ligh-

tened compartment. The scores of the two groups are

represented on figure 2h.

Basal serotonergic turnovers were lower in RISK compared

to 0RISK in aCg (t ¼ 2.07, d.f. ¼ 16, p ¼ 0.05; figure 2i;
increased 5-HT content), BLA (t ¼ 2.19, d.f.¼ 16, p , 0.05;

decreased 5-HIAA content), core (t ¼ 2.65, d.f.¼ 18, p , 0.02)

and VLS (t ¼ 2.6, d.f.¼ 20, p , 0.02). Basal dopaminergic turn-

overs were significantly lower in RISK compared to 0RISK in

MO/VO (t ¼ 2.44, d.f.¼ 11, p , 0.05, figure 2i), IL (t ¼ 2.42,

d.f.¼ 20, p , 0.05; lower increase in DOPAC compared to

DA) and DLS (t ¼ 2.53, d.f. ¼ 20, p , 0.02; fig. 7f). DA and

DOPAC contents were higher in PL (t ¼ 2.28, d.f.¼ 16, p ,

0.05; t ¼ 2.93, d.f.¼ 18, p , 0.01) and lower in shell (t ¼ 3.1,

d.f.¼ 17, p , 0.01; t ¼ 3.02, d.f. ¼ 17, p , 0.01) for RISK. Sig-

nificant correlations were found between the index of risk-

taking and dopaminergic turnover in MO/VO (r¼ 0.48, d.f.

¼ 22, p ¼ 0.02), IL (r ¼ 0.35, d.f. ¼ 32, p , 0.05), and pCg (r
¼ 0.47, d.f. ¼ 22, p , 0.05) as well as serotonergic turnover in

aCg (r¼ 0.49; d.f.¼ 25, p , 0.02), CE (r ¼ 0.41, d.f. ¼ 27,

p , 0.05) and BLA (r ¼ 0.48, d.f.¼ 27, p , 0.02).
4. Discussion
Inter-individual differences in behaviour within a large sample

of outbred rats enabled to highlight the complex phenotype

related to the impulsivity/compulsivity dimension. The main

finding is that distinct components of this dimension show

specific neurochemical signatures on dopaminergic and seroto-

nergic metabolisms in a subset of brain regions involved in

cognition, confirming the complexity of the underlying neuro-

chemical substrates. The classification of individuals into three

groups according to their scores, allowed us to compare individ-

uals with opposite performances. Highly adaptive versus

maladaptive behaviours in each of the components were

observed, along an almost continuous distribution of perform-

ance. These differences are unrelated to learning capacities or

motivation for food, as shown by similar learning of the tasks

or latency to collect food between groups. It is noteworthy
that most of the behaviours studied were uncorrelated: individ-

uals exhibiting impulsive actions in one test do not necessarily

display impulsive responses in another test. This evidence is

pointed out by the distinct neurochemical profiles sustaining

each of these traits. These data agree with the multimodal

aspect of the impulsivity/compulsivity dimension [2] and the

notion that each paradigm models specific components possibly

revealing substrates of related psychiatric disorders [16].

The comparison of individuals with opposite behavioural

responses in each task revealed neurochemical differences in ser-

otonergic turnovers and/or dopaminergic turnovers in

restricted brain regions. Overall, we report contrasting patterns

of variations according to the behavioural traits: lower seroto-

nergic and dopaminergic turnovers in rats making impulsive

choices, inflexible or risk-prone rats in some brain regions and

higher turnovers in rats showing impulsive anticipatory

responses in other regions (PL and VLS notably). By contrast,

opposite changes between cortical (LO-DLO) and striatal

(VMS) serotonergic turnovers were reported in premature

responders. Rats showing perseverative activity in the extinction

paradigm and inflexible rats in the RGT-reversal had reduced

dopaminergic turnovers in MO/VO and CE, thus suggesting

a hypodopaminergic function in these brain regions in compul-

sive-like behaviours. Taken individually, some of these results

are in accordance with the literature: e.g. the involvement of

MO/VO and CE in reversal learning and cognitive flexibility

[17,18]; a reduced serotonergic function that tends to promote

inflexible behaviours [19] or the decrease in core dopaminergic

turnover in impulsive choice (delay discounting) [20]. Our

results agree with our previous work on poor decision-making

[21] and a growing literature showing that serotonergic and

dopaminergic systems tune behavioural traits [2,4,6]. Whether

some patterns of variations within networks in monoaminergic

activity could represent a predisposition for an individual to

impulsivity/compulsivity is still elusive. Beyond the involve-

ment of one or two specific structures, the notion of network

seems particularly important. For instance, combined increases

in PL dopaminergic/serotonergic metabolisms have been

observed in both anticipatory activity and perseverations but

the other brain regions in which differences in these two distinct

behavioural tasks are reported, are completely different.

While our differential approach is not hypothesis-driven

but purely descriptive, it highlights also some specific turn-

overs’ modifications away from the expected modifications

(i.e. the decrease in CE serotonergic turnover in rats display-

ing impulsive choices in the DDT). The functional meaning of

these modifications is unclear and tends to suggest a wider

network sustaining the behavioural traits as previously

hypothesized [2,4,6].

It has to be kept in mind that the neurochemical data cor-

respond to the metabolism at rest obtained one month after

the completion of all behavioural tests. These differences in

metabolism cannot represent dynamic monoaminergic activi-

ties during the tests. The variations of the turnovers among

subgroups likely witness distinct maturations in discrete

loci encompassing the neurobiological networks recruited

in each behavioural task. Indeed, in addition to specific distri-

bution of serotonergic and dopaminergic neurons in raphe

nuclei or in dopaminergic areas of mesencephalic complex

[22,23], terminal fields of monoaminergic neurons establish

local interactions which participate in their regulation inde-

pendently from their mesencephalic origin [15,24,25]. The

variations of the turnovers were due to changes in the level
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of the neurotransmitter (e.g. DA in MO/VO), the metabolite

(e.g. 5-HIAA in PL) or none specifically. In some cases, no

modification of the turnover is reported because both the

neurotransmitter and its metabolite significantly differ in

the same direction, suggesting a difference in general activity

in these structures (e.g. higher PL and lower shell DA and

DOPAC for risk-taking; higher LO 5-HT and 5-HIAA with

lower DA and DOPAC in core for premature responders)

(electronic supplementary material, table S3).

The therapeutic approach of impulse control disorders

relies on monoaminergic based treatments. The mechanism

of action of these treatments is still poorly understood and

the drug adherence variable in-between individuals [2].

Based on our results and those previously published [2,25],

abnormal response in a specific component of impulsive/

compulsive dimension is associated with patterns of mono-

aminergic imbalances within fronto–subcortical circuits.

The therapeutic efficacy of monoaminergic drugs could be

related to the compensation of monoaminergic imbalances,

or the creation of a new one. Nonetheless, their efficacy

would be associated with counterproductive outcomes

because of their action on other circuits and behavioural

traits. Thus, a better determination of components within a

dimension and their underlying neurobiological substrate is

required to ameliorate the therapeutic approach of mental

disorders according to the individuals.
5. Conclusion
Our results reveal the complex nature of behavioural traits

related to impulse control disorders through their associated

monoaminergic networks at rest. These results pave the way

for understanding the link between mental disorders and

drug therapeutic actions.
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