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Positron emission tomography has, for 30 years, been used in numerous case-

control studies searching for hypothesized differences in the density of neuror-

eceptor or transporter proteins in psychiatric disorders such as schizophrenia

and depression. In most cases, the results have not been conclusive. One

reason could be the sizeable interindividual variability in biochemical markers,

which in twin studies have shown to emanate from both environmental and

genetic factors, leading to low statistical power for the detection of group

effects. On the other hand, the same interindividual variability has served as

an opportunity for correlative studies on the biological underpinning of behav-

iour. Using this approach, a series of studies has linked markers for the

dopamine and serotonin system to personality traits associated with psychia-

tric conditions. Based on increasing evidence for the view that many

psychopathological states represent extremes of a continuum rather than dis-

tinct categories, this research strategy may lead to new biological insights

about the vulnerability to and pathophysiology of major psychiatric disorders.

This article is part of the theme issue ‘Diverse perspectives on diversity:

multi-disciplinary approaches to taxonomies of individual differences’.
1. Background
In early 1980s, methods were developed for quantification of brain neurorecep-

tors in humans in vivo using positron emission tomography (PET). The efforts

were to a significant degree driven by the dopamine hypothesis of schizo-

phrenia, postulating that the pathophysiology of this disorder is related to

elevated dopaminergic transmission. The assumption in initial PET studies

was that this overactivity was related to increased density of the D2-dopamine

receptor (D2R) subtype. This somewhat simplistic model was justified by repli-

cated findings of elevated D2R in brains of patients with schizophrenia post
mortem [1], and experimental studies demonstrating that neuroleptic drugs

are D2R antagonists. Beyond the primary aim of demonstrating significant

differences between healthy subjects and young neuroleptic naive patients

with schizophrenia, there was also a hope for a large separation between the

groups. If a distinct separation was present, then D2R density could serve as

a clinically useful and much sought for diagnostic marker for schizophrenia.

Over the years, numerous PET studies have been carried out in both neuro-

leptic naive and drug-treated patient samples. The overall view, supported

by meta-analyses, is that the findings of elevated D2R post mortem cannot be

replicated in vivo [2,3].

However, the concept of searching for a single biochemical abnormality in

patients has been extended to other potential biomarkers of the dopamine

system, as well as to other neurotransmission systems and disorders. For instance,

following the development of radioligands for PET-imaging of the serotonin (5-HT)

system, and supported by pharmacological evidence, many studies have been
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conducted in depression and anxiety. The results are not con-

clusive. Some reports suggest decreases in serotonin

transporter levels [4], whereas studies on the 5-HT1A receptor

have shown mixed results [5,6] and only two small studies

have reported changes in 5-HT1B receptor binding [7,8].

In most such studies, the primary outcome used to com-

pare patients and control subjects is the binding potential

(BPnd), which represents the ratio between receptor density

(Bmax) and affinity (Kd) [9,10]. BPnd is commonly used as

an index for density because Kd is assumed to be constant,

albeit influenced by the endogenous neurotransmitter

concentration. In the following text, we use the concept ‘density’

when we refer to BPnd-values.

The aim of the present commentary is to review some of the

studies on associations between imaging markers and personal-

ity traits, and to discuss if they can represent a valuable

approach to understanding the underpinnings of mental illness.

2. Interindividual variability in neuroreceptor
density

The initial discovery of neuroreceptors was a result of exper-

imental pharmacological studies using inbred animal strains,

where interindividual variability in receptor density is not a

major concern. When translating this field of experimental

research to humans, a different picture emerged. For instance,

in a study of more than 200 human brains post mortem, a

nearly fourfold range was reported for the striatal D2R den-

sity [11]. This finding of a large interindividual variability

was later replicated in vivo using PET [12]. In this study, indi-

vidual D2R density (Bmax) and affinity (Kd) were calculated

from a saturation analysis based on five PET-measurements

in each of 10 males and 10 females. There was a 2.5-fold

range in D2R density. Similar ranges of variability have

been reported also for other neuroreceptors [13–19].

PET is costly and the recruitment of subjects is demanding,

in particular if drug-free or drug-naive patients are required.

By consequence, patient samples have been small in a majority

of clinical studies, typically fewer than 20. When combined

with the sizeable interindividual variability, this has led to

low statistical power for the detection of group effects. This

is especially the case for psychiatric disorders devoid of

known histopathology, where group differences are expected

to be small. For instance, arguably the most robust observation

of a neurotransmission marker in psychiatric patients is an

elevation of the presynaptic marker [18F]FDOPA in schizo-

phrenia patients, showing an effect size of 0.79 (Cohen’s D)

[2]. In comparison, radioligand binding to the dopamine trans-

porter (DAT) in Parkinson’s Disease, which is characterized

by a major loss of cells, is reduced by about 50% already at

clinical onset, with effect sizes up to Cohen’s D ¼ 3.8 for

striatal regions later in the disease stage [20]. Hence, whereas

DAT-imaging using PET or SPECT (single photon emission

computed tomography) is a long-established diagnostic tool

in Parkinson’s Disease [21], thus far there are no such PET

markers suitable for such clinical use in psychiatric populations.
3. Sources of variability
Despite the high interest in the serotonin and dopamine

neurotransmission systems in psychiatry research, little is

known about the regulation of receptor and transporter
density levels. Considering the high heritability of major psy-

chiatric disorders, it is of fundamental interest to understand

if their densities in adult life are genetically determined or

influenced by the environment. This lack of knowledge

limits the interpretation of changes in protein availability

reported in psychiatric patients. In a recent attempt to eluci-

date this issue, we used PET in a twin design to estimate

the relative contribution of genetic and environmental

factors, respectively, on dopaminergic and serotonergic mar-

kers in the living human brain [14]. Heritability, shared

environmental effects and individual-specific non-shared

effects were estimated for 5-HT1A receptor availability in ser-

otonergic projection areas and for D2R in striatum. We found

a major contribution of genetic factors (heritability 0.67;

shared environment effect 0.00; non-shared environment

effect 0.33) on individual variability in striatal D2R binding

and a major contribution of environmental factors (heritabil-

ity 0.17–0.22; pair-wise shared environment effect 0.70–0.75;

unique individual effect 0.08) on neocortical 5-HT1A receptor

binding. Interestingly, the heritability for D2R was in a simi-

lar range, as was previously reported for the presynaptic

marker [18F]FDOPA [22]. These results confirm that both gen-

etic and environmental factors should be taken into account

in disease models of psychiatric disorders that are based on

aberrations in the brain neurotransmission systems.
4. Correlative studies: personality traits
Though interindividual variability is a problem for comparisons

aiming for large separations of groups, it has shown to serve as

an opportunity for correlative studies on the biological under-

pinning of behavioural markers in healthy control subjects.

An area of specific interest has been stable patterns of behaviour,

cognition and emotion conceptualized as personality traits,

typically measured by self-assessment questionnaires. These

traits are generally characterized by a substantial heritability,

both for scales traditionally referred to as measuring ‘tempera-

ment’ and for ‘personality’ scales [23,24] and have shown to

be important predictors for psychiatric disorders [25,26]. Conse-

quently, markers of brain neurotransmission may serve as useful

means of tracking down gene–protein-behavioural pathways

towards psychiatric disease. This approach is in line with the

view that psychiatric disorders may represent extremes on a

continuum rather than being qualitatively different from

normal behaviour—even for psychotic disorders [27,28].

Indeed, moving towards a dimensional approach of diagnosis

rather than the existing prototypic classification was an early

ambition for the revised edition of Diagnostic and Statistical

Manual of Mental Disorders (DSM-5 [29]). However, this

development has been hampered by a lack of biological

validation of the proposed models.

In an early study on personality traits and neuroreceptor

density, The Karolinska Scales of Personality (KSP) was admi-

nistered to 18 of the 20 healthy subjects in the D2R study

mentioned earlier [12]. KSP is a self-rating instrument, and

measures 15 different personality traits that were developed

to be sensitive for vulnerability of mental illness [30]. There

was a significant correlation between striatal D2R density

and detachment, a measure of social avoidance and withdra-

wal [31]. This finding was shortly thereafter replicated by an

independent centre [32] and initiated a series of similar

molecular imaging studies summarized in tables 1 and 2.



Table 1. Molecular imaging studies of associations between dopamine receptors and transporter and personality traits in healthy control subjects. The following
denotes correlations between dopaminergic markers and the specific behavioural traits: r, correlation coefficient; þ, positive correlation; 2, negative correlation;
nl, nonlinear. (In case-control studies including patient groups, only results for the control groups have been included.) KSP, Karolinska Scales of Personality; TCI,
Temperament and Character inventory; MPI, Maudsley Personality Inventory; EPQ-R, Eysenck Personality Questionnaire Revised; TPQ, Tridimensional Personality
Questionnaire; BSMSS, Barratt Simplified Measure of Social Status; ZS, Zuckerman Scale; I7, Impulsiveness-Venturesomeness-Empathy questionnaire; BIS, Barratt’s
Impulsivity Scale; HS, Hollingshead Scale; D2/D3, Dopamine D2/D3 receptors; DAT, Dopamine transporter; DOPA, L-Dopa uptake; FDOPA, [18F]FDOPA; SSP,
Swedish University Scales of Personality; RAC, [11C]Raclopride; CFT, [18F]CFT; FLB, [11C]FLB 457; FP, [18F]Fallypride; NEO-PI-R, NEO Personality Inventory-Revised;
IB, [123I]iodo-benzamide (SPECT); PHNO, [11C](þ)PHNO; SCH, [11C]SCH23390; TC, temporal cortex; VST, ventral striatum; MTL, medial temporal lobe; amyg,
amygdala; FC, frontal cortex; SN, substantia nigra; VTA, ventral tegmental area.

personality trait marker tracer n region r publication

detachment (KSP) D2 RAC 24; 18 striatum 2 Farde et al. [31]; Breier et al. [32]

DAT CFT 18 striatum 2 Laakso et al. [53]

attachment (TCI) D2/D3 PHNO 32 VST 2 Caravaggio et al. [38]

novelty seeking (TCI) D2 FLB 24 right insula 2 Suhara et al. [54]

novelty seeking (TPQ) D2 FP 34 midbrain 2 Zald et al. [55]

sensation seeking (ZS) D2 RAC 18 striatum nl Gjedde et al. [56]

venturesomeness (I7) D2 FP 18 TC, thalamus þ Bernow et al. [57]

impulsivity (NEO-PI-R) DA release RAC 40 right VST 2 Oswald et al. [58]

impulsivity (BIS) D2 FP 32 midbrain 2 Buckholtz et al. [59]

impulsivity (BIS) DA release striatum þ

depression (NEO-PI-R) D2 RAC 18 striatum þ Kestler et al. [60]

harm avoidance (TCI) D2 RAC 21 dorsal striatum 2 Kim et al. [61]

anxiety, irritability (KSP) DOPA FDOPA 33 striatum 2 Laakso et al. [62]

lie scale (MPI) D2 IB 42 striatum 2 Huang et al. [18]

lie scale (MPI, EPQ-R) D2 RAC 28; 13; 23 striatum 2 Reeves et al. [34], Egerton et al. [35]

lie scale (EPQ-R) DOPA FDOPA 46 striatum n.s. Stokes et al. [63]

social desirability (SSP) D2 RAC; FLB 16 striatum, MTL 2 Cervenka et al. [33]

social desirability (SSP) D1 SCH 23 striatum/amyg, FC þ Plavén-Sigray et al. [64]

þ physical trait aggression (SSP) 2

socialization (KSP) D2 RAC 30 VST þ Caravaggio et al. [65]

socioeconomic status (HS) D2 RAC 42 striatum þ Wiers et al. [36]

social status (BSMSS) D2 RAC 14 striatum þ Martinez et al. [37]

social status (BSMSS) D2/D3 PHNO 16 SN/VTA 2 Matuskey et al. [38]
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From this literature, it is clear that several brain proteins

may serve as correlates to personality traits. Importantly, a

reported and replicated correlation between a single receptor

or transport protein and a certain personality trait does not

imply that the protein per se has a causal role in neuronal

mechanisms related to the trait or that the density may

serve as a biochemical marker for the trait. However, by indi-

cating that a certain neurotransmission system is part of the

biological underpinning of a trait, these findings may lead

to biological insights and hypotheses about the vulnerability,

genesis and progress of psychiatric disorders. One advantage

of this research strategy is to circumvent the influence of

unspecific factors, such as stress and insomnia, that often

characterize the transition from a high risk or vulnerable

state into a full-blown psychiatric condition.

As can be seen from table 1, initial findings of a relationship

between D2R and traits related to social behaviour have

been corroborated in multiple studies when using antagonist

radioligands. Specifically, a negative correlation has been
reported between D2R and the social desirability scale of the

Swedish University Scales of Personality (SSP) [33] and Lie

scale of the Maudsley Personality Inventory (MPI) [18,34,35],

a line of research that has also been extended to include

measures of social status [36,37]. Interestingly, recent studies

using the agonist radioligand [11C]PHNO have shown pat-

terns of the opposite direction [38,39]. It may be speculated

that this is an effect of the increased sensitivity for endogenous

dopamine (DA) levels, suggesting that previous studies in part

may be influenced by synaptic DA. Alternatively, it may be a

consequence of the relatively higher D3 dopamine receptor

affinity for [11C]PHNO [40]. Taken together, these findings

suggest an intricate relationship between DA function

and social behaviour, and may serve as a starting point for

investigations in relevant patient groups [41,42].

With regard to psychosis-related traits, there are to date no

reports on associations with D2R, mirroring findings in

patients. By contrast, striatal amphetamine-induced DA

release has shown to be associated with schizotypal



Table 2. Molecular imaging studies of associations between serotonin receptors and transporter and personality traits in healthy control subjects. The following
denotes correlations between serotonergic markers and the specific behavioural traits: r, correlation coefficient; þ, positive correlation; 2, negative correlation.
(In case-control studies including patient groups, only results for the control groups have been included.) NEO-PI-R, Revised NEO Personality Inventory; TCI,
Temperament and Character inventory; KSP, Karolinska Scales of Personality; TPQ, Tridimensional Personality Questionnaire; EPQ, Eysenck Personality
Questionnaire; STAI, State-Trait Anxiety Inventory; BGLHA, Brown-Goodwin Assessment for Lifetime History of Aggression; BPAQ, Buss-Perry Aggression
Questionnaire; BIS-11, Barratt’s Impulsivity Scale 11; UG, Ultimatum Game; 5-HTT, serotonin transporter; 5-HT1A, serotonin 1A receptors; 5-HT2A, serotonin 2A
receptor; 5-HT4, serotonin 4 receptor; DASB, [11C]DASB, MADAM, [11C]MADAM; WAY, [11C]WAY100635; FESP, [18F]FESP; ALT, [18F]altanserin; SB, [11C]SB207145;
SET, [18F]setoperone; DLPFC, dorsolateral prefrontal cortex; PC, parietal cortex; OC, occipital cortex; ACC, accumbens; FC, frontal cortex; STG, superior temporal
gyrus. HC, hippocampus; OFC, orbitofrontal cortex; rPRG, right pregenual cingulate.

personality trait marker tracer n region r publication

neuroticism (NEO-PI-R) 5-HTT DASB 31 thalamus þ Takano et al. [66]

harm avoidance (TCI) 5-HTT DASB 19 n.s. Reimold et al. [67]

harm avoidance (TCI) 5-HTT MADAM 22 n.s. Tuominen et al. [48]

neuroticism (NEO-PI-R) 5-HT1A WAY 19 DLPFC, PC, OC, ACC 2 Tauscher et al. [19]

harm avoidance (TPQ); neuroticism (EPQ);

state anxiety (STAI)

5-HT1A WAY 49; 44; 22 n.s. Rabiner et al. [13]

harm avoidance (TCI) 5-HT1A WAY 15 n.s. Borg et al. [68]

neuroticism (KSP) 5-HT1A WAY 34 DLPFC; STG, HC 2 Hirvonen et al. [47]

harm avoidance (TPQ) 5-HT2A FESP 11 FC, PC 2 Moresco et al. [69]

neuroticism (NEO-PI-R) 5-HT2A ALT 83 frontolimbic þ Frokjaer et al. [70]

harm avoidance (TCI) 5-HT2A ALT 21 n.s. Soloff et al. [71]

harm avoidance (TCI) 5-HT2A ALT 27 HC þ Soloff et al. [72]

dysfunctional attitudes 5-HTT DASB 20 n.s. Meyer et al. [73]

life-time aggression (BGLHA) 5-HT1A WAY 25 FC, raphe 2 Parsey et al. [74]

questionnaire for measuring factors of

aggression

5-HT1A WAY 36 ACC þ Witte et al. [17]

life-time aggression (BGLHA) 5-HT2A ALT 21 n.s. Soloff et al. [71]

trait aggression (BPAQ); trait impulsivity

(BIS-11); angry hostility (NEO-PI-R)

5-HT2A ALT 94 n.s. da Cunha-Bang et al.

[75]

trait aggression (BPAQ); trait impulsivity

(BIS-11)

5-HT4 SB 47 males (n.s.

in females)

whole brain þ da Cunha-Bang et al.

[76]

openness (NEO-PI-R) 5-HTT DASB 50 midbrain,

putamen,

thalamus

2 Kalbitzer et al. [77]

self-transcendence/spiritual acceptance

(TCI)

5-HTT DASB 16 raphe 2 Kim et al. [78]

self-transcendence/spiritual acceptance

(TCI)

5-HT1A WAY 15 neocortex,

HC, raphe

2 Borg et al. [68]

self-transcendence/spiritual acceptance

(TCI)

5-HT1A WAY 20 n.s. Karlsson et al. [79]

reward dependence (TCI) 5-HT2A SET 24 ACC, OFC 2 Gerretsen et al. [80]

reward dependence (TCI) 5-HT2A ALT 21 n.s. Soloff et al. [71]

reward dependence (TCI) 5-HT2A ALT 27 rPRG þ Soloff et al. [72]

straightforwardness, trust; low tolerance

of unfairness (NEO-PI-R; UG)

5-HTT DASB 20 midbrain 2 Takahashi et al. [81]
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personality traits [43], which is in line with reports of increases

in DA release and the presynaptic marker [18F]DOPA in

schizophrenia patients and individuals at high risk for the

disorder [2,44–46].
For the serotonin system, focus has been mainly on traits

related to anxiety and mood disorders, but, the results have

been less clear. A strong negative correlation has been

shown between 5-HT1A receptor and neuroticism, a trait
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associated with vulnerability for anxiety and depression [47],

whereas no associations were found for the serotonin trans-

porter (5HTT) [48]. Following our observations of a strong

contribution of environmental factors for the 5-HT1A recep-

tor, we recently studied the effect of seasonal and diurnal

variation on the serotonin system by combining healthy con-

trol subjects from several small individual studies [49]. In this

sample including 96 PET-measurements, we observed

decreases in midbrain 5HTT during the day, and higher

5-HT1A receptor availability on days with longer daylight.

The observations suggest a link between the serotonin

system and observations of disruptions in chronobiology in

both seasonal and non-seasonal affective disorders [50–52].

Importantly, while many associations between behaviour-

al traits and neurotransmitter receptor density have been

replicated by independent centres, this is not the case for all

findings depicted in tables 1 and 2. Low reliability of measure-

ments, small sample sizes and the failure to publish

inconclusive replication attempts could potentially lead to a

number of false positives being left uncontested in the litera-

ture. Possible remedies for this are open sharing of data and

code [82], as well as pre-registration of new trials [83]. Another

caveat that needs to be considered when interpreting association

between biochemical outcomes and personality traits is that

the samples might not always be perfect representations of

the general population, such that the personality of individuals

volunteering to research might differ on certain traits [84].

The examples listed in tables 1 and 2, involving the two

major neurotransmitter systems implicated in treatment of

psychiatric patients, show that research into biological corre-

lates of stable behavioural phenotypes may be a way forward

to gain insights regarding disease mechanisms of psychiatric

disorders. This approach is also in line with the shift from

categorical to a more dimensional conceptualization of

psychiatric diagnoses. However, small effect sizes are likely

to be continually expected in the field of PET and psychiatry,

and with more studies moving from being exploratory to

being confirmatory, increased statistical power will be
required. For this reason, we believe an increased focus on

multicentre collaboration is necessary.

Another way forward is to go beyond mere association

between neuroreceptor density and self-reported personality

dimensions, and to examine the neurobiology of underlying

behavioural phenotypes. This can be done by measuring

behaviour in an experimental setting, and as such, pinpointing

the constituents that are driving the relationships reported in

tables 1 and 2. Current attempts in this direction include studies

showing associations between [18F]FDOPA uptake and para-

digms of prediction error coding [85] and salience attribution

[86], which are both of interest in relation to cognitive models

of schizophrenia [87]. With regard to traits tapping social be-

haviour, we suggest that future studies should examine the

relationship between dopamine receptor availability and

social trust and status, as measured using paradigms from be-

havioural economics and social psychology [88]. Observation

of such less complex, observable traits both within a patient

group and across different diagnostic groups, can aid discovery

of behavioural and biological diagnostic markers as well as

markers of vulnerability. It may also enhance translational

science between species, and therefore facilitate more precise

studies of molecular mechanisms in drug development.

In summary, we think that investigations of the biological

underpinnings of personality traits and their constituents

using molecular imaging techniques hold several advantages,

and may lead to biological insights regarding the genesis,

progress and, ultimately, treatment of psychiatric disorder.
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