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Compartments are ubiquitous throughout biology, and they have very likely

played a crucial role at the origin of life. Here we assume that a protocell,

which is a compartment enclosing functional components, requires N such

components in order to be evolvable. We calculate the timescale in which

a minimal evolvable protocell is produced. We show that when protocells

fuse and share information, the timescales polynomially in N. By contrast,

in the absence of fusion, the worst-case scenario is exponential in N. We dis-

cuss the implications of this result for the origin of life and other biological

processes.
1. Introduction
A defining characteristic of living organisms is their ability to replicate and

evolve [1]. A major objective of research on the origin of life is, therefore, to

find plausible chemical systems that are capable of self-replication. The ‘RNA

world hypothesis’ is a leading framework encompassing theories about the

role of RNA in the origin of life. It postulates that RNA or a similar biopolymer,

being both an information-carrying molecule, as well as an enzymatic one, must

have played a central role in initiating self-replication [2–4]. But formidable

difficulties remain for developing this narrative into a complete and rigorous

theory of the origin of life [5–8]. Both theoretical and experimental investi-

gations show that well-mixed populations of RNA or similar biopolymers

often suffer from calamitous pitfalls, including the error catastrophe for

replicases [9] and parasitism for cooperative enzymes [10–13]. Moreover, the

complexity of long RNA sequences that could serve as efficient catalysts cre-

ates a challenge for explaining their spontaneous prebiotic synthesis [14].

Indeed, despite decades of efforts in prebiotic chemistry (and some exciting

progress, e.g. [15,16]), building efficient, stable and prebiotically plausible

replicases (sometimes called the holy grail of the RNA world) has remained

a challenge [17,18].

In modern cells, lipid membranes compartmentalize information-carrying

and enzymatic molecules akin to those sought after by RNA world researchers.

Hence, at some point in the development of life, either before, during or after the

emergence of self-replicating genetic elements, such compartmentalization must

have occurred. There is evidence in support of the prebiotic availability of lipid

membranes. It has been shown that amphiphilic molecules, like simple fatty

acids that are building blocks for the lipid membrane, can be produced in a pre-

biotically plausible manner [19]. Alternatively, lipids could have been imported

to earth by chondrite meteorites [20–22]. Hence, such molecules were likely

abundantly present on the prebiotic Earth [23–27]. These molecules are able

to spontaneously assemble into lipid vesicles in aqueous conditions [27,28],

forming compartments, which in this context are known as protocells.

Protocells alleviate some of the pitfalls that can impede the transition from

prelife to life. The contents of protocells are held near each other and share the

same fate. This results in increased interactions within the protocell and decreased

interactions with the outside environment. It also means that the protocell can
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Figure 1. Merging occurs between randomly assembled protocells. (a) Each
colour (and a ‘1’ bit at each corresponding position on a protocell’s represen-
tative binary string) indicates the presence of one of the four components
needed for the protocell to be evolvable (here, N ¼ 4). Randomly assembled
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house a segmented genome, i.e. the information within the pro-

tocell need not be stored in one contiguous polymer (e.g.

[23,29]). It can also dampen the effects of side reactions for

any auto-catalytic cycles that may be required to start and

maintain a metabolism [30]. Protocells can also divide into

new protocells that inherit parts of their contents [31,32].

These properties of protocells enable them to help in selection

for cooperative polymers, in particular replicases [10,11,33–38].

In addition to enclosing information and dividing, protocells are

able to merge, thereby sharing their contents [30,39–41]. In

biology, sharing information content between two individuals

is considered a defining property of sex.

The implications of this information-sharing ability

among protocells, which is a form of ‘primordial sex’, have

not received much attention. For reasons outlined in the

rest of this study, we suggest that the ability for these com-

partments to merge categorically changes the time required

to produce an evolvable protocell. Hence, we propose that

early presence of membranes, possibly even before the advent

of replication, could have vastly improved the chances of

producing complicated cells by luck. In such cases, it

would not be unreasonable to assume that the starting set

of molecules from which an evolvable cell emerges could

be large. This assumption is rarely made in origin of life

models, because it is considered a probabilistic miracle.

lipid membranes form around the components. (b) Whenever two protocells
merge, they share their contents. Sharing of contents is computed as a bit-
wise OR operation between each of the two parent strings of length N.
(Online version in colour.)
2. Model

To test this hypothesis, we investigate a simple first-passage

process [42,43]. We assume that in order to be evolvable, a

protocell needs to contain a certain number, N, of compo-

nent types (i.e. distinct molecules of various complexity)

[29,44–47]. In early life, these could be molecules as simple

as ions, activated monomers, molecules that stabilize

the membrane or more complicated polymers, like oligo-

peptides, and even elementary ribozymes and simple

unlinked genes [16,23,29,30,34,35,48–53]. More precisely,

the target set should result in an auto-catalytic network that

results in a evolvable cell with non-negligible probability.

Such a scheme has been proposed since Oparin, and has

been defended more recently [53]. We term the smallest set

of necessary and sufficient components from which an

evolvable protocell can be made a minimal evolvable protocell.
We can accordingly represent the functional (or genetic)

content of each protocell as a binary string of length N. For

simplicity, we ignore the redundancy (or dose) of each com-

ponent in the protocell, and are only concerned with each

component’s presence. If a protocell contains a particular

component i, then the string will have a value of 1 at the

ith position and 0 otherwise. Whenever a protocell randomly

assembles, we assume that it contains each of the N com-

ponent types independently (components do not compete

for positions) with probability p. That is, protocell assembly

uniformly samples each type (with sufficient abundance)

from the environment with probability p. Whenever two pro-

tocells merge, the value of the resulting string at every

position i is simply determined by a bitwise OR operation

on the ith bits of the two parent protocells (i.e. if either of

the original cells contain a component, the resulting cell

will also contain it). This is shown schematically in figure 1.

The dynamical process is as follows. On the first step, the

accumulator—the object of our attention—consists of a
randomly assembled protocell. If less than N components

are enclosed, then one of two things can happen: with prob-

ability d, the accumulator loses its contents, and on the

second step, the accumulator consists of a new randomly

assembled protocell, with the accumulation process starting

over. The accumulator can lose its contents if, for example,

its membrane’s integrity is lost, it is infected by a parasite,

or it divides, and the parameter d accounts for all such possi-

bilities. Or with probability 1 2 d, on the second step, the

accumulator merges with a randomly assembled protocell

from the environment, possibly gaining additional com-

ponents. In this case, if the accumulator still has less than N
components after merging, then one of two things can

happen: with probability d, the accumulator loses its con-

tents, and on the third step, the accumulator consists of a

new randomly assembled protocell, with the accumulation

process starting over. Or with probability 1 2 d, on the

third step, the accumulator merges with another randomly

assembled protocell from the environment, possibly gaining

additional components. This process continues until the accu-

mulator gains all N components necessary for evolvability.

The total number of steps (or time units), Z, needed to gain

all N components is equal to the total number of random

assembly and merging events in the accumulation process.

The time, Z, needed to form a minimal evolvable protocell

is thus a random variable that depends on the particular

accumulator being tracked. If we track many such accumula-

tors, then what is the mean first-passage time, E[Z], for an

accumulator to achieve all N components necessary for

evolvability?

Begin by considering the simple case d ¼ 1 (no merging

occurs). If the accumulator consists of a randomly assembled
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protocell that has all N components, then the minimal evol-

vable protocell has been achieved. But if there are less than

N components, then the accumulator is reset without mer-

ging. Thus, the expected number of such random assembly

events required to accumulate all N components necessary

for evolvability, Ed¼1[Z ], grows exponentially with N, i.e.

Ed¼1[Z] ¼ 1

p

� �N

:

Under this model of independent components, for large

values of N, the spontaneous generation of a minimal evol-

vable protocell would be a probabilistic miracle. This is

the worst-case scenario. We now focus our attention on

understanding how E[Z ] grows with N when 0 , d , 1.

In what follows, it is convenient to use the parameter

q ; 1 2 p. Denote by S(q, d, N ) the probability that, start-

ing from a randomly assembled protocell, the

accumulator achieves all N components before being

reset. We determine S(q, d, N ) as follows. First, assume

that there is no death of the accumulator. Then 1 2 qz is

the probability that, after z steps, the accumulator has

achieved a particular component. Therefore, 1 2 (1 2 qz)N

is the probability that the accumulator has not achieved

all N components after z steps. It follows that (1 2 qz)N 2

(1 2 qz21)N is the probability that the accumulator achieves

all N components in exactly z steps. Then, considering death

of the accumulator, since the probability that the accumulator

survives for z steps without being reset is simply (1 2 d)z21 ,

we have

S(q, d, N) ¼
X1
z¼1

(1� d)z�1[(1� qz)N � (1� qz�1)N]:

This can be simplified as

S(q, d, N) ¼ d

1� d

X1
z¼1

(1� d)z(1� qz)N : ð2:1Þ

Denote by T(z; q, d, N) the probability mass function for the

number of steps, z, needed for the accumulator to gain all N
components (i.e. reach its target) when starting from a ran-

domly assembled protocell, given that all N components are

accumulated before being reset. We have

T(z; q, d, N) ¼ (1� d)z�1[(1� qz)N � (1� qz�1)N]

S(q, d, N)
: ð2:2Þ

Roughly speaking, T is the distribution of how many steps it

takes to succeed in hitting the target set starting from a reset

without being reset again. Denote by R(z; q, d, N) the prob-

ability mass function for the number of steps, z, taken before

the accumulator is reset when starting from a randomly

assembled protocell, given that the accumulator is reset

before gaining all N components. We have

R(z; q, d, N) ¼ d(1� d)z�1[1� (1� qz)N]

1� S(q, d, N)
: ð2:3Þ

Roughly speaking, R is the distribution of the number of

steps the accumulator takes until it resets starting from a reset

without hitting the target. In what follows, we omit explicitly

writing the functional dependencies on q, d and N for

notational convenience.

For all 0 , d , 1, the mean first-passage time, E[Z ],

needed to form a minimal evolvable protocell is calculated
directly from

E[Z] ¼
P1

z¼1 z[ST(z)þ (1� S)R(z)]

S
: ð2:4Þ

Substituting equations (2.1)–(2.3) into equation (2.4) and

simplifying, we obtain

E[Z] ¼ 1

Sd
� 1� d

d
: ð2:5Þ

To extract the large-N behaviour of E[Z] from equation

(2.5), we simplify the summation in equation (2.1) for large

N using the following procedure. For a smooth function

f (x), we use the notation f(i)(x) ¼ dif (x)/dxi. We can express

an integration of f (i)(x) with respect to x from 0 to 1 asð1

0

dxf (i)(x) ¼ 1

N

X1
z¼0

ð1

0

dyf (i) zþ y
N

� �
:

Next, we write a Taylor expansion of f(i)((z þ y)/N ) in powers

of y/N and perform the integration over y. We haveð1

0

dxf (i)(x) ¼
X1
m¼0

1

(mþ 1)!Nm

1

N

X1
z¼0

f (iþm) z
N

� �" #
: ð2:6Þ

Substituting equation (2.6) into equation (2.1) to express

the summation as an integration, substituting the integral

form of the Beta function, B(x, y) ¼
Ð 1

0 dttx�1(1� t)y�1, and

henceforth using � to denote asymptotic equivalence as

N ! 1, we obtain

S � �d
(1� d) log (q)

B
log (1� d)

log (q)
, N þ 1

� �
: ð2:7Þ

Substituting equation (2.7) into equation (2.5), expressing the

beta function using gamma components, B(x, y) ¼ G(x)G(y)/

G(x þ y), using Stirling’s formula for the gamma function,

G(x) � xxe�x
ffiffiffiffiffiffiffiffiffiffiffi
2p=x

p
, and simplifying for large N, we find

that E[Z ] grows asymptotically as

E[Z] � aNk, ð2:8Þ

where

a ¼ �(1� d) log (1� p)

d2G(k)

and

k ¼ log (1� d)

log (1� p)
:

The time complexity of concurrence of components is thus

fundamentally altered: for any slight amount of merging,

i.e. for any value 0 , d , 1, E[Z ] grows algebraically with

N. Intriguingly, for many values of p and d, E[Z ] grows

only as a small power of N, and for many other values of

p and d, E[Z ] grows only sublinearly with N (figure 2).

For the particular case in which d� 1, p� 1 and d is not

too large relative to p, equation (2.8) admits a simple

approximation:

E[Z] � 1

d
Nd=p: ð2:9Þ

The exact form of E[Z ] for all values of N given by equation

(2.5), E[Z ] measured using a Monte Carlo simulation of the

accumulation of components, the exact asymptotic result for

E[Z ] given by equation (2.8), and the approximation for

E[Z ] given by equation (2.9) are plotted in figure 3 for

several values of p, d and N.
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Figure 2. Minimal evolvable protocells are achieved in polynomial time for the vast majority of parameter space. For N ¼ 10, N ¼ 25 and N ¼ 100, we perform
Monte Carlo simulations of the accumulation of components, and we plot N logN(E[Z ]) as a function of p and d. For N ! 1, we plot Nk as a function of p and d.
(Online version in colour.)
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For the particular case d¼ 0, the accumulator begins as a

randomly assembled protocell, and it is never reset. For this

case, the mean first-passage time, Ed¼0[Z], grows logarithmically

with N, i.e.,1

Ed¼0[Z] ¼
XN

i¼1

N
i

� �
(� 1)iþ1

1� (1� p)i �
log (N)

� log (1� p)

Also of interest for the biologically realistic case 0 , d , 1

is the probability mass function, P(Z ¼ z), for the number of

steps needed to achieve a minimal evolvable protocell.

P(Z ¼ z) is given by

P(Z ¼ z) ¼ S
Xz

i¼1

(1� S)i�1
X

Pi

j¼1
zj¼z

T(z1)
Y
j=1

R(zj): ð2:10Þ

In essence, this equation splits the total number of steps z
into the runs in which the accumulator resets without success

(i 2 1 times), and the final run in which the accumulator hits
the target set. For simplicity, the number of steps taken in the

successful run is labelled as z1, and the rest are denoted by zj.

If N is small, then there is typically a small number of resets

before the accumulator gains all components, which corre-

sponds to each zj being comparable in magnitude to z in the

summations in equation (2.10). But if N is large, then there is

typically a large number of resets before the accumulator

gains all components, which corresponds to having zj� z
for all j in the summations in equation (2.10). In this case, the

total number of steps, Z, is the sum of many independent

and identically distributed random variables.

To provide a sense of how good of an estimator E[Z] is for the

variable Z, we look at its concentration ~Z ¼ Z=E[Z]. Denotem as

the average number of steps before an accumulator resets given

that the accumulator resets before gaining all N components.

Denotes2 as the variance in the number of steps before an accu-

mulator resets given that the accumulator resets before gaining

all N components. We have m ¼
P1

z¼1 zR(z) � 1=d and

s2 ¼ (
P1

z¼1 z2R(z))� m2 � (1� d)=d2. Since both m and s2 are



comparison of the model, approximation, and simulation
data for p = 0.01 and varying d

no. components N

m
ea

n 
fi

rs
t-

pa
ss

ag
e 

tim
e 

E
[Z

]

model
simulation
eqn (2.8)
eqn (2.9)

220

219

218

217

216

215

214

213

212

211

210

29

28

27

21 22 23 24 25 26 27 28

d = 0.015

d = 0.010

d = 0.005

Figure 3. For p ¼ 0.01 and d ¼ 0.005, d ¼ 0.01 and d ¼ 0.015, we plot
the exact form of E[Z ] for any value of N given by equation (2.5) (solid lines),
E[Z ] measured using a Monte Carlo simulation of the accumulation of com-
ponents (cross), the asymptotically exact form of E[Z ] given by equation (2.8)
(square) and the approximation for E[Z ] given by equation (2.9) (circle).
(Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180003

5

finite, the central limit theorem enables a simplification of

equation (2.10) for large values of N: we obtain the probability

density function for ~Z:

P(~Z ¼ ~z) � E[Z]
X1
i¼1

S(1� S)iffiffiffiffiffiffiffiffiffiffiffiffi
2pis2
p exp

�(E[Z]~z� im)2

2is2

 !
: ð2:11Þ

The moments of ~Z are directly computed from equation (2.11)

E[~Z
m

] �
ð1

0

d~z~zmP(~Z ¼ ~z) � m!

Since the corresponding moment-generating function is that of

the exponential distribution, it follows that Z is exponentially

distributed about E[Z]:

P(Z ¼ z) � 1

aNk exp � z
aNk

� �
:

For large N, the natural production of minimal evolvable proto-

cells via random assembly and repeated fusion is therefore

simply a Poisson process.
3. Discussion
It is noteworthy that E[Z], equation (2.5), provides an upper

bound on the time to construct a minimal evolvable protocell

for many natural variations of this process. There are many

ways in which the first-passage time can be shortened.

For instance, the expected time to reach the target set of N com-

ponents is reduced if cells divide (and retain some components)

instead of losing all components through death. Redundancy in

components, where a protocell might have one or more backup

copies of each component, can have a similar effect. Additionally,

random assembly does not necessarily take exponential time if

the components are not independently sampled. Yet, regardless

of the worst-case time complexity, we show that fusion helps in

reducing the hitting time. Our simple model is specified by only

three parameters. Our model is, therefore, robust for exploring

the time complexity of a myriad of compartmentalization

scenarios by simply tuning the values of p, d and N.

Doing so will help in understanding several biological

questions and relates our work to other studies that are inter-

ested in the timescale of evolutionary events. For instance,
Wilf & Ewens [54] arrive at exactly the same formula for d ¼

0 when looking for the time it takes for evolution (on a

smooth landscape with a single peak, hence d ¼ 0) to reach a

target set of genes. This analysis is also favourable to viewing

sex as the default biological state. Computational and

experimental analyses of sex suggest that it may make evol-

utionary search over a landscape more efficient [55–58]. Our

analysis adds that this advantage could be present, and aid,

in starting cellular replication itself. While biologists have con-

sidered the possibility of early sex before [40,59], it was soon

observed that parasitism could be a serious problem [30]. How-

ever, our exact asymptotic analysis instead suggests that sex is a

good strategy, even in the presence of parasites.

Oceanic currents in early earth could have brought toge-

ther primitive protocells with disparate components, which

subsequently merged and eventually spawned an evolvable

protocell. In this scenario, protocell formation and merging

act as a necessary bridge between physically and chemi-

cally heterogeneous prebiotic environments for biological

construction. Indeed, there is exciting, ongoing experimental

work on creating ‘self-sustaining’ protocells, which can

divide and subsequently restore their viable composition via

fusion for a few generations [60]. Similarly, recent experiments

have demonstrated predation-like behaviour and phagocytosis

in communities of semi-permeable colloidal objects which

encapsulate biological molecules [61,62]. As these mechanisms

mirror merging, they provide a potential platform where pro-

tocells with novel functionality can be searched for through

parallelization and random merging.

Our mathematical model is also appropriate for investi-

gating the biological activation of modern viruses. In

particular, our model captures a process known as multiplicity
reactivation. In this process, multiple non-functional, mutant

viruses of the same strain combine, thereby covering

each other’s loss-of-function mutations and producing a

functioning virus. Our analysis readily provides the expec-

ted number of such viral particles required that would

reactivate a virus (although in many cases N is too small for

the speed-up to be of interest). In a similar scenario, in multi-

compartment viruses, multiple distinct components need to

co-infect the same host in order to produce a new virion.

In numerous plant viruses, such as the genus Tymovirus, the

infection occurs when two or more functionally distinct virions

infect the same host [63,64]. The occurrence of this type of

combinatorial reproduction in many RNA viruses, which are

thought to be ancient, is consistent with the thesis that

primordial sex played an integral role in early life [65,66].

Research into minimal synthetic cells has shown that cells

with a few hundred genes are able to self-sustain in complex

media [67–69]. This suggests that even for low values of p, in

this case the probability of required genes versus random

protein-coding genes, novel self-sustaining cells (and poss-

ibly viruses) could be produced, either in the laboratory or

in early life, by a feasible number of fusions. The feasibility

of finding novel viable combinations through a merging pro-

cess in the laboratory should also be of help in order to

understand the density of viable solutions within the fitness

landscape, a problem of interest in algorithmic perspectives

of evolution and origin of life [55,70,71].

We may never know with certainty what path has

resulted in the emergence of life on earth. There are likely

many possible paths to evolvability, none of which have

been fully delineated to this date. So far, virtually all
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models of protocells assumed a small initial set size, precisely

because co-occurrence of many components together is

unlikely. We show that even if the number of required com-

ponents N is large, there are tenable paths to construct such

an assembly. The merging mechanism is not as critical if N
is small, but in the presence of merging compartments we

are no longer restricted to this scenario. Here, we have

devised and analysed a model that captures a general set of

possibilities for an evolvable protocell to emerge. It is note-

worthy that our model remains agnostic about whether

template-directed replication or metabolism emerged first

and it can apply in both scenarios as well as different levels

of complexity (from chemicals to enzymes and genes) in

the underlying components.

To the best of our knowledge, our study is the first to pro-

vide a rigorous and quantitative blueprint for comparing the

plausibility of a subset of paths to life: those that involve

compartmentalization.
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Coexistence and error propagation in pre-biotic
vesicle models: a group selection approach.
J. Theor. Biol. 239, 247 – 256. (doi:10.1016/j.jtbi.
2005.08.039)

13. Hogeweg P, Takeuchi N. 2003 Multilevel selection in
models of prebiotic evolution: compartments and
spatial self-organization. Orig. Life. Evol. Biosph. 33,
375 – 403. (doi:10.1023/A:1025754907141)

14. Bernhardt HS. 2012 The RNA world hypothesis: the
worst theory of the early evolution of life (except
for all the others). Biol. Direct. 7, 23. (doi:10.1186/
1745-6150-7-23)

15. Attwater J, Wochner A, Holliger P. 2013 In-ice
evolution of RNA polymerase ribozyme activity. Nat.
Chem. 5, 1011 – 1018. (doi:10.1038/nchem.1781)

16. Lincoln TA, Joyce GF. 2009 Self-sustained replication
of an RNA enzyme. Science 323, 1229 – 1232.
(doi:10.1126/science.1167856)

17. Pross A, Pascal R. 2013 The origin of life: what we
know, what we can know and what we will never
know. Open Biol. 3, 120190. (doi:10.1098/rsob.
120190)

18. Higgs PG, Lehman N. 2015 The RNA world:
molecular cooperation at the origins of life. Nat.
Rev. Genet. 16, 7 – 17. (doi:10.1038/nrg3841)

19. McCollom TM, Ritter G, Simoneit BR. 1999 Lipid
synthesis under hydrothermal conditions by Fischer –
Tropsch-type reactions. Orig. Life. Evol. Biosph. 29,
153 – 166. (doi:10.1023/A:1006592502746)

20. Yuen G, Blair N, Des Marais DJ, Chang S. 1984
Carbon isotope composition of low molecular
weight hydrocarbons and monocarboxylic acids
from Murchison meteorite. Nature 307, 252 – 254.
(doi:10.1038/307252a0)
21. Lawless JG, Yuen GU. 1979 Quantification of
monocarboxylic acids in the Murchison
carbonaceous meteorite. Nature 282, 396 – 398.
(doi:10.1038/282396a0)

22. Deamer DW. 1985 Boundary structures are formed
by organic components of the Murchison
carbonaceous chondrite. Nature 317, 792 – 794.
(doi:10.1038/317792a0)
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