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Genetic study links components of the autonomous
nervous system to heart-rate profile during
exercise

Niek Verweij', Yordi J. van de Vegte! & Pim van der Harst® 23

Heart rate (HR) responds to exercise by increasing during exercise and recovering after
exercise. As such, HR is an important predictor of mortality that researchers believe is
modulated by the autonomic nervous system. However, the mechanistic basis underlying
inter-individual differences has yet to be explained. Here, we perform a large-scale genome-
wide analysis of HR increase and HR recovery in 58,818 UK Biobank individuals. Twenty-five
independent SNPs in 23 loci are identified to be associated (p < 8.3 x 10~?) with HR increase
or HR recovery. A total of 36 candidate causal genes are prioritized that are enriched for
pathways related to neuron biology. No evidence is found of a causal relationship with
mortality or cardiovascular diseases. However, a nominal association with parental lifespan
requires further study. In conclusion, the findings provide new biological and clinical insight
into the mechanistic underpinnings of HR response to exercise. The results also underscore
the role of the autonomous nervous system in HR recovery.
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hysical activity places an increased demand on a person’s

cardiovascular capabilities. This activity relies heavily on

cardiovascular health and regulation by the autonomic ner-
vous system'. Electrocardiograms (ECGs) of exercise tests are used
to determine cardiac fitness and function; they offer unique
insights into cardiac physiology compared to ECGs performed on
people at rest. The first data linking electrocardiographic changes
in response to exercise with mortality was presented in 1975. This
data indicated that a low-peak heart-rate (HR) response during
exercise was associated with an increased risk of cardiac death?. It
is now well accepted that chronotropic incompetence confers a
worse prognosis for cardiac mortality and events®. Increased HR
during exercise and HR recovery after exercise is specifically
associated with sudden cardiac death and all-cause mortality in
healthy individuals*~. Increased HR during these periods has been
observed in coronary and heart failure patients regardless of p-
blocker usage’~. The majority of previous studies focused on HR
recovery at 60 s, which is strongly heritable (at around 60%'). The
hypothesis linking HR recovery to mortality arose from work that
associated components of the autonomic nervous system with
sudden cardiac death!'!, as well as studies of decreased vagal
activity!>!13, McCrory et al'%. recently expanded on this topic by
adding additional evidence linking baroreceptor dysfunction with
mortality. The study also identified HR recovery in the first ten
seconds after an orthostatic challenge to be most predictive of
mortality. The cardiovascular system’s immediate response to
exercise is an increased HR that is attributable to a decrease in
vagal tone followed by an increase in sympathetic outflow and, to
some extent, circulating hormones!'>. The mechanism to reduce
HR after exercise follows the inverse mechanism, a gradient of
parasympathetic nervous system reactivation and sympathetic
withdrawal'®. The effect of this reactivation is believed to be
strongest in the first 30s after the termination of exercise'®,
However, the exact molecular mechanisms underlying inter-
individual differences in HR response to exercise, as defined by
HR increase and HR recovery, are unknown.

The UK Biobank includes a sub-cohort of 96,567 participants
who were invited for electrocardiographic exercise testing. This
cohort enabled the possibility to carry out in-depth genetic ana-
lyses of HR response to exercise for the first time. The goals of the
current study study are to (1) provide (shared) genetic heritability
estimates among variables of the HR profile during exercise; (2)
identify genetic variants and the underlying candidate causal
genes associated with HR increase and HR recovery at 10, 20, 30,
40, and 50s; and (3) obtain insights into pleiotropy and the
clinical consequences of HR increase and HR recovery. We
revealed extensive genetic pleiotropy among phenotypes of the
HR profile during exercise and find 23 significantly associated
genetic loci. No evidence for a causal relationship was found
between HR increase or HR recovery and parental lifespan or
disease outcomes. Nevertheless, the genetic loci provide support
for the hypothesis that the autonomous nervous system is a major
player in regulating HR recovery. Collectively, the results improve
our understanding of HR regulation in response to exercise from
a genetics perspective.

Results
Genetics of the HR profile during exercise. Participants from
the UK Biobank exercised for ~350 (+44.9) seconds; the mean
duration of the recovery phase was 52.6 (+1.7) seconds. Overall
characteristics are presented in Supplementary Table 1. All HR
phenotypes were normally distributed prior to rank-based inverse
normal transformation.

To gain insights into the correlations between phenotypes of
the HR profile during exercise, we first performed heritability
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analyses and genetic correlations across nine HR phenotypes: the
increase in HR from resting level to peak exercise level (HR
increase) and the decrease in rate from peak exercise level to the
level 10, 20, 30, 40, and 50 s after termination of exercise (HRR10-
HRR50). Resting HR and HR variability as defined by SDNN and
RMSSD were included for comparison. The highest heritability
estimates were observed for HR recovery and HR increase
(hagsnp = 0.22). HR variability was much less heritable (h,gsnp =
0.12 and 0.14 for SDNN and RMSSD) based on SNP heritability
estimates by BOLT-REML (Fig. 1). All of the HR variables were
highly correlated with each other (Fig. 1), though HR recovery
and HR increase were more strongly correlated with each other (r
=0.6-0.9) than with HR variability (r = 0.42-0.6) or resting HR
(r=—0.18-—0.37). The genotypic correlations were slightly
higher compared to the phenotypic correlations. All of the
heritabiéity and correlation estimates were highly significant (p <
1x107°).

Genome-wide association analyses were conducted for HR
increase and HRR10-HRR50. Twenty-three genomic loci defined
by 1MB at either side of the highest associated SNP were
significant, p < 8.3 x 107%, and are summarized in Table 1; Fig. 2
shows the Manhattan plot, visualizing the distribution of genetic
variants in the genome and Supplementary Data 1 provides a
more expanded summary of the results per individual HR-
phenotype. LD score regression!” on the genome-wide summary
statistics yielded intercepts that ranged between 1.004 (HRR10)
and 1.014 (HRR20), indicating that any inflation of genomic
control can be attributed to polygenicity rather than sources like
residual population stratification (Supplementary Fig. 1). Two
additional independent signals in two loci on chromosome 2 and
5 were confirmed by conditional analyses (Supplementary
Table 2). rs6488162 in SYTI0 was the most significant genetic
variant for all phenotypes (p = 3.1 x 1073 for HR increase, to p
=53 x107% for HRR10). Results of the sensitivity analyses are
presented in Supplementary Data 2 and indicate that the SNP
associations were not biased by participants receiving medication
or having heart disease diagnoses. Supplementary Fig. 2 illustrates
the regional association plots of each locus.

Insights into biology. A total of 36 candidate causal genes were
identified at the 23 loci. Twenty-seven genes were prioritized
based on proximity to the sentinel SNP, three genes were prior-
itized by coding variants in LD of R?>> 0.8 with a sentinel SNP
(summarized in Supplementary Data 3), 10 genes were prioritized
by eQTL analyses (tissue-specific eQTLs are shown in Supple-
mentary Data 4), and 11 genes were prioritized by long-range
interaction analyses in Hi-C data (listed in Supplementary
Table 3 and visualized in Supplementary Fig. 3). Multiple lines of
evidence may have prioritized a gene (indicated by the candidate
causal gene superscripts in Table 1), further prioritizing the most
likely candidate causal genes and mechanisms at each locus.
Pathway analyses were attempted with 'DEPICT" using default
settings (which uses all SNPs p<1x107°), a tool that can
prioritize genes, pathways, and tissues by using the genomic
region surrounding SNPs as input (please see Pers et al.'® for a
detailed description of the methods). However, no significant
pathways or tissues were identified after correcting for multiple
testing. Instead, GeneNetwork!? (http://129.125.135.180:8080/
GeneNetwork/pathway.html) was used; this method employed
the same underlying co-expression dataset (based on GEO data),
but allowed only the 36 candidate causal genes as input. The
candidate causal genes were enriched for terms related to neurons
and axons (‘axon guidance', 'meuron recognition' ‘peripheral
nervous system neuron development’, and 'synapse’) and gap
junctions (‘adherents junction organization' and 'gap junction’),
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Fig. 1 Shared genetic correlations and heritability estimates of the HR profile during exercise. Genetic correlations (shared heritability), are shown above
the diagonal, phenotypically observed correlations are below the diagonal. Heritability estimates (and standard errors) of each trait are between brackets at
the y-axis. All of the estimates shown here were highly significant (p <1078). Correlations are based on the residual variance after adjustments for age, sex
and BMI, exercise-specific variables and genetic-specific variables (only for the genetic correlations)

Table 1 List of 25 genome-wide significant SNPs in 23 loci that are associated with HR increase or HR recovery

CHR SNPs Position (hg19) EA(Freq)/NEA Beta SE p Candidate gene Primary Trait
1 rs11589125 31894396 T(0.06)/C 0.075 0.013 6.60x1079% SERINC2"C HRR50
1 rs272564 45012273 A(0.71)/C 0.046 0.007 1.40x10712 RNF220™h HRR50
1 rs61765646 72723211 A(0.19)/T 0.056 0.008 110x10~13 NEGR1" HRR10
2 rs1899492 60000304 T(0.47)/C 0.040 0.006 170x10~" Gene desert HRR40
2 rs17362588 179721046 G(0.92)/A 0.062 0.01 310 x1079° CCDC741"'C,TTNh HRR10
2 rs35596070 179759692 C(0.86)/A 0.060 0.008 4.20x1073  CCDCI41"<,TTNh HRR10
3 rs73043051 18883863 C(0.22)/T 0.041 0.007 7.80x1079% KCNH8" HRR50
3 rs34310778 74783408 C(0.43)/T 0.036 0.006 1.00x1079°% CNTN3"e HRR30
5 rs4836027 121866990 T(0.68)/C 0.050 0.006 170x10"" SNCAIP”,PRDI\/Ié”'h HRinc
5 rs151283 122446619 C(0.72)/A 0.042 0.007 160x1070  prRDME™ HRR50
6 rs2224202 102053814 A(0.19)/G 0.043 0.007 5.80x10°9% GRik2"h HRR20
7 rs2158712 26582733 A(0.52)/T 0.045 0.006 280x1071  skAp™h HRR10
7 rs180238 93550447 T(0.65)/C 0.043 0.006 220x10712 GNGI1" GNGT1™€ TFPI2"€ HRR40
7 rs3757868 100482720 G(0.82)/A 0.077 0.008 5.60x10-24 SRRT™E, ACHE™€ TRIP6S,C70rf43™€,UFSPT"  HRR40
7 rs1997571 116198621 A(0.58)/G 0.042 0.006 170x10712  CAvIhcavzneh HRR20
7 rs17168815 136624621 G(0.84)/T 0.062 0.008 110x10~™ CHRM2" HRR50
10 rs7072737 102556175 A(0.11)/G 0.079 0.009 110x107" PAX2" HRR40
n rs7130652 71984398 T(0.07)/G 0.076 0.011 3.40x10° " CLPB”'”,INPPLT”'e HRR10
12 rs4963772 24758480 A(0.15)/G 0.090 0.008 120x10728  BCATI HRR40
12 rs6488162 33593127 C(0.58)/T 0103 0.006 2.60x107%  SYTIO" ALGIO" HRR10
12 rs61928421 16227249 C(0.93)/T 0.090 0.012 430x10""  MEDI3L" HRR40
14 1517180489 72885471 C(0.14)/G 0.055 0.008 250x10~"  RGSE™ HRinc
15 rs12906962 95312071 T(0.67)/C 0.048 0.006 2.70x10~™  MCTP2" HRinc
19 rs12974440 5894386 G(0.92)/A 0.067 0.0  2.40x10710  FUT5", NDUFATI"® HRR10
19 rs12986417 30109533 G(0.65)/A 0.037 0.006 1.00x1079° POP4”,C79orf12” HRinc
HRinc HR increase, HRRx HR recovery at x seconds, CHR Chromosome, EA effect allele, NEA Non-effect allele, SE Standard error

" nearest gene or any other gene in 10 kb

€ coding variant gene

€ eQTL gene

h Hi-C long-range interaction gene

More detailed information can be found in Supplementary Table 2 and 3
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Fig. 2 Manhattan plot of the GWAS of HR increase and recovery. The smallest p-values per SNP across all of the six studied traits are shown, as depicted
on the y-axis, the x-axis shows their chromosomal (chr) positions. Red dots represent genome-wide significant loci (p < 8.3x10~°)

but also included 'catecholamine transport' and 'decreased
dopamine level, among others (Supplementary Data 5). In a
separate analysis based on the GTEx dataset, nerve tissue was also
highly enriched compared to other tissues (p <0.01, Supplemen-
tary Fig. 4).

Insights into pleiotropy and clinical relevance. To gain more
insight into the potential mediating mechanisms at the genetic
variant level, we looked up previously reported variants in the
literature and the GWAS catalog. Of the 25 independent SNPs,
eleven were in high LD (R? > 0.6) with previously identified SNPs
for resting HR**?! or HR variability?? (Supplementary Data 6). A
wider search in the GWAS catalog revealed that SNPs in high LD
(R%> 0.6) with rs61765646 (NEGRI) were previously associated
with obesity; 1517362588 (CCDCI141/TTN but not the indepen-
dent SNP rs35596070) and rs12906962 (MCTP2) with diastolic
blood pressure and rs7072737 (PAX2) with systolic blood pres-
sure; and rs4963772 (BCATI1) with PR interval and rs1997571
(CAVI) with atrial fibrillation and PR interval (Supplementary
Data 7). The majority, 15 of 23 loci, had not been previously
identified in any GWAS. PhenoScanner?? also indicated that HR-
profile SNPs had pleiotropic effects with resting HR, atrial
fibrillation, and other electrocardiographic traits (Supplementary
Data 8).

Because a large portion of the loci had already been reported
for their association with other HR phenotypes, we examined
SNP association with the different HR traits in the current study,
in order to disentangle the effects and identify SNPs that are
primarily driven by HR increase and HR recovery. Linear
regression analyses were performed across all associated SNPs
and traits. Associations were adjusted for (1) resting HR; (2)
resting HR and HR variability; and (3) resting HR, HR variability,
and HR increase. Figure 3 illustrates that rs17362588 (TTN/
CCDC141) is primarily associated with resting HR and highlights
the following loci for HR variability: rs17180489 (RGS6),
rs12974440 (NDUFAI1I), and to a lesser degree rs180238
(GNG11, GNGT1, and TFPI2) because the associations with HR
recovery and HR increase were diminished significantly with
additional adjustments of SDNN and RMSSD. The analyses also
indicated that rs272564 (RNF220), rs4836027 (SNCAIP/PRDM6),
154963772 (BCATI), rs12906962 (MCTP2), and rs12986417
(POP4) were primarily associated with HR increase following
additional adjustments for HR increase. In total, 16 SNPs
remained independently associated with HR recovery, including
the most significant locus SYT10. The association statistics used
to create Fig. 3 are available in Supplementary Data 9.
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To explore potential clinical relevance, polygenic scores were
constructed based on the genome-wide significant SNPs. The
primary outcome variable was parental age as proxy for
cardiovascular- and all-cause mortality'*?%. The choice of disease
outcomes and phenotypes was based on previous studies of HR
response to exercise in relation to ventricular arrhythmia (sudden
death), atrial fibrillation?’, diabetes?®, cancer?’, blood pressure!4,
reaction time, fluid intelligence?®, and depression®” were selected
based on their potential relationship with autonomic (dys)
function in general. A higher polygenic score was consistently
associated with increased parental age of death (p =5.5x 10~%).
On further inspection, a significant association was found with
father’s age of death (p =5.5x% 104 N=217,722), but not with
mother’s age of death (p=0.202, N=179,281). The association
with increased parental lifespan may hint at a potential
association with all-cause mortality, which was not significant
in the UK Biobank sample (HR = 0.924(0.055), p = 0.186, N yges
=10,717 (3.0%); cox survival model). However, statistical power
was limited compared to parental age of death.

The polygenic score was also strongly associated with lower
diastolic blood pressure (p=2.0x10"%°) and lower odds of
hypertension (p = 2.3 x 10~%). The association with hypertension
depended on diastolic blood pressure, as the association was
abolished after diastolic blood pressure was introduced into the
model. We hypothesized that the strong association of the
polygenic score with diastolic blood pressure may be due to
resting HR. This hypothesis was strengthened by the fact that (1)
resting HR had strong genetic correlations with HR increase and
HR recovery and (2) resting HR has a direct influence on diastolic
blood pressure via peripheral resistance. After resting HR was
adjusted for, the association with diastolic blood pressure was also
abolished (p=0.126). No convincing associations were found
between the polygenic score and atrial fibrillation, coronary artery
disease, ventricular arrhythmia, diabetes, or cancer. The results
are presented in Table 2; Supplementary Data 10 describes trait-
specific effects and Supplementary Fig. 5 describes statistical
power. To facilitate future studies, complete summary statistics of
all genetic variants and traits can be downloaded from https://doi.
org/10.17632/tg5tvgm436.1.

Discussion

In this large-scale genetic study of HR increase and HR recovery
in 58,818 participants, we identified 25 independent genome-wide
significant signals in 23 genetic loci. HR increase and HR recovery
were found to be highly heritable, and the majority of the loci
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Fig. 3 Pleiotropic effects of the 25 independent genetic signals on heart-rate (HR) phenotypes. Four heat plots depict Z-scores of each SNP association with
resting HR (RHR), HR variability (RMSSD and SDNN), HR increase (HRinc), or HR recovery (HRR10- 50) in 1 univariate and 3 multivariable models (as
described below each heat plot). Only Bonferonni p < 0.05 significant associations are shown, Z-scores were aligned to the allele that increases HR

recovery. Nearby genes are shown between brackets

were independently associated with HR recovery. The polygenic
score was not convincingly associated with mortality or disease.

The major finding was that a large number of candidate causal
genes are involved in neuron biology, particularly at loci that are
specific to HR recovery. This finding, together with our pathway
analyses, provides a new line of evidence that the autonomic
nervous system is a major player in the regulation of HR recovery.
HR response to exercise, and HR recovery in particular, is largely
dependent on parasympathetic reactivation and decrease of
sympathetic activity in a gradual manner. These processes are
orchestrated by neuronal signal transduction involving the brain
(central command), periphery (chemoreflex, baroreflex, and
exercise pressor reflex), adrenal medulla, and the actual nerves
connecting these components15 .

The most significantly associated variant, rs6488162 in SYT10,
encodes a Ca”t sensor Synaptotagmin 10 that triggers IGF-1
exocytosis, protecting neurons from degeneration®’. Other loci
include the ACHE gene, the function of which can be strongly
linked to neuronal function as it encodes the enzyme that cata-
lyzes the breakdown of acetylcholine. Neuronal Growth Regulator
1 (NEGRI) is essential for neuronal morphology. It has been
demonstrated in in vitro and in vivo experiments that NEGRI
overexpression and underexpression is closely associated with
number of synapses by regulating neurite outgrowth and den-
dritic spine development®!. GRIK2 (also named GluR6) encodes a
subunit of a kainite glutamate receptor that is broadly expressed
in the central nervous system, where it plays a major role in nerve
excitation®’.  CHRM2 encodes the muscarinic acetylcholine
receptor M2, which is the predominant form of muscarine cho-
linergic receptors in the heart. The receptor specifically initiates
negative chronotropic and inotropic effects upon binding with
acetylcholine released by the postganglionic parasympathetic
nerves®>, Hence, this gene corresponds well with results that
rs17168815 (near CHRM?2) is specifically associated with HR
recovery. The gene CI9orfl2 has an unknown function and is
thought to encode a mitochondrial protein, several reports focus
on mutations of CI9orfl2 causing neurodegeneration®!. The
function of MEDI3L is also unclear, but is believed to encode a
subunit that functions as a transcriptional coactivator for most

| (2018)9:898

RNA polymerase II-transcribed genes. In zebrafish, MEDI3L
knockdown causes abnormal effects on early migration of neural-
crest cells, resulting in improper development of branchyal and
pharyngeal arche, resembling key characteristics of MEDI3L
mutations in humans®>. MEDI3L mutations in humans are
associated with intellectual disabilities, developmental delay, and
craniofacial anomalies; these mutations also resemble other, more
common, neurodevelopmental disorders®®. KCNH8 encodes a
voltage-gated potassium channel that is primarilg expressed in
components of the human central nervous system>” and is part of
the Elk (ether-a-g-o go-like k) family of potassium channels that
regulates neuronal excitation®’3°. CNTN3 (contactin-3) is a gene
belonging to a group of glycosylphosphatidyl-anchored cell
adhesion molecules that is found predominantly in neurons and
is thought to be closely involved in the wiring of the nervous
system*4!. In light of these findings, even CCDCI41 and not
TTN (the main component of cardiac muscle) may be a plausible
candidate gene, as CCDCI4I plays a crucial role in neuronal
development*?. Data of tissues that are relevant for the (para-)
sympathetic nervous system of the heart are limited, which makes
it difficult to dissect molecular mechanisms. Future research
should pursue functional follow-up studies of the genetic loci
presented here, to pinpoint causal variants, genes, and biological
mechanisms underlying HR profile during exercise.

We observed that resting HR, HR variability, HR recovery, and
HR increase were highly correlated with each other on the genetic
and phenotypic levels. By jointly analyzing different HR traits
rather than treating them as separate entities, as has been done
traditionally, it was possible to obtain additional insights into the
mechanistic basis of HR phenotypes. On the phenotypic level,
insight into the genetic correlations helped us explain the strong
association that was observed between the polygenic score and
diastolic blood pressure. The association originated from resting
HR; this finding is more plausible since resting HR is directly
related to peripheral resistance. On the genetic variant level, we
observed a large number of HR-recovery-specific SNPs to have
neuronal genes as their candidate causal genes. Previous GWAS
of resting HR have found genes predominantly enriched for terms
related to cardiac structure?!, and a GWAS of HR variability
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Table 2 Association with clinical characteristics
Trait or disease Sample size (% cases) Effect size or odds ratio se / 95%ClI p-value
Anthropometric
Height (cm) 420,910 —0.1680 0.0612 0.006
Weight (kg) 420,697 —0.0644 0.1361 0.636
BMI (kg/mz) 420,623 0.0326 0.0459 0.477
Cardiovascular risk factors
DBP (mmHg) 421,799 —0.8240 0.0791 2.0%10725
SBP (mmHg) 421,797 0.0760 0.1560 0.626
Pulse pressure 421,797 0.9000 0.1140 3.0x1071
Mean arterial pressure 421,797 —0.5240 0.0969 6.4%x108
Hypertension 422,334(33.85%) 0.925 0.888-0.964 23%x1074
Coronary artery disease 422,334(7.48%) 1.022 0.950-1.100 0.554
Atrial fibrillation 422,334(3.71%) 1.071 0.969-1.184 0.178
Ventricular arrhythmia 422,334(0.56%) 0.868 0.674-1117 0.271
Diabetes Mellitus 422,334(7.04%) 1.072 0.996-1.155 0.064
Other
Cancer (malignant) 422,334(15.35%) 0.983 0.932-1.036 0.512
Depression 422,334(14.35%) 1.041 0.986-1.098 0.144
Reaction time (ms) 417,771 —0.7016 1.0544 0.506
Fluid intelligence score 105,348 —0.0645 0.0398 0.106
Parental lifespan 158,649 0.0792 0.0229 55x10~4
The effect of the polygenic score of heart-rate (HR) response to exercise on cardiovascular and non-cardiovascular phenotypes in the UK Biobank cohort was performed in participants that were not part
of the discovery GWAS. Effect sizes are shown as the incremental change in phenotype for continuous phenotypes or as odds ratio for binary traits, for one unit change in polygenic score. Every unit
change in polygenic risk corresponds to one standard deviation change in HR response to exercise. Supplementary Table 12 shows the effect estimates per phenotype of HR response

found that genes involved in the sinoatrial node were enriched??.
The sinoatrial node genes GNGI1 and RGS6 that have been both
previously associated with HR variability?? were chiefly associated
with HR variability in this study as well. This finding emphasizes
that it is important for follow-up studies to focus on extracting
more different HR phenotypes before, during, and after exercise.
These phenotypes should be jointly analyzed to further increase
the resolution of HR-specific SNP associations. Currently the
ability to replicate these findings in external cohorts is limited due
a lack of available data concerning both HR profile during
exercise and genetics. Opportunities for larger studies of HR
recovery and HR increase may occur in the future as more and
larger biobanks become available.

Observational studies have demonstrated strong associations of
HR recovery and HR increase with sudden cardiac death, all-cause
death, cardiovascular death®?%, and even cancer?’. These studies
all suggest that autonomic impairment, the imbalance of vagal and
adrenergic tone, increases susceptibility to diseases, mortality, and
life-threatening arrhythmias. In the current study, we observed that
a genetically increased HR recovery and HR increase was sig-
nificantly associated with higher parental age, but not with ven-
tricular arrhythmia, atrial fibrillation, or other diseases and
phenotypes. Since the polygenic risk score was not significantly
associated with mother’s age of death, we could not reliably
establish a true-positive association with parental age. Although,
the notion that life-threatening arrhythmia’s occur more often in
men than in women could explain this discrepancy®’. Regardless,
whether or not the association is a true-positive one, it is possible
to conclude from our results that HR response to exercise may not
be as important for the human lifespan as other more established
risk factors such as blood pressure, lipids, BMI, or educational
attainment*!, The association with parental age should be exam-
ined in follow-up studies with independent cohorts, but statistical
power may be difficult realize given the exceptionally large sample
size of this study. Future Mendelian randomization studies should
be conducted in even larger cohorts and with other disease out-
comes, such as fatal arrhythmias to provide a better understanding
of the clinical consequences.
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In conclusion, this is a well-powered genetic study of HR
recovery and HR increase; we identified 25 genetic signals in 23
loci to be genome-wide significantly associated. This study adds a
new line of evidence to the theory that components of the
autonomous nervous system are underlying inter-individual dif-
ferences in HR recovery.

Methods

Measurement of the HR profile and quality control. The UK Biobank is a cohort
of individuals with an age range of 40-69 registered with a general practitioner of
the UK National Health Service. In total 503,325 individuals were included and
provided informed consent between 2006 and 2010. The UK Biobank cohort study
was approved by the North West Multi-centre Research Ethics Committee
(reference number 06/MRE08/65). Detailed methods used by UK Biobank have
been described elsewhere®.

In total, 99,539 ECG exercise records were taken for 96,567 participants who
underwent a cardio assessment; 79,217 were performed during the baseline visit
(2006-2010), and 20,322 were performed at the second follow-up visit
(2012-2013). The participants were asked to sit on a stationary bike, start cycling
after 15s of rest, and then perform six minutes of physical activity, after which
exercise was terminated and participants sat down for about one minute without
cycling. The exercise protocol was adapted according to participants’ risk factors;
details can be found elsewhere?®. Participants were only included in the study if
they were allowed to cycle at 50% or 30% of their maximum workload (no risk to
minimum risk), as described further in the 'Statistical analyses (exclusions)' section.
The exercise was ended after participants reached a pre-set maximum HR level of
75% of their age-predicted maximum HR. The cardio assessment involved a 3 lead
(lead T, II, and III) ECG recording (AM-USB 6.5, Cardiosoft v6.51) at a frequency
of 500 Hz. The ECG was recorded using four electrodes placed on the right and left
antecubital fossa and wrist and stored in an xml-file of Cardiosoft.

Of all available ECG records, 77,190 contained full disclosure data that could be
used to detect R waves; other records contained an error relating to the ECG device
used ('Error reading file C:/DOCUME~1/UKBBUser/LOCALS~1/Temp/ONLZ2F.
tmp'). R waves were detected with the gqrs algorithm*” and further processed using
Construe*® (https://github.com/citiususc/construe) to detect individual Q-R-S
waves. Following international recommendations to obtain reliable RR intervals*’,
abnormal values (0.286-2 s) were removed. Additional outliers were removed using
the tsclean function, a part of R-package forecast v7.3 that incorporates the method
described by Chen and Liu® for automatic detection of outliers in time series. A
total of 2,804 ECGs were excluded due to excess noise (identified by determining
the standard deviation over a rolling standard deviation with a window length of
three beats over RR intervals per ECG per phase and removing the 98 percentile
of this distribution). In total we inspected about 10,000 RR interval profiles or
ECGs to evaluate the RR-interval detection and ensure quality control. For each
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ECG, we estimated the mean resting HR, standard deviation of RR intervals
(SDNN, log2 transformed), and root mean square of successive differences between
RR intervals (RMSSD, log2 transformed) from the RR intervals before exercise
started. HR increase was determined as the difference between peak HR during
exercise and resting HR. HR recovery was defined as the difference between
maximum HR during exercise and mean HR at 10 + 3, 20 + 3, 30 + 3, 40 +, and 50
+ 35 after exercise cessation (HRR10-HRR50). HR recovery at exactly one minute
was not available; only nine participants recovered after a duration >60s.
Observations of the second follow-up visits were used when no baseline
observation was available. Variables were inspected for normality, and participants
with extreme ECG exercise measurements (more than +5 standard deviations from
mean) were excluded on a per-phenotype basis.

By means of external validation, we estimated that resting HR, SDNN, and
RMSSD were highly consistent with previous GWAS estimates?"?2. To this end, we
performed linear regressions between the HR traits and their polygenic score
(please also see the "polygenic score' method section). The beta coefficients (f8) of
resting HR (B = 1.085, se = 0.029, p =3 x 1073%%), SDNN (B = 1.145, se = 0.051,
p=1x107198) and RMSSD (= 1.0816, se = 0.043, p = 2 x 10~ 13%) was close to 1
and highly significant.

For the current analyses, HR phenotypes were rank-based inverse normal
transformed to increase the power to detect low-frequency variants and allow for
comparisons of beta coefficients between traits. Source code, example data, and
further descriptions of the methods are available at https://github.com/niekverw/E-
ECG.

Individual data on disease prevalence and incidence were obtained from the
Assessment Centre in-patient health episode statistics (HES) and self-reports
during any of the visits obtained through questionnaires and nurse-interviews, as
described previously’!. Mothers, fathers, and parental age of death were defined
according to Pilling et al.’s** study; in short, participants aged between 55-70 years
were included, only if fathers died at >46 years of age or mothers died at 55 years
of age. If an age of death was missing, questionnaires of follow-up visits were used
where available. The lifespan of mothers and fathers were combined into a single
normalized parental lifespan. Parental lifespan, as a proxy for mortality, was
defined as the primary outcome variable.

Genotyping and imputation. Genotyping, quality control, and imputation to three
reference panels (HRC v1.1,1000 genome and UK10K) was performed by The
Wellcome Trust Centre for Human Genetics, as described in detail elsewhere®2.
Sample outliers (based on heterozygosity or missingness) were excluded, and 373
participants were excluded on the basis of gender mismatches. The analyses were
restricted to SNPs of the HRC v1.1 imputation panel. Post-GWAS analyses were
conducted using SNPs with a minor allele frequency greater than 1% and an
imputation quality score of more than 0.3. Summary statistics deposited online will
include all SNPs.

Statistical analysis. Regression analyses of resting HR, SDNN, and RMSSD were
adjusted for gender, age, gender-age interaction, body mass index (BMI),
BMI*BMYI, the first 30 principal components, and genotyping chip (Affymetrix UK
Biobank Axiom or Affymetrix UK BiLEVE Axiom array). To fully account for
aerobic exercise capacity in HR increase and HR recovery, the model also included
exercise duration, exercise program (30% or 50% maximum load), maximum
workload achieved, and the interaction between exercise program and maximum
workload achieved.

Participants were excluded if they stopped exercising earlier than planned,
experienced chest-pain or other discomfort, were at medium-to-high
cardiovascular risk*® at the time of the test, or terminated exercise for unknown
reasons. In a post-hoc analysis, the population was stratified by participants that
reported taking sotalol medication, beta-blockers, anti-depressants, atropine,
glycosides or other anti-cholinergic drugs, or were previously diagnosed with
myocardial infarction, supraventricular tachycardia, bundle branch block, heart
failure, cardiomyopathy, or previously had a pacemaker or ICD implant. In a post-
hoc sensitivity analysis, the differences in beta estimates in participants with and
without cardiovascular disease or HR-altering medication were assessed using a
Chow test.

In total, 58,818 participants were included in the GWAS. The genome-wide
association study and heritability analyses were performed using BOLT-LMM>?
and BOLT-REML®, respectively. A conjugate gradient-based iterative framework
for fast mixed-model computations was employed to accurately account for
population structure and relatedness; additive effects were assumed. The BOLT
software was used with 509,255 genotyped SNPs that were extracted from the final
imputation set (to ensure a 100% call rate per SNP). After pruning (R? > 0.5, using
plink ‘--indep-pairwise 50 5 0.5), LD scores also used by BOLT, were estimated
from 2,000 randomly selected UK Biobank participants (who were selected after
sample exclusions based on relatedness, missingness, and heterozygosity). To
control for relatedness among participants in linear logistic, or cox regression
analyses, we used cluster-robust standard errors with genetic family IDs as clusters.
A family ID was given to individuals belonging together based on 3'd-degree or
closer as indicated by the kinship matrix, which was provided by UK Biobank
(kinship coefficient > 0.0442). All statistical analyses other than the genome-wide
analysis were carried out using R v3.3.2 or STATA/SE release 13.
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Since the current study is by far the largest population-based study of
electrocardiographic exercise tests, independent cohorts that matched this study in
size and availability of variables (specific HR response variables and genetics) were
unavailable for replication purposes. Therefore, a conservative genome-wide
significant threshold of p< 8.3 x 1072 was adopted to account for six independent
traits, in accordance with similar multi-phenotype studies of this scale>>~°

Variants were considered to be independent if the pairwise LD (R?) was less
than 0.01. A locus was defined as the highest associated independent SNP +/—
1IMB. The strongest associated variant within a locus was assigned the sentinel
SNP. If there was evidence for multiple independent SNPs in one locus based on
LD, it was confirmed by using linear regression and adjusting for the sentinel SNP.

Pleiotropy analyses. The GWAS catalog database (https://www.ebi.ac.uk/gwas/)
was queried by searching for SNPs in a 1MB distance of the SNPs found in this
study. LD was determined by calculating the R? and D’ in the UK Biobank between
the GWAS catalog SNPs and the SNPs found in this study. In addition we
examined genome-wide summary statistics for 699 traits using PhenoScanner
(v1.1, http://www.ner.medschl.cam.ac.uk/phenoscanner). PhenoScanner was used
to cross-reference HRR associated SNPs for their association with a broad range of
phenotypes regardless of genome-wide significance.

To gain insights into pleiotropy among HR variables, we performed linear
regression analyses for all significantly associated SNPs with resting HR, HR
variability (SDNN and RMSSD), HR increase, and HR recovery. The Z-scores,
which were aligned to the HR recovery increasing allele, were visualized in a heat
plot.

23

Polygenic score. Polygenic scores of HR increase and HR recovery were con-
structed by calculating the sum of the number of alleles that increased HR increase
or HR recovery weighted by the corresponding beta coefficients. The primary
polygenic score was based on all primary and secondary SNPs that were genome-
wide significantly associated. The relationships between the polygenic score and
clinical phenotypes were tested in 422,947 individuals who were not part of the
discovery GWAS, using linear, logistic, and cox regression analyses. The discovery
sample was excluded from this analysis to avoid any potential bias or reverse
confounding. The statistical power for a case-control Mendelian randomization in
this study (N =422,334) was calculated at « = 0.05 using the sample size, pro-
portion of cases, strength of the polygenic risk score, and the expected causal
hazards ratio®.

Functional variants and candidate causal genes. To search for evidence of the
functional effects of HR profile associated SNPs, we used multiple QTL databases
including the following: Stockholm-Tartu Atherosclerosis Reverse Network Engi-
neering Task (STARNET)®!, GTEX, version 6°2, cis-eQTL datasets of Blood®*~%,
and cis-meQTLs®®. Only eQTLS/meQTLs that achieved p <1 x 107 and were in
LD (R?>0.8) with the queried SNP were considered significant.

Long-range chromatin interactions with the 1MB region at either side of a SNP
were examined and visualized using HUGin®’. Only genes that achieved a
Bonferonni significant association and demonstrated a clear pattern of interaction
between the queried SNP and the promoter region were prioritized.

For all primary and secondary SNPs that were genome-wide significantly
associated, candidate causal genes were prioritized as follows: a) by proximity, the
nearest gene or any gene within 10 kb; b) by protein-coding gene variants in LD
(R%>0.8); ¢) by eQTL analysis (described above); and d) by long-range chromatin
interaction analysis (described above).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request. The de novo GWAS
analysis (complete summary statistics of all genetic variants and traits) have been
deposited in Mendeley with the identifier 'doi:10.17632/tg5tvgm436.1'".
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