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EEEEE Amendments from Version 1

The new version of this manuscript reflects changes made to the
exprso package to improve the ease of data import (via the new
exprso function) and the extension of all methods to handle the
prediction of continuous outcomes, and revises Figure 1.

See referee reports

Introduction

Supervised machine learning has an increasingly important role
in biological studies. However, the sheer complexity of machine
learning pipelines poses a significant barrier to expert biologists
unfamiliar with the intricacies of machine learning. Moreover,
many biologists lack the time or technical skills necessary to
establish their own pipelines. Here, we discuss the exprso
package, a framework for the rapid implementation of high-
throughput machine learning, tailored specifically for use with
high-dimensional data. As such, this package aims to empower
investigators to execute state-of-the-art binary and multi-class
classification, as well as regression, with minimal programming
experience necessary.

Although R offers a tremendous number of high-quality machine
learning packages, there exists only a handful of fully integrated
machine learning suites for R. Of these, we recognize here
the caret package which offers an expansive toolkit for both
classification and regression analyses'. Otherwise, we acknowl-
edge the Riweka package which provides an API to the popular
Weka machine learning suite, originally written in Java’. While
these packages have a vast repertoire of functionality, we believe
the exprso package has some advantages.

First, this package employs an object-oriented design that
makes the software intuitive to lay programmers. In place of
a few, elaborate functions that offer power at the expense of
convenience, this package makes use of more, simpler functions
whereby each constituent event has its own method that users
can combine in tandem to create their own custom analytical
pipeline. Second, this package contains single functions that
execute elaborate high-throughput machine learning pipe-
lines. These, coupled with special argument handlers, manage
sophisticated pipelines such as high-throughput parameter grid-
searching, Monte Carlo cross-validation’, and nested cross-
validation®. Moreover, users can embed these high-throughput
modules (e.g., parameter grid-searching) within other mod-
ules (e.g., Monte Carlo cross-validation), allowing for infinite
possibility. In addition, this package provides an automated way to
build ensembles from the results of these high-throughput
modules.

In addition, this package facilitates multi-class classification by
generalizing binary classification methods to a multi-class context.
Specifically, this package automatically executes 1-vs-all classifica-
tion and prediction whenever working with a dataset that contains
multiple class labels. Moreover, this package provides a specialized
high-throughput module for 1-vs-all classification with individual
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1-vs-all feature selection, an alternative to conventional multi-
class classification that has been reported to improve results (at
least in the setting of 1-vs-1 multi-class support vector machines)’.
The exprso package also supports the prediction of continuous
outcomes.

While we acknowledge that premier machine learning suites,
like caret, may surpass our package in the breadth of their
functionality, we do not intend to replace these tools. Rather,
we developed exprso as an adjunct, or alternative, tailored spe-
cifically to those with limited programming experience, especially
biologists working with high-dimensional data. That said, we hope
that even some expert programmers find value in our software.

Methods

Implementation

This package uses an object-oriented framework for machine
learning. In this paradigm, every unique task, such as data
splitting (i.e., creating the training and validation sets), feature
selection, and model construction, has its own associated function,
called a method. These methods typically work as wrappers
for other R functions, structured so that the objects returned
by one method will feed seamlessly into the next method.

In other words, each method represents one of a number of
analytical modules that provides the user with stackable and
interchangeable data processing tools. Examples of these meth-
ods include wrappers for popular feature selection methods (e.g.,
analysis of variance (ANOVA), recursive feature elimination®’,
empiric Bayes statistic', minimum redundancy maximum
relevancy (mRMR)’, and more) as well as numerous models
(e.g., support vector machines (SVM)'", neural networks'!, deep
neural networks'”, random forests'’, and more).

We have adopted a nomenclature to help organize the methods
available in this package. In this scheme, most functions have
a few letters in the beginning of their name to designate their
general utility. Below, we include a brief description of these
function prefixes along with a flow diagram of the available
methods.

® array: Modules that import data stored as a
data.frame, ExpressionSet object, or local text
file. Alternatively, the exprso function imports data in
x, y format (recommended for most users).

® mod: Modules that modify the imported data prior to
building models.

¢ split: Modules that split these data into training and
validation (or test) sets.

® fs: Modules that perform feature selection.
®  build: Modules that build models and ensembles.
®  predict: Modules that deploy models and ensembles.

® cale: Modules that calculate model performance,
including area under the receiver operating characteristic
(ROC) curve (AUC).

Page 3 of 11



F1000Research 2017, 5:2588 Last updated: 28 FEB 2018

Data from NCBI GEO

Data from local file

Data from R matrix

[GSEzeSet - GEOquery)

GDS2eSet

exprso

ExprsArray object

modFilter

arrayExprs

modTransform

modNormalize

modSubset

v

[splitStratify [splitSampIe]

N

plMonteCarlo |« returns 2x ExprsArray objects

calcMonteCarlo piNested A/A/ \
fsPrcomp @

[fsMrmre] [fsStats )

calcNested
calls V times... /

calls B times...—p>| plGrid |« returns ExprsArray object

calls G times... plcv
returns ExprsPipeline object callsiV t?j"‘

[pipeUnboot) [pipeFilter] [pipeSubset) (buildNB] (buiIdLDAJ [buiIdSVM] @uildANNj
N X

buildEnsemble |« returns ExprsModel object

returns ExprsEnsemble P predict

returns ExprsPredict object

calcStats

Figure 1. A directed graph of all modules included in the exprso package and how they might relate to each other in practice. Elements
colored grey exist outside of this package and instead refer to natively compatible components from the GEOgquery'® and Biobase'®
packages. Elements colored black indicate possible data sources.

® pl: Modules that manage pipelines, including high- We refer the reader to the package vignette, “An Introduction to
throughput parameter grid-searches, Monte Carlo the exprso Package,” hosted with the package on the Compre-

cross-validation, and nested cross-validation. hensive R Archive Network (CRAN), for a detailed description

®  pipe: Modules that filter the pipeline results. of the functions available from this package'“.
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Operation

Specific computer hardware requirements will depend on the size
of the dataset under study and the functions used. For the most
part, however, a standard laptop computer with the latest version of
R installed will handle most applications of the exprso package.

Use cases

To showcase this package, we make use of the publicly available
hallmark Golub 1999 dataset to differentiate (i.e., classify)
acute lymphocytic leukemia (ALL) from acute myelogenous
leukemia (AML) based on gene expression as measured by
microarray technology'’. We begin by importing this dataset as
an ExpressionSet object from the package GolubEsets
(version 1.16.0)"%. Then, using the arrayExprs function, we
load the ExpressionSet object into exprso. Note that,
alternatively, one could use the exprso function to import the
data in x, y format (recommended for most users).

Next, using the modFilter, modTransform, and modNormalize
methods, we threshold filter, log2 transform, and standardize
the data, respectively, reproducing the pre-processing steps
taken by the original investigators'”. To keep the code clear
and concise, we make use of the %>% function notation
from the magrittr package”. In short, this function
passes the result from the previous function call to the first
argument of the next function, known as piping.

library (exprso)
library (golubEsets)
library (magrittr)
data (Golub_Merge)
array <-
arrayExprs (Golub Merge,
colBy = "ALL.AML",
include = 1list("ALL","AML"))%$>%
modFilter (20, 16000, 500, 5) %>%
modTransform %>%
modNormalize

Then, using the splitSample method, one of the split
methods shown in the above diagram, we partition the data
into a training and a test set through random sampling without
replacement. Next, we perform a series of feature selection
methods on the extracted training set. Through the f£s modules
fsStats and fsPrcomp, we pass the top 50 features as selected
by the Student’s t-test through dimension reduction by principal
components analysis (PCA).

splitSets <- splitSample (array, percent.include = 67)
array.fs <-

trainingSet (splitSets) $%$>%

fsStats (how = "t.test") %>%

fsPrcomp (top = 50)

With feature selection complete, we can build the classifier
model. For this example, we use the buildSVM method to train
a linear kernel support vector machine (SVM) (with default
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parameters) using the top 5 principal components. Then, we
deploy the trained machine on the test set from above. Note that,
by design, each feature selection event, including the rules for
dimension reduction by PCA, gets passed along automatically at
every step up until model deployment. This ensures that the test
set always undergoes the same feature selection history as the
training set. The calcStats function allows us to calculate
classifier performance as sensitivity, specificity, accuracy, or area
under the curve (AUC)*"-,

pred <-
array.fs %>%
buildSVM(top = 5, kernel = "linear") $>%
predict (testSet (splitSets))

calcStats (pred)

When constructing a model using a build module, we can only
specify one set of parameters at a time. However, investigators
often want to test models across a vast range of parameters.
For this reason, we provide methods like plGrid to automate
high-throughput parameter grid-searches. These methods not
only wrap model construction, but also model deployment. In
addition, they accept a fold argument to toggle leave-one-out
or v-fold cross-validation.

Below, we show a simple example of parameter grid-searching,
whereby the top 3, 5, and 10 principal components, as estab-
lished above, get used to construct linear and radial kernel
SVMs with costs of 1, 101, and 1001. In addition, we calculate a
(biased) 10-fold cross-validation accuracy to help guide our
choice of the final model parameters. (Note that we call this
accuracy biased because we are performing cross-validation on a
dataset that has already undergone feature selection. Although
this approach gives a poor assessment of absolute classifier
performance”, it may still have value in helping to guide
parameter selection in a statistically valid manner. As an alternative
to this biased cross-validation accuracy, users can instead call the
plNested method in which feature selection is performed anew
with each data split that occurs during the leave-one-out or v-fold
cross-validation.)

pl <-
plGrid(array.fs, testSet(splitSets),
top = ¢(3, 5, 10),
how = "buildsvM",
kernel = c¢("linear", "radial"),
cost = ¢(1, 101, 1001),

fold = 10)

Finally, we show an example for the pl1MonteCarlo method,
an implementation of Monte Carlo cross-validation. Compared
to the plGrid method which iteratively builds and deploys
models on a validation (or test) set, plMonteCarlo wraps
multiple iterations of data splitting, feature selection, and param-
eter grid-searching. The final result therefore contains a summary
of the model performances as measured across any number of
bootstraps carved out from the initial dataset. Argument handler

Page 5 of 11



functions help organize the arguments supplied to the split-
ting, feature selection, and high-throughput methods of the
plMonteCarlo method call. (Note that when using the Monte
Carlo cross-validation method (or any of the other p1 modules),
the user may iterate over any build method provided by exprso,
not only buildsvM. This includes the buildDNN method for
deep neural networks as implemented via h20'’. Also note that
the user can embed other cross-validation methods, such as
another Monte Carlo or nested method, within the cross-validation
method call, allowing for endless combinatory possibility.)

In the first section of the code below, we define the argument
handler functions for the plMonteCarlo call. As suggested by
their names, the ctr1SplitSet, ctrlFeatureSelect, and
ctrlGridSearch handlers manage arguments to data splitting,
feature selection, and high-throughput grid-searching, respectively.
In this example, we set up arguments to split the unaltered
training set through random sampling with replacement, perform
the two-step feature selection process from above, and run
a high-throughput parameter grid-search with biased cross-
validation. The unaltered dataset is processed this way 10 times,
as directed by argument B.

ss <-
ctrlSplitSet (func = "splitSample",
percent.include = 67,
replace = TRUE)
fs <-
list (ctrlFeatureSelect (func = "fsStats",
how = "t.test"),
ctrlFeatureSelect (func = "fsPrcomp",
top = 50))
gs <-
ctrlGridSearch (func = "plGrid",
top = ¢(3, 5, 10),
how = "buildsSvM",
kernel = c¢("linear", "radial"),
cost = ¢(1, 101, 1001),
fold = 10)
boot <-
plMonteCarlo (trainingSet (splitSets),
B = 10,
ctrlSS = ss,
ctrlFS = fs,
ctrlGS = gs)

Optionally, one can use these results to build an ensemble of the
best models from each bootstrap, then deploy that censemble
on the withheld test set. Analogous to how random forests will
deploy an ensemble of decision trees™, this method, which we dub
“random plains”, will deploy an ensemble of SVMs.
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ens <- buildEnsemble (boot, colBy = "valid. acc", top =1)
pred <- predict (ens, testSet (splitSets))

The above procedure, including building and deploying ensem-
bles, also works for multi-class classification and continuous
outcome prediction. We refer the reader to the package vignettes,
“An Introduction to the exprso Package” and “Advanced
Topics for the exprso Package”, both hosted with the
package on the Comprehensive R Archive Network (CRAN), for

a detailed description of all methods included in this package'.

Summary

Here we introduce the R package exprso, a machine learning
suite tailored specifically to working with high-dimensional data.
Unlike other machine learning suites, we have prioritized sim-
plicity of use over expansiveness. As such, exprso provides a
fully interchangeable and modular programming interface that
allows for the rapid implementation of classification and regres-
sion pipelines. We have included in this framework functions for
executing some of most popular feature selection methods and
machine learning algorithms. In addition, exprso also contains
a number of modules that perform high-throughput parameter
grid-searching in conjunction with sophisticated cross-validation
schemes. Owing to its ease-of-use and extensive documentation,
we hope exprso will serve as a helpful resource, especially to
scientific investigators with limited prior programming experience.

Software availability
Software available from: http://cran.r-project.org/web/packages/
exprso/

Latest source code: http://github.com/tpg/exprso

Archived source code as at time of publication: http:/dx.doi.
org/10.5281/zenodo.1069113%

Software license: GNU General Public License, version 2

Author contributions

TQ designed and implemented the tool, applied the tool to the use
case, and drafted the article. DT and SG helped design the tool and
drafted the article. DT contributed code and performed extensive
beta testing.

Competing interests
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The authors addressed my comments in their new manuscript and software versions.
In particular, the program seems more convenient in its current state, and it is also under continuous
development.

Competing Interests: No competing interests were disclosed.
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The authors present a new tool integrating established algorithms into one R package. This tool is
intended to provide access to state-of-the-art statistical analysis to users with limited programming
experience. As the manuscript is rather a package vignette than an independent article, | focus my review
mainly on the software and usability.

In general, the intention of providing comprehensive analysis options for non-experts is desirable,
however a bit overachieving. In particular, | have several years of programming experience in R, but | was
not able to apply the presented methods to another (multiclass) data with acceptable effort of time.
Non-expert programmers, as biologists or doctors, also will not be able to correctly use the software in its
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| therefore recommend extensive improvement of usability, user guidance and error feedback. | also
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Particular comments:

® The arrayExps-function should accept also standard matrix containing expression values, the
groups may then be given as character vector.
® Handling of most functions can be improved by providing standard parameter values, e.g:
. in arrayExps (may simply include all groups)
. percent.include in splitSampe (66%)
3. and soon
® Help the users to find errors in their function calls by giving appropriate warning/error messages.
E.g. “fsStats cannot be applied in multi-class studies”. No non-programmer will know what an
“inherited method” is.
® Addressing the same point: fSANOVA returned with an error not clear to me (my data includes 4
groups):
"contrasts can be applied only to factors with 2 or more levels"
® | found no information about this in the help file of the fs-methods. In general, documentation
should be split into one individual file for each function.
® |n the manuscript and the package vignette, the authors provide an overview figure of all functions
implemented in the package. | suggest revision of this figure: a more systematic flowchart layout of
the functions graph would help to find the starting point (GEO, local file, R matrix) and to follow the
analysis workflow. Top-left part of the figure is not clear to me.

N —

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Thomas Quinn, Deakin University, Australia

Dear Henry,

Thank you so much for taking the time to perform a detailed and critical review of the software. |
regret that professional obligations have delayed me from addressing your feedback in a timely
manner. However, | am pleased to say that | have heavily revised the exprso package,
incorporating most, if not all, of your suggestions.

Key changes include:

* Easier data import with the “exprso’ function which imports data in x, y format

* Software now supports continuous outcome prediction (when importing data via “exprso’)

* More default values (e.g., split modules) to simplify user experience

* Created custom errors for every split, feature selection, build function. Most other functions now
have custom errors as well

* Documentation is split up by unique function. ?mod, ?split, ?fs, ?build, etc. all open a table of
contents that overviews the unique functions available

* Figure 1 simplified with data sources clearly labeled in black

* Manuscript adjusted to reflect other changes
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Also, you should not encounter any error with mutli-class classification when importing data using
the new “exprso’ function.

(PS: | am aware of a trivial warning in this version that is triggered by predict. It is already fixed in
the developmental branch on GitHub).

Cheers,
Thom

Competing Interests: No competing interests were disclosed.
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Dariusz Plewczynski !, Julian Zubek 2
1 Centre of New Technologies, University of Warsaw, Warsaw, Poland
2 Center of New Technologies, University of Warsaw, Warsaw, Poland

This is a short software tool article presenting a new R package for implementing machine learning
pipelines. According to the authors it is targeted specifically at non-expert programmers analyzing
high-dimensional biological data. The article briefly describes design goals and implementation details of
the package, and then provides an example of building full machine learning pipeline for well-known
microarray data set.

The main contribution of this work lies in the prepared software and not in the accompanying manuscript.
Because of this in the article there are no clear hypotheses nor conclusions. The software package does
not provide any novel algorithms or functionalities. It is conceived as a wrapper which should make
existing methods more accessible. This goal is of practical rather than scientific nature. Ultimately, the
usefulness of the package can only be confirmed by its wider adoption by the users. This situation makes
it hard to write a conclusive review.

| agree with the motivation behind this software. R package infrastructure can be indeed confusing and it
is notoriously hard to navigate through it for a beginner programmer. | find the interface adopted by exprso
package relatively clean and unambiguous. The way the evaluation methods are implemented is
consistent with best machine learning practices. Eventual success of this package depends on how well it
will be integrated with other popular packages. | hope that the authors will have the resources for further
development of exprso.

Below | present more detailed comments for the authors:

® caretis mentioned as the R package with similar goals to exprso. | would find a more detailed
comparison between these two package useful, both in terms of general design and specific use
cases.

® |tis commendable when newly created packages integrate with existing infrastructure. As |
understand, exprso has some limited integration with GEOquery and Biobase packages allowing
easy data import. However, after data is loaded all operations use special ExprsArray objects,
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distinct from native R types such as DataFrame or Matrix. | understand this design choice, but |
have to note that it limits interoperability. Should the additional processing in the middle of exprso
pipeline be required, data needs to be converted between formats.

® | find the design in which transformations applied on the training set are automatically applied on
the testing set controversial. It obscures the pipeline and may not be intuitive for beginner
programmers. Moreover, sometimes transformations of the testing set differ slightly from the
transformations of the training set.

® |tis not obvious to me why simple train-test split is implemented as "split" module and
cross-validation as "pl" module. There are not very much different. The way cross-validation is
currently implemented does not allow detailed control over individual folds, which is sometimes
useful.

Competing Interests: No competing interests were disclosed.
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