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Abstract

OBJECTIVE—To determine if the seasonality of surgical site infections (SSIs) may be explained 

by changes in temperature.

DESIGN—Retrospective cohort analysis.

SETTING—The National Inpatient Sample.

PATIENTS—All hospital discharges with a primary diagnosis of SSI from 1998–2011 served as 

cases. Discharges with a primary or secondary diagnosis of specific surgeries commonly 

associated with SSIs from the previous and current month served as our “at risk” cohort.

METHODS—We modeled the national monthly count of SSI cases both nationally and stratified 

by region, sex, age, and type of institution. We used data from the National Climatic Data Center 

to estimate the monthly average temperature for all hospital locations. We modeled the odds of 

having a primary diagnosis of SSI as a function of demographics, payer, location, patient severity, 

admission month, year and the average temperature in the month of admission.

RESULTS—SSI incidence is highly seasonal, with the highest SSI incidence in August and the 

lowest in January. Over the study period, there were 26.5% more cases in August than in January 

(95% CI: [23.3, 29.7]). Controlling for demographic and hospital-level characteristics, the odds of 

a primary SSI admission increase by roughly 2.1% per 5°F increase in the average monthly 

temperature. Specifically, the highest temperature group, 90°F+, was associated with an increase 
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in the odds of an SSI admission of 28.9% (95% CI: [20.2–38.3]) compared to temperatures less 

than 40°F.

CONCLUSIONS—At population level, SSI risk is highly seasonal and associated with warmer 

weather.

INTRODUCTION

Surgical site infections (SSIs) are among the most common healthcare associated 

infections1–3 and represent an important cause of morbidity following surgeries.4,5 SSIs 

result in increased use of antimicrobials,6 increased lengths of hospital stay,7,8 and increased 

rates of mortality.8,9 They are also a leading cause of hospital readmissions8,10,11 and 

contributes to excess healthcare costs.4,5,7,11

Reports of SSI rates typically vary from 2–5%2 but lower and higher rates have been 

reported.4,5 SSI rates also vary across different procedures. Surgeries following trauma and 

some procedures (e.g., colorectal surgeries) are much more likely to generate an SSI.1–3,12 

At the patient level, risk factors for SSIs include smoking13,14, diabetes14,15, obesity16, 

increasing age14,17 and poor nutrition.18 In addition to individual and procedure-related risk 

factors for SSIs, environmental-level risk factors may also exist. At the institutional level, 

the volume of procedures,19,20 or institution size21 may increase SSI risk. In addition, other 

environmental-level risk factors may also exist. For example, some studies have 

demonstrated an increased incidence of SSIs for surgeries performed during summer 

months.12,22–24

To date, most reports regarding the seasonality of SSIs are based on investigations in single 

centers, specific procedures (e.g., spinal surgeries), or specific geographic regions. 

Furthermore, these specific investigations do not all use the proper time series methods for 

analyzing auto-correlated data, and do not incorporate local weather patterns across large 

regions to determine how much of SSI seasonality can be explained by weather effects. The 

first objective of this study is to determine if, and to what extent, the incidence of SSIs is 

seasonal using a large, population-based, national sample of hospitalizations. The second 

objective is to determine to what extent seasonality in the incidence of SSIs can be explained 

by local weather conditions.

METHODS

Data extraction

All discharge data were extracted from the Nationwide Inpatient Sample (NIS), the largest 

all-payer database of hospital discharges in the USA. The database is maintained as part of 

the Healthcare Cost and Utilization Project (HCUP) by the Agency for Healthcare Research 

and Quality, and contains data from a 20% stratified sample of non-federal acute-care 

hospitals. Observational studies using de-identified data such as this are deemed exempt by 

our Institutional Review Board.

We identified every adult hospitalization with a primary diagnosis of SSI from January 1998 

to November 2011. For case ascertainment, we used the International Classification of 
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Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes 998.51 and 998.59. To 

estimate a monthly SSI incidence series, we aggregated the number of primary SSI 

discharges by admission month and year. We applied discharge weights to account for yearly 

changes in the sampling design, and applied additional weights to account for changes in the 

number of days per month.

The NIS does not include unique identifiers to allow the tracking of patients across visits to, 

for example, determine if a surgery in one visit resulted in a readmission in a subsequent 

visit. Thus, we also extracted adult hospitalizations with a primary or secondary procedure 

likely to be associated with an SSI to estimate a population “at-risk” for SSIs. We use this 

series to ensure that any findings on the seasonality of SSIs were not merely a reflection of a 

lower surgical volume concurrently or in the month prior. Hospitalizations were identified 

using Clinical Classification software (CCS) codes calculated by HCUP. We included the 

following codes: 152 (knee arthroplasty), 153 (hip replacement, total and partial), 158 

(spinal fusion), 147 (treatment of fracture or dislocation of lower extremity), 78 (colorectal 

resection), 75 (small bowel resection), 134 (Caesarian section), 85 (inguinal and femoral 

hernia repair), 86 (another hernia repair), and 87 (exploratory laparotomy). To estimate this 

monthly surgery incidence series (i.e., the at-risk series), we aggregated cases by admission 

month and year, applied discharge and days-per-month weights. Finally, we calculated the 

number of patients at risk for an SSI in a given month by taking an average of the number 

surgeries in that month and the number of surgeries in the prior month.

Time-series Analysis

The adjusted SSI incidence series was fit with a linear time trend and a collection of fixed 

effects (i.e. indicator variables) that represent monthly mean deviations from the overall 

trend. The cyclic nature of the series was captured by the monthly fixed effects. We also 

explored adding a covariate to this model for the log of the at-risk series. To account for 

temporal correlation in the residuals, we investigated autoregressive structures of orders 1 

through 4. We selected the order for each series based on the Bayesian Information Criterion 

(BIC) and upon inspection of the autocorrelation function (ACF) and the Partial ACF plots. 

In the regression equation, the coefficient for the peak month can be interpreted as the 

“average amplitude of seasonality” adjusted for the other covariates. Similar analyses were 

performed on the log-transformed series, which allow for a percentage interpretation of 

model coefficients. An overall test for seasonality was computed using a likelihood ratio test 

on the 11 monthly fixed effects. All analyses were performed using R 3.1.2 and SAS 9.4.

Subgroup Time-series Analysis

We performed subgroup analyses stratified by region (North, South, East, West), gender, age 

(grouped by decade), institutional teaching status, and institutional location (teaching/

nonteaching, urban/rural). For each subgroup, we calculated the average amplitude of 

seasonality and the annual trend on the log-transformed count series to allow for easy 

comparison. The autoregressive structures for all subgroups were individually selected based 

on BIC.
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Weather Data

Hospitals in the study were geolocated using the Google Maps Geocoding API and the 

American Hospital Association (AHA) address.25 Weather data were obtained from the 

Unedited Local Climatological Data (1998–2004) and the Quality Controlled Local 

Climatological Data (2005–2011). Both data sets were reported by the National Climatic 

Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA).

Using each hospital’s longitude and latitude, we found all weather stations within 100 km of 

the hospital, then extracted the following monthly summary statistics from these stations: 

average temperature, minimum temperature, maximum temperature, total precipitation, 

average dew point, average wet bulb temperature, average heating degree days, average 

cooling degree days, resultant wind speed, and total monthly precipitation. The summary 

statistics for hospitals with multiple nearby stations were averaged across stations, while the 

summary statistics for hospitals with no nearby stations (1.9%) were imputed using k-

nearest-neighbors (k = 5) and the caret package in R.26

Logistic Regression Models

We used logistic regression to estimate the odds of a hospital discharge having a primary 

diagnosis of SSI using two different models. Our first model is a “demographics-only 

model”, which controls for the following patient-level covariates: age (grouped by decade), 

sex, primary payer, length-of-stay, Elixhauser Comorbidity Index (30 categories)27, 

admission month, and admission year. In addition, at the hospital level, our first model 

controls for region (Northeast, Midwest, West, South), longitude, and latitude. Our second 

model is a “weather model” that controls for the same covariates as the demographics 

model, and adds the average monthly temperature (in 5° steps from 40° to 90°F+). The other 

weather covariates were very highly correlated with average monthly temperature in the 

model and were not included.

RESULTS

The NIS contains 108,595,896 hospitalizations from 4,532 hospitals over the course of our 

study (0.368% with a primary SSI). We observed 9,474,937 discharges with surgeries that 

could potentially lead to an SSI. In the time-series models, we exclude 65,485 SSIs and 

850,510 surgeries due to missing admission month or discharge weight. For our logistic 

regression models, the sample size was 55,665,828 (2,512 unique hospitals). Exclusion 

criteria are summarized in Table 1.

In Figure 1, we show the monthly incidence of SSI hospitalizations. We found that the nadir 

month for SSIs was January and the peak month was August. After controlling for a linear 

time trend, the average seasonal increase (between January and August) was 2,312 

infections (95% CI: [2071–2553]). This corresponds to an increase of 26.5% (95% CI: 

[23.3–29.7]). The overall test for seasonality was statistically significant (p < 0.001). 

Adjusting for seasonality, the number of SSIs is increasing by 4274 cases per year (95% CI: 

[3541–5007]), which corresponds to an increase of 3.9% per year (95% CI: [3.0–4.8]). After 

adding the logged monthly series of SSI-prone surgeries into the model as a covariate, we 
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first note that the seasonality lessens slightly to 23.56% (95% CI: [20.6–26.6]), and the trend 

becomes less significant at 0.16% growth per year (95% CI: [−0.52–0.85]). Using this 

model, we can then estimate that a 25% reduction in the average number of at-risk surgeries 

in the months of August and July would be associated with a decrease of about 1690 SSI 

cases for the year (a decrease of 20.6% from the observed SSI rate).

The annual trend and the average increase in the peak month for each subgroup considered 

are presented in Table 2. Seasonality and incidence were similar across all regions, age 

groups, genders, and hospital teaching categories. The seasonality was greatest among 

patients in their 40s and 50s. In addition, the seasonality of SSIs was very prominent for 

both teaching and nonteaching hospitals, and there was no significant difference between the 

two groups of hospitals: average amplitude of seasonality was 22.89% (95% CI: [19.0, 

26.9]) for teaching hospitals and 24.15% (95% CI:[20.5, 27.9]) for non-teaching.

Weather Models

Descriptive statistics for our weather model are presented in Table 3. SSI cases were 

generally similar to the control group in terms of their mean age, sum of Elixhauser 

Comorbidities, latitude, longitude, and region. However, cases had a higher mean length of 

stay (7.15 days vs 4.83 days), and they were admitted during a month with a slightly higher 

mean temperature than the control group (55.33° F vs 54.39° F). Additionally, although the 

mean age of cases was similar to the controls (56.88 vs. 56.46), the vast majority of cases 

are middle-aged, while admissions for older ages are much more likely to be controls. SSI 

patients had higher rates of diabetes (19.0% vs 14.7%) and obesity (9.5% vs 5.6%) than the 

controls.

Results from the weather logistic regression model are presented in Table 4. Patients in their 

40s were 199% more likely to be a SSI admission (95% CI: [193–205]), compared to the 

baseline group of 18- to 30-year-old patients. However, admissions for older patients (80+) 

were 10.4% less likely to be SSI related (95% CI: [8.1, 12.5]). The weather model also 

indicated a significant time trend over the course of the study: the odds of an SSI admission 

grew by 2% per year (95% CI: [1.9–2.1]). Higher rates of SSI admission were associated 

with diabetes, 26.9% higher odds (95% CI: [25.5–28.3]), and obesity, 38.2% higher odds 

(95% CI: [36.3–40.3]). Finally, the effect of temperature on the odds of SSI admission is 

presented in Figure 2. The odds of a primary SSI admission increase by roughly 2.1% per 

5°F increase in the average monthly temperature, all else held constant. Specifically, the 

highest temperature group, 90°F+, was associated with an increase in the odds of an SSI 

admission of 28.9% (95% CI: [20.2–38.3]) when compared to temperatures less than 40°F.

In the demographics-only model, the odds of an SSI discharge increase by 32.1% from 

January to August (95% CI: [29.5, 34.8]). However, when we control for the effects of 

temperature and demographics, the odds of an SSI discharge are only 20.7% higher in 

August (95% CI: [16.4–25.3]). (Figure 3) Thus, by adding average monthly temperature to 

the model, we were able to explain approximately 35% of the change in the odds of an SSI 

discharge due to seasonality.
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DISCUSSION

Our results show that SSIs are seasonal with 26.5% more SSI-related hospital discharges in 

the peak month of August compared to the nadir month of January. SSIs are seasonal for 

men, women, all age groups and all geographic regions. By incorporating weather into our 

analysis, we demonstrate that the average temperature in the month of a hospitalization is an 

important risk factor for SSIs; higher temperatures are associated with higher odds of SSI. 

We observed a slight annual increase in the number of SSIs, though this became 

insignificant after controlling for the volume of procedures.

The incidence of many infections is seasonal.28 Respiratory infections peak during winter 

months and tick- and mosquito-borne infections peak during the summer. Less attention has 

been focused on the seasonality of healthcare-associated infections. However, reports show 

evidence of seasonality in the incidence of Clostridium difficile infections with cases 

peaking during winter and spring29–31 and catheter-related bloodstream infections peaking 

during summer months32,33 along with urinary tract infections,34,35 and cellulitis.36 A few 

reports of seasonal SSIs exist, but most of these are either in single centers, over a short time 

periods, or focused on a specific geographic region, and few incorporate weather data into 

their analysis. Nevertheless, previous findings are similar to ours. Kane et al. found the 

highest incidence of SSIs following total joint arthroplasties in August and the majority 

occurring July-September23. Both Durkin et al., and Gruskay et al., found an increased rate 

of infection after elective spine surgery during the summer months22,37. Assessing a more 

generalized group of patients who underwent various procedures, Durkin et al. also reported 

a seasonal effect on SSI with summer months demonstrating higher SSI rates12. Unlike prior 

studies, we include a large population – 20% of all hospital discharges over a long period of 

time and across different geographic regions. In addition to establishing statistical 

significance in the seasonality of primary admissions for SSI, our results also demonstrate 

the potential clinical significance of this seasonality. For example, in our multivariate model 

controlling for patient demographics, severity, and hospital location, the increase in odds of 

an SSI admission during an especially warm August relative to a cold January reaches a 

peak of 55.6%, double the effect of diabetes (26.9%). Our results also demonstrate the 

clinical impact of this seasonality. For example, a 25% reduction in surgical cases in the 

peak months is associated with over a 20% reduction in SSIs. Thus, if some elective 

surgeries could be moved from the very warm summer to other months, we may be able to 

reduce both infections and healthcare cost.

The reason that SSIs peak in the summer is unclear. However, the incidence of other skin 

and soft tissue infections are reported to be seasonal.38–40 Elevated levels of bacteria may be 

found in certain anatomic locations with higher temperatures.41 Regardless of the specific 

mechanism, we believe that the seasonality of SSIs is, in large part, driven by weather 

conditions. In a logistic regression model of the incidence of SSIs, we explained 

approximately 35% of the seasonal variation by including average monthly temperature 

data. By including more granular data regarding the incidence of SSIs and weather, we may 

be able to explain an even larger amount of the seasonality.
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Some reports suggest that surgical complications such as SSI could be due to a “July effect” 

explained by staff turnover at teaching institutions42. However, previous authors identified 

an increase in SSI in patients undergoing spine procedures during the summer months at a 

regional collection of non-teaching hospitals22. Similarly, we found no significant 

differences in the amplitude of seasonality of SSIs between teaching and non-teaching 

institutions. In addition, we added an interaction between hospital teaching status and month 

to our logistic regression model, and the result was non-significant (data not shown.) Thus, 

the August peak incidence of SSI we report is not likely to be attributable to trainees 

involved with surgical procedures. Finally, it is possible that the seasonal incidence of SSIs 

could be due to seasonal variations in surgical volume because most SSIs occur within 30 

days of the surgery. However, in our time series model we control for the number surgeries 

performed in the current and prior month to adjust for surgical volume as a confounding 

factor in the seasonality of SSIs, yet the seasonality in the series is still highly significant.

Our results are subject to several limitations. First, our analyses were based on the month of 

the primary admission for SSI, not the procedure that precipitated the SSI. We cannot link 

admissions for SSIs to admissions for specific procedures because the NIS data do not 

provide a unique identifier to link patients’ visits across hospitalizations. Thus, our analysis 

considers all SSIs together and we were unable to determine the SSI seasonality for different 

procedures. Secondary admissions for SSI are also seasonal (data not shown), and some 

secondary admissions may have occurred during the surgical admission. Second, we used 

administrative data, e.g,, ICD-9 codes to identify SSIs, and were unable to do chart reviews. 

Our data does not include microbiology or medication-administration data. Comparisons of 

SSI codes to traditional forms of SSI highlight the limitations of using ICD-9 codes.43 

However, the sensitivity and specificity of these codes have been reported as 84.1% and 

97.3%, respectively.44 Third, we have only inpatient data, and many SSIs may be treated in 

outpatient settings. Practice patterns for admitting patients with SSIs may differ during 

summer months (e.g., due to vacation schedules). Fourth, we only consider weather data 

aggregated to a monthly level. Although we have more granular weather data, the NIS data 

set only provides data on a monthly level. More granular discharge data would allow us to 

estimate the contributions of weather patterns to the seasonality of SSIs more precisely. 

Finally, we found a small increase in SSI cases over time (2% per year) in contrasts with 

reports of falling SSI rates.45,46 However, we only consider inpatients SSIs making it 

difficult to compare our findings with other reports.

Despite our limitations, we show that the incidence of hospitalizations for SSIs is seasonal 

and that the seasonality of SSIs can, at least in part, be explained by weather patterns. Our 

results suggest that further investigation is needed with more granular data including exact 

surgery dates and specific procedures. Such work will help determine if merely shifting the 

timing of some surgeries (when feasible) from peak SSI months to non-peak SSI months can 

help reduce SSIs in specific patients with specific procedures.
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Figure 1. 
Hospitalizations with a primary or a secondary diagnosis of a surgical site infection: 

absolute scale model (top), and relative-scale (log-transformed) model (bottom). The error 

structure in each model is controlled for using an AR(2) error structure.
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Figure 2. 
The effect of monthly average regional temperature on the odds of SSI primary admissions
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Figure 3. 
Monthly odds ratios for a primary SSI for both our demographics-only model and our 

weather model. Weather explains a portion of the seasonality in primary SSI admissions.
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Table 1

Sample Size

Filter Sample Size
Percent of

Initial Sample

None 108,595,896 100%

Non-missing:

  Admission Month 98,435,410 90.64%

  Sex 98,252,484 90.48%

  Length of Stay 98,246,157 90.47%

  Payer 97,971,752 90.22%

  Age 97,957,295 90.20%

Age ≥ 18 81,174,170 74.75%

Address Listed 55,665,828 51.26%
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Table 2

Subgroup analysis of SSI trends and seasonality, controlling for the number of surgeries in the month of the 

SSI admission and the prior month within each subgroup.

Subgroup
Annual Trend
(%) (95% CI)

Avg. Amplitude of
Seasonality (%)a (95% CI)

Region

  Northeast 2.15 (0.9, 3.4) 28.10 (22.7, 33.7)

  Midwest 1.37 (0.0, 2.8) 23.86 (19.0, 29.0)

  South 0.08 (−0.9, 1.1) 22.50 (17.7, 27.5)

  West 1.42 (0.5, 2.4) 22.51 (16.7, 28.6)

Age Group

   [18,30) 0.68 (0.1, 1.3) 23.28 (16.1, 30.9)

   [30,40) 0.30 (−0.4, 1.0) 27.59 (21.4, 34.1)

   [40,50) 0.18 (−0.4, 0.7) 31.44 (25.4, 37.7)

   [50,60) −1.71 (−3.0, −0.5) 36.03 (30.5, 41.8)

   [60,70) 1.23 (−1.2, 3.7) 21.81 (16.2, 27.7)

   [70,80) −1.20 (−2.2, −0.2) 23.66 (17.3, 30.4)

  80+ 0.21 (−0.9, 1.3) 12.58 (4.7, 21.0)

Gender

  Male 1.02 (−0.4, 2.4) 28.24 (24.0, 32.6)

  Female 0.60 (−0.2, 1.5) 22.71 (19.4, 26.1)

Hospitalb

  Teaching −0.13 (−1.7, 1.5) 22.89 (19.0, 26.9)

  Non Teaching 0.17 (−0.5, 0.9) 24.15 (20.5, 27.9)

  Urban −1.59 (−2.0, −1.1) 29.39 (21.8, 37.4)

  Rural 0.32 (−0.3, 1.0) 22.77 (19.9, 25.7)

a
Average amplitude of seasonality is the percentage increase in SSI between the peak and nadir month.

b
Not mutually exclusive categories in NIS dataset
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Table 3

Descriptive Statistics for Variables of Interest in the SSI and Control Groups:mean and standard deviation for 

continuous variables (top) and number and percentage of patients for categorical variables (bottom)

Control* SSI

Number of patients 55,429,859 235,969

Continuous Variables Mean (± SD) Mean (± SD)

Age 56.88 (± 21.1) 56.46 (± 16.8)

LOS 4.83 (± 6.8) 7.15 (± 8.8)

Latitude 39.61 (± 3.4) 39.71 (± 3.5)

Longitude −91.27 (± 18.0) −91.47 (± 18.2)

Avg Temp 54.39 (± 16.1) 55.33 (± 16.0)

Elixhauser Sum 1.77 (± 1.6) 1.78 (± 1.6)

Categorical Variables N (thousands), % of sample N (thousands), % of sample

Gender

  Female 33,625 (60.7) 131.74 (55.8)

  Male 21,805 (39.3) 104.23 (44.2)

Payer

  Medicare 24,172 (43.6) 93.69 (39.7)

  Medicaid 7,924 (14.3) 25.81 (10.9)

  Private Insurance 18,999 (34.3) 97.3 (41.2)

  Self-Pay 2,443 (4.4) 6.82 (2.9)

  No Charge 109.5 (0.2) 0.403 (0.17)

  Other 1,782 (3.2) 11.92 (5.1)

Region

  Northeast 17,310 (31.2) 73.21 (31.0)

  Midwest 11,880 (21.4) 47.51 (20.1)

  South 10,068 (18.2) 43.86 (18.6)

  West 16,171 (29.2) 71.38 (30.2)

Comorbidity**

  Diabetes 8,149 (14.7) 44.94 (19.0)

  Obese 3,106 (5.6) 22.46 (9.5)

Age Group

  [18, 30) 7,544 (13.6) 15.0 (6.3)

  [30, 40) 6,977 (12.6) 25.83 (10.9)

  [40, 50) 6,588 (11.9) 42.0 (17.8)

  [50, 60) 7,422 (13.4) 48.4 (20.5)

  [60, 70) 7,954 (14.3) 45.5 (19.3)

  [70, 80) 9,358 (16.9) 38.8 (16.4)

  80+ 9,587 (17.3) 20.4 (8.6)

*
All variables were statistically, significantly different between the SSI and control groups (all p<0.001).
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**
There are 29 Elixhauser Comorbidities, but only DM and Obese are presented in this table.
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Table 4

Logistic Regression Model Results. The outcome variable is SSI admission. Estimated odds ratios and 

associated confidence intervals are presented.

Covariate Odds Ratio (95% CI) Covariate Odds Ratio (95% CI)

Month Effects Payer

  January Baseline   Medicare Baseline

  February 1.09 (1.07, 1.11)   Medicaid 0.795 (0.78, 0.81)

  March 1.12 (1.09, 1.14)   Private Insurance 1.012 (1.00, 1.03)

  April 1.13 (1.11, 1.16)   Self-Pay 0.647 (0.63, 0.66)

  May 1.15 (1.12, 1.19)   No Charge 0.791 (0.72, 0.87)

  June 1.13 (1.10, 1.17)   Other 1.361 (1.33, 1.39)

  July 1.18 (1.13, 1.22)

  August 1.21 (1.16, 1.25) Age Group

  September 1.16 (1.12, 1.20)   [18, 30) Baseline

  October 1.17 (1.14, 1.20)   [30, 40) 1.776 (1.74, 1.81)

  November 1.18 (1.15, 1.20)   [40, 50) 2.987 (2.93, 3.05)

  December 1.13 (1.11, 1.15)   [50, 60) 2.758 (2.71, 2.81)

  [60, 70) 2.270 (2.22, 2.32)

Average Temperature   [70, 80) 1.664 (1.63, 1.70)

  <40 Baseline   80+ 0.896 (0.88, 0.92)

   [40, 45) 1.02 (1.00, 1.035)

   [45, 50) 1.04 (1.02, 1.06) Region

   [50, 55) 1.03 (1.01, 1.06)   Northeast Baseline

   [55, 60) 1.08 (1.05, 1.10)   Midwest 1.12 (1.10, 1.15)

   [60, 65) 1.07 (1.04, 1.10)   South 1.16 (1.14, 1.17)

   [65, 70) 1.11 (1.08, 1.15)   West 1.73 (1.64, 1.81)

   [70, 75) 1.09 (1.05, 1.13)

   [75, 80) 1.12 (1.08, 1.17) Gender

   [80, 85) 1.13 (1.08, 1.19)   Male Baseline

   [85, 90) 1.23 (1.15, 1.32)   Female 0.91 (0.90, 0.91)

  90+ 1.29 (1.20, 1.39)

Continuous Variables

Comorbidities*   Time Trend (years) 1.02 (1.02, 1.02)

  None Baseline   Length of Stay 1.02 (1.02, 1.02)

  DM 1.27 (1.26, 1.28)   Latitude (scaled) 1.10 (1.10, 1.11)

  Obese 1.38 (1.36, 1.40)   Longitude (scaled) 1.18 (1.16, 1.21)

*
All 29 Elixhauser comorbidities are included in the model as indicator variables, but only those for DM and Obese are presented here
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