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ABSTRACT: To date, the program for the development of methods
and models for atomistic and continuum simulation directed toward
chemicals and materials has reached an incredible degree of sophis-
tication and maturity. Currently, one can witness an increasingly
rapid emergence of advances in computing, artificial intelligence, and
robotics. This drives us to consider the future of computer simula-
tion of matter from the molecular to the human length and time
scales in a radical way that deliberately dares to go beyond the fore-
seeable next steps in any given discipline. This perspective article
presents a view on this future development that we believe is likely to
become a reality during our lifetime.

1. MATTER SIMULATION METHODS

You probably are reading this article in your mobile phone.1

The materials that compose the electronic circuits that made it
possible were related to the outcome of digital computer simu-
lations carried out by several thousands of scientists of the span
of decades. Peter Galison in Image and Logic: A material culture
of microphysics (1997)2 discusses the inseparability of the phys-
ical reality around us and the virtual matter that is simulated on
modern computers:

Without the computer-based simulation, the material culture
of late-twentieth-century microphysics is not merely incon-
venienced − It does not exist. [...] Machines [...] are insep-
arable from their virtual counterparts−all are bound to
simulations.
Several subfields of digital simulation have contributed to the

design of our physical reality. These include quantum physics,
quantum chemistry, condensed matter physics, computational
statistical mechanics, computational materials science, contin-
uum modeling, circuit layout, etc. In this paper, we reflect on
the status of these fields, which we call as a collective matter
simulation methods, since the early days of computing to the
current era. Our goal is that of answering the question, What
are the emerging challenges and opportunities for these fields in
the twenty-first century? By answering this question, we arrive
to the conclusion that redefining the scope of their main mis-
sion may be necessary due to the rapid advances in the drivers
of our society.
Writing about all these fields would go beyond our domain of

expertise and would rely on too many examples. Therefore, for
the remainder of the paper, we will use the field of quantum
chemistry as an example, but the reader can have in mind that

very similar arguments could be made for any of the other
theoretical/computational fields mentioned above, as they are
all connected to the developments in fundamental, physical
theory in the first half of the twentieth century and the dramatic
hardware and algorithm developments in its second half.

2. QUANTUM CHEMISTRY IN THE 20TH CENTURY

In 1928, Paul Dirac proposed his fundamental covariant equa-
tion of motion that governs the relativistic dynamics of a single
electron in a classical electromagnetic field. This equation
became the basis not only of more fundamental theories such as
quantum electrodynamics but also of endeavors to solve many-
electron problems in chemistry, molecular physics, and mate-
rials science3even if they originally set out from Schrödinger’s
(nonrelativistic) formulation of quantum mechanics.
In a famous quote from his 1929 account on many-electron

systems,4 Dirac emphasized the importance of his discovery and
then continued to state that it “becomes desirable that approx-
imate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main
features of complex atomic systems without too much compu-
tation.” This desire has been the motivation for generations of
computational chemists and physicists to devise algorithms that
allow us to solve the differential equations governing the
dynamics of many-electron systems.
The aspiration to quantitatively assess molecular properties

and to qualitatively understand their implications has been a
driving force of computer simulations of molecular matter since
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that time. In quantum chemistry, the mission in the previous
century was to calculate an energy and the molecular properties
of a given, isolated molecular structure. As Per-Olov Löwdin
has put it in a visionary perspective on the field,5

There seems to be a rather long way to go before we reach
the mathematical goal of quantum chemistry, which is to be
able to predict accurately the properties of a hypothetic
polyatomic molecule....
Löwdin states in his “1967-Program”6 written for the newly

created International Journal of Quantum Chemistry that quan-
tum chemistry “uses physical and chemical experience, deep
going mathematical analysis and high speed electronic com-
puters to achieve its results”. Gavroglu and Simões7 identify
these as the four pillars on which the field has rested since its
conception (see Figure 1).
In the 20th century, the interdisciplinary field of quantum

chemistry was therefore drawn from thematic aspects of the
different founding disciples. It has taken from physics the laws
of quantum mechanics and light-matter interaction, from chem-
istry the conceptual laws of molecular structure and inspiration
for problems and applications, from applied math mostly com-
putational linear algebra, and finally, from computer science a
focus on high-performance computing, both parallel and using
accelerators such as general-purpose graphical processing units.
Sixty years later, this enormous effort has been made and the

mission has basically been accomplished. As a collective, theo-
retical chemists and physicists have developed methods that
simulate the electronic structure of molecules up to hundreds
of atoms, both in vacuum and in solvents, and that can calcu-
late practically all observables of interest to experimentalists.
Furthermore, although the so-called “chemical accuracy” cannot
be obtained for all the calculations, quantum chemistry
calculations have become a useful everyday tool in the arsenal
of chemists.
In 1957, Löwdin5 presented an overview of various methods

used in molecular and solid-state theory for the solution of the
Schrödinger equation in his account. Amazingly, most of the
principles and hierarchy set out in that overview prevailed until
the present time. Propelled by developments in other fields (most
notably the design and construction of efficient and affordable

computer hardware), a huge part of Dirac’s and Löwdin’s pro-
grams set for future generations has become a reality.
In fact, we do have now computational tools at our disposal

that allow us to do such calculations routinely and with rela-
tively well-known accuracy.7 All remaining open issues of this
original mission are well identified and understood. In other
words, we are now able to solve the complex high-dimensional
partial differential equations that govern quantum many-electron
systems for arbitrary nuclear frameworks (even with rigorous
error assessment9−14). Clearly, the dimension that scales with
the number of elementary particles in the molecular system
cannot be arbitrarily large for feasibility reasons, but the field
has made the remarkable achievement of providing routine solu-
tion methods for partial differential equations whose dimension

is set on input of a computation by providing the number of
electrons of a reasonably sized molecular structure or unit cell.
It therefore appears evident that what remains from the original
program is rather straightforward to accomplish in light of the
past achievements. And, in fact, it is most likely to take only a
fraction of the effort invested so far to bring the original mis-
sion to an end for practical purposes.
According to his former students, Nicholas Handy, John Pople,

and Isaiah Shavitt, during the 1959 Conference on Molecular
Quantum Mechanics held in Boulder Colorado,2 Samuel F. Boys

[...] produced a paper tape of his whole computer program
and unrolled it along the length of the chemical lecture
bench. There, in one roll, was something, of which one could
ask a chemical question at one end and it would produce an
answer at the other! .... [M]ost of the audience probably
thought the demonstration bizarre. But it was prescient.
In the narrow sense of the quote above, the field of quantum

chemistry has practically solved the mission of the twentieth

Our goal is that of answering the
question, What are the emerging
challenges and opportunities for
these fields in the twenty-first

century?

Figure 1. Quantum chemistry8 is an interdisciplinary field that lies at the intersection of chemistry, physics, applied math, and computer science. It
borrows from several other subfields, some of which are mentioned at the borders of the diagram.
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century quantum chemistry that we may summarize as fol-
lows:

Given a molecular geometry, obtain its energy and/or
other molecular properties in the gas phase or a solvent
model efficiently on a modern digital computer.

Having considered the great accomplishments of the field to
date, we are ready to present our vision of what is possible next
due to the rapid developments in the fields of computer science
and robotics. Depending on one’s own progressive mind set,
this vision may be considered either linear and therefore an
Evolution of the current state of the art, or rather radical and
hence a potential Revolution of the field.

3. MATTER SIMULATION IN THE 21ST CENTURY
3.1. Societal Drivers. The connection between science and

the current drivers for society is deep and cannot be ignored.
This century poses several severe challenges that range from
the rapid rise of income inequality and the apparent cracks
of the neoliberal structure to the stresses on the environment
due to industrialization. The work of simulation scientists
therefore is linked directly or indirectly to this societal context.
In particular, the solutions to many of the challenges related to
this century, ranging from the discovery of novel materials for
renewable energy to that of environmentally friendly pesticides
or next-generation antibiotics, require tools to be developed by
our field.

A characteristic of these challenges is that their solution is
time-critical, which turns them into societal threats. For instance,
if the search for new antibiotics cannot keep pace with the
development and spread of bacterial resistance or if the devel-
opment of sustainable energy cycles cannot outpace global
warming, severe consequences for our society will be unavoid-
able. Whereas we have seen in the past decades a remarkably
accurate prediction of our computational capabilities by Moore’s
law, which was an original prediction of their exponential growth
with time, nothing similar has been found so far for scientific
discovery. However, the time-critical threats to society in the
21st century require us to find viable solutions for pressing
global problems at an increasingly faster pace than what was suf-
ficient in the past. In a sense, as suggested by Benji Maruyama15

a “Moore’s law for scientific discovery is required to increase
the success for systematic as well as serendipitous discovery”.
However, tied to the current exponential growth of tech-

nology, such an exponential pace of scientific discovery could
be achieved! An exponential increase in scientific throughput
and lowering in cost via automation has been achieved in the
field of gene sequencing. The National Institutes of Health also
uses a comparison with exponential decrease in cost when
comparing the cost of sequencing a human genome.16 We hope
that, in certain areas of chemical discovery, an increase in through-
put of calculation, synthesis, and characterization will result in an
exponential increase in the rate of discovery.
3.2. Science and Technology Drivers. In this century, we

are witnessing the introduction of novel technologies at a pace

never seen before. Technoeconomically, the twenty-first cen-
tury is deeply linked to what Klaus Schwab from the World
Economic Forum (WEF) has coined as “The Fourth Industrial
Revolution”.17 The WEF identified six technology drivers18 that
will significantly impact society. To focus on the accelerated
discovery of matter,19 we modify and expand this list to nine
science and technology drivers that will deeply transform the
speed and way of discovery of new chemicals and matter.

Driver 1. Human−Machine Interaction and the Internet.
Technology will continue to enable the connection between
people, enhancing their digital presence by enabling them to
interact with objects and one another in new ways. Emerging
technologies that enhance the human−machine interaction will
allow for an unprecedented immersion into the virtual atomistic
world that is otherwise inaccessible to the human senses. Already
today, we see haptic and tracking devices, virtual realities, and
caves adding a new level of intuition to the virtual experience of
the molecular world that goes far beyond its archaic and frac-
tured perception through computer mouse and keyboard.20−41

A perfect and seamless immersion of the scientist into the
mesoscopic environment of her/his object of study is key to an
accelerated understanding and manipulation of (molecular)
matter in a virtual laboratory. For instance, immersion is about
literally feeling the softness of a functional group in a molecule
and about experiencing how it feels to push a hydrogen atom
into a metal surface. By enhanced immersion and real-time data
flow, one can cope with the immense data provided by compu-
tations finishing in real-time (see Figure 2)

Driver 2. Computing, Communication, and Storage Every-
where. Everybody will have access to a supercomputer in their
pocket (currently already a reality as a link of the already pow-
erful existing smartphones to cloud services), with nearly unlim-
ited storage capacity. This driver will grant the research commu-
nity access to cheap computational power and ability to store and
share chemical information. It will also allow amateur scientists
to access important research problems much more easily, which
will strengthen the general acceptance of the field in society and
increase the pace of discovery (cf., recent web-based online
platforms, serious gaming, and gamification are existing
examples).43,44 Considering that the chemical space is
unfathomably large and much information for a given problem
may not be available, such restricted, unavailable, or nonexistent
information will be computed on the spot as needed.

Driver 3. The Internet of Things. The introduction of sensors
and processors that are connected to the Internet for most of
the objects around us will offer society and the science commu-
nity a trivial route to build, for example, networks of off-the-
shelf sensors and processors to monitor and control artificial
intelligence (AI) environments and robotics systems. For exam-
ple, it is not too hard to imagine a 3D printer that prints parts
of a synthesis robot that itself may then be put online to receive
control commands from a virtual reality devoted to chemical or
materials synthesis to produce a specific chemical or material.
This is closely connected to the next driver.

Driver 4. Artificial Intelligence, Big Data, and Robotics.
The exponential creation of more data from the sensors and

We are ready to present our
vision of what is possible next

due to the rapid developments in
the fields of computer science

and robotics.

A Moore’s law for scientific
discovery is required to increase
the success for systematic as well

as serendipitous discovery.
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processors around us requires its organization and processing
using artificial intelligence. Already now, we witness the rapid rise
of machine learning tools for such purposes (see refs 45−57 for
some examples). Robotics, empowered by such tools, is already
making an impact in the automation of jobs, decision making,
and research. It is only a matter of time before synthesis robots,
which are already employed in many chemistry laboratories,
will be generalized (see the work by Burke on his synthesis
machine58−60) and coupled to adequate software. Much work
has been devoted to devising and implementing algorithms for
the automated exploration of chemical reaction networks (see,
e.g., refs 61−67). In the future, the evolution of these achieve-
ments may team up with the latest expert systems for the plan-
ning of chemical synthesis (see driver 6) to generate a reliable
platform that can map out complex chemical reaction networks
(based on the big data provided by reaction libraries and vast
quantum chemical explorations) under predefined conditions

that are then eventually realized by a relatively general synthesis
robot (see Figure 3).

Driver 5. The Sharing Economy and Distributed Trust. This
driver enables new social and business models. Tools like the
blockchain promise to change the way we think about money
and transactions in the real world. This will have an impact on
how data is acquired or generated, stored, and managed in a
complete reproducible and controlled way: smart evidence.
It will ensure that data is immutable and protected; the user will
no longer have to, for example, trust service providers as Google,
Dropbox, etc. to not manipulate the data. Blockchaining will also
affect how research results are published. For instance, contro-
versial data or results can be published anonymously while the
integrity of the presented data acquisition is completely veri-
fiable. Blockchaining will create new ways of funding: smart
contracts that will potentially disrupt the way science is funded.

Driver 6. The Digitization of Matter from the Macroscopic
to the Atomic Scale. The continued development of printers of

Figure 2. Examples of already existing tools that enhance the immersion of professional and amateur scientists into a molecular world. (A) A cave for
data exploration (Electron density of a molecular data set image provided by the Electronic Visualization Laboratory (EVL) at the University of
Illinois at Chicago and Argonne National Laboratory. Photo: L. Long, EVL). (B) An operator’s pair of hands manipulate a peptide during a
molecular dynamics simulation (taken from ref 27; Creative Common License). (C) A simple haptic force-feedback device by which the tactile
human sense can be addressed (Reproduced with permission from ref 42. Copyright 2011 Wiley-VCH Verlag GmbH & Co. KgaA). (D) Interactive
atmospheric molecular dynamics simulation in an immersive projection dome (taken from ref 27; Creative Common License).

Figure 3. Left: A MakerBot 3D printer (picture from https://en.wikipedia.org/wiki/3D_printing). Middle: HERMAN the High-throughput
Experimentation Robot for the Multiplexed Automation of Nanochemistry (taken from https://www.youtube.com/watch?v=J0VlCItpI5s). Right:
Martin Burke’s synthesis machine (taken from ref 68; permission to print this picture granted by L. Brian Stauffer, University of Illinois at Urbana−
Champaign).
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physical objects due to 3D printing and additive manufacturing
technologies allows for new creative opportunities at the scale
of meters to micrometers. The increased control over the syn-
thesis and characterization of precise nanoscale assemblies of
matter such as nanoparticles, chemical and atomic layer depo-
sition, and lithography provides a bottom-up approach to create
matter that can further be probed efficiently. Purely synthetic
approaches have reached a level of sophistication in chemistry
such that, for any molecule that is calculated to be stable and
viable, a synthetic path can be designed. Expert systems for
such purposes have a long history69−72 and experienced a fresh
boost by modern technology.73−77

Driver 7. Precise Control of Molecular Biology and Nano-
chemistry. Our increasing ability to manipulate and control the
molecular biology of cells is an example of successful molecular
engineering exploiting an existing molecular machinery to pro-
duce new molecules, often with predefined function. The recently
developed CRISPR/Cas gene editing78−80 technique is an easy
to use approach with incredibly far reaching consequences. It is
not only an amazing example for our understanding and capa-
bilities to modify molecular processes in functional and living
matter, it is also a remarkable advance in bioengineering tech-
nology that allows us to modify the genome of an organism at
single-nucleotide precision. In this respect it straightforwardly
extends the more traditional biochemical toolbox bioengineer-
ing that can be used to produce specific molecules. Combined
with experimental automation and control through a virtual
reality setup, this is a way to actually produce molecular struc-
tures designed in silico. Naturally, such a level of sophistication
in understanding and manipulating the biochemical machinery
of cells is an example for what would like to achieve in artificial
soft and hard nanochemistry settings. And surely, matter sim-
ulation will be a decisive tool to point the way.
Driver 8. Disruptive Computing Technologies. Quantum

computers employ the rules of quantum physics such as entan-
glement and superposition to carry out computations. The ear-
liest suggested application for them is the simulation of quan-
tum matter. Quantum computers can provide an exponential
advantage over classical computers for the simulation of chem-
istry.81−83 This has been shown theoretically and experimentally
realized in several occasions in demonstration experiments.84−86

Although no quantum computer with error-corrected qubits has
been built so far, the severe efforts in major companies, start-ups,
and academia make the emergence of moderately sized quan-
tum computers for actual applications in chemistry in the near
future rather likely.
Driver 9. Matter Imaging Technology at the Atomistic

and Larger Length Scales. Coupled to driver 6, the emergence
of advanced spectroscopy techniques for the study of matter
has led to an increase in the available experimental data in
terms of resolution, area studied, and variety of signals that are
recorded. This makes characterization a prime source of data
that can directly interact with the output of simulation. In this
way, it can help to constrain models “on the fly” and refine digi-
tal chemical hypotheses.
The nine science and technology drivers mentioned above

could help us generate a contemporary close reading of the
quote of the students of Samuel Boys. He mentions a computer
program, where “one could ask a chemical question at one end
and it would produce an answer at the other!”2 In the context
of the new frontiers of human−computer interaction and artifi-
cial intelligence, the quote of Boys can be expanded into the
revised mission for the field of computer simulation:

These questions could imply complex tasks and a dialogue
with a computer program (see also ref 87) such as the following
one:

Jane, the chemist: Dear Organa, good morning. Could
you please suggest to me an organic molecule with an esti-
mated synthetic cost of less than a hundred dollars per
gram and three synthetic steps from available synthons
that has an emissive color of 450 nm and stability against
oxidation? I am thinking of organic light emitting diode
emitters.
Organa: Jane, I will get back to you in 2 h.
Organa: Hello Jane, I am back! I have a set of 50 poten-
tial candidates based on your constraints and inspired by
the recent literature on the subject. You can purchase 20
of them and use the matter computer to synthesize the
other 30 that you have with the synthon library available
in the matter computer.
Jane: Dear Organa, can you display them for me in AR
(augmented reality) ?
Organa: My pleasure, Jane.
Jane: (As she waves her hand and flips through com-
pounds and their associated properties shown to her in
augmented reality) Could you synthesize all the 30 com-
pounds and test them for emission properties? Can you
order the other 20? When the compounds arrive, I will
install cartridges for the 20 compounds so you can use
them for automated characterization. Thank you, Organa!

To enable a computer program and associated “matter com-
puter”, or synthesis and characterization machine, the simu-
lation community should overcome six grand challenges that
we identify in the following.

4. GRAND CHALLENGES FOR THE SIMULATION OF
MATTER IN THE 21ST CENTURY

Contemplating the nine drivers, we may condense the goals
of future research efforts in the field of matter simulation to
six grand challenges.

Challenge 1. The Designer Challenge.While the mission
of the 20th century was related to providing answers to ques-
tions pertaining to properties of specific chemical structures,
the questions of the 21st century revolve around the inverse
design problem:88−94 finding the best chemical structures that
are associated with desired and requested properties. A poten-
tial solution for this challenge is the use of invertible models
from machine learning such as generative models (GANs,
autoencoders, ...)48,89 or inverting molecules from families of
Hamiltonians.90−93

Challenge 2. The Chemical Turing Test. The classical
Turing test95 is a gedanken experiment designed by Alan Turing
to answer the question, “What is intelligence, and is it exclusive

As quantum computers will then
increase in power, they will be
disruptive for materials and

chemical simulation as they will
provide exact, rather than

approximate, answers for the
solution of the Schrödinger

equation.
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to humans?” In the test a human communicates with another
human or a computer and is ultimately asked to tell the identity
of the subject of the communication. The new goal of theo-
retical chemistry should be that of providing access to a chem-
ical “oracle”: an AI environment which can help humans solve
problems, associated with the fundamental chemical questions
of the fourth industrial revolution (clean energy, efficient drugs,
smart materials, green chemistry, etc.), in a way such that the
human cannot distinguish between this and communicating
with a human expert.
Challenge 3. The Feynman Test. In 1982 R. Feynman96

stated, “I want to talk about the possibility that there is to be an
exact simulation, that the computer will do exactly the same as
nature”, in his visionary article “Simulating Physics with Com-
puters”. Computer simulations, to the best of our knowledge,
applying the known rules of physics to computer-modeled par-
ticles, is an exact one-to-one mapping to reality, such that exper-
imental and virtual data, for all practical purposes, are indis-
tinguishable. The remaining discrepancy, between experiment
and computer simulations, is an ongoing battle the computa-
tional chemists are convincingly winning inch by inch. In the
not too distant future, computer simulations will be a fully ade-
quate alternative to experiments, at which point questions like
cost efficiency, environmental considerations, or other aspects
will be the grounds for the choice between theory and exper-
iment. Quantum computers97 may offer the way forward as they
are known to simulate matter exactly if a suitable input state is
provided.95 Enormous progress in the field has led to current
experiments involving several qubits and simulating molecules
as large as BeH2.

81−86

Challenge 4. The Matter Computer. Let us now provide
the complete 1957 quote of Per-Olov Löwdin5 mentioned in
section 2:

There seems to be a rather long way to go before we reach
the mathematical goal of quantum chemistry, which is to be
able to predict accurately the properties of a hypothetic
polyatomic molecule before it has been synthesized in the
laboratories. The aim is also to obtain such knowledge of the
electronic structure of matter that one can construct new
substances having properties of particular value to mankind.
To learn to think in terms of electrons and their quantum
mechanical behaviors is probably of greater technical impor-
tance than we can now anticipate.
We can now reinterpret this quote in the context of the

development of an integrated molecular discovery platform that
we name a “matter computer”. These computers process chem-
icals instead of information. Their “registers” consist of actual
chemicals, solvents, nanoparticles, etc. Their information
processing subroutines are actual synthesis and characterization
tools. The output of the computer is matter that can be readily
analyzed and acted upon. They are the analogues of 3D printers
but with molecular building blocks. All of these components
should be connected to a central control system and database
that can make artificial-intelligence-driven decisions about what to
synthesize next. Characterization tools also should be integrated
in the platform. To understand the chemical space to be explored,
these matter computers employ large computer-generated
compound screening libraries or generative models based on
their data. This loop requires the integration of several technol-
ogies that are currently emerging in an integrated platform.15

Physical constraints are likely to make these matter computers
explore a relatively small fraction of chemical space such as the
number of building blocks, solvents and catalysts, capacities of the

synthetic hardware, and current knowledge or prediction of reac-
tion mechanisms. Computers themselves can help design the right
robotic synthesis platforms for targeting a region of chemical space.

Challenge 5. The Immersive Chemistry Challenge.
A full immersion into the virtual world of a molecular system
with seamless integration of fellow researchers will boost research
and education. This seamless integration is also a necessary con-
dition to promote instantaneous computing, i.e., the fact that the
computing time for some problem has been constantly shrink-
ing over the years up to the point where starting a calculation

and receiving its results can no longer be separated on the time
scale of human perception, which is 60 ms for vision and 1 ms
for our sense of touch. It will be necessary to accomplish an
ultimate integrated hardware and software implementation of
the perfect immersion of a human researcher into the molecular
world. Coming back to Dirac’s quote from 1929, which ends “...
without too much computation”, we need to rewrite this into
“... by immediate and interactive computation” to meet the
demands of the time to come.

Challenge 6. The Machine and Human Molecular Repre-
sentation Learning Challenge. The natural representation of
molecules from the point of view of quantum information
theory is the content of a full quantum tomography98 experiment
for their wave function or a quantum process tomography to
explore their dynamical processes.99 The wave function con-
tains too much information to be processed by a human brain.
As we advance in our program of machine learning and auto-
mation, the question of representation learning will arise. In the
field of machine learning, this pertains to finding the repre-
sentation of the molecular data that the machine can learn from.
From the other side of the spectrum, a human grasps to concepts
that help her or him make rational decisions. We hope that, in
the future, humans and machines meet in the middle. Emerging
conceptual breakthroughs in chemistry may arise from humans
training their computer helpers, and the computer helpers, in
return, providing the raw source of inspiration to elaborate new
concepts.

5. TOWARD A UNIFIED COMPUTATION SCIENCE OF
MATTER

Science as we know it today owes its classifications to how sci-
entists viewed and understood science in the 19th century and
before. As scientific understanding has progressed, the funda-
mental laws of chemistry and physics, as well as other areas of
science, have been unified. In computational science this is more
evident than anywhere else: chemistry and physics simulations
use the very same fundamental numerical methods and strat-
egies. This calls for reflection and a possible reclassification of
the fields of chemistry and physics. At first sight this might

When faced with any complex
chemical question, expressed in
natural language or by means of
advanced techniques of human−
computer interaction such as
virtual-reality immersion, the

computer program would provide
the chemical answer to that

question.
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seem destructive: why destroy the infrastructure that has served
mankind so well in the past? Well, stone and bricks were the
preferential building materials in New York after the Great Fire
in 1835. However, as building space was exhausted, more living
and office space could not be added by simply adding a new
floor to an existing house. The stone and brick technology had
come to a dead end. Buildings had to be torn down to make
space for buildings using a completely different paradigm: the
skyscrapers based on the use of steel frames. We suggest that
the matter simulation (r)evolution will call for a healthy reclas-
sification of the scientific fields away from classification based
on structure toward functionalities.
The opposite side of the spectrum of chemical understanding

lies on the scribblings by organic chemists in blackboards, also
known as arrow-pushing diagrams. These conceptual tools have
led to several advances in the field of organic chemistry. At the
interface of quantum theory with conceptual learning, ideas
such as the Woodward-Hoffman rules100 or frontier orbital theory
have proven themselves invaluable tools for our understanding of
chemical processes.
It goes without saying that the developments in science will

have paramount implications for the educational system, too.
Can we today be so complacent with respect to the expected
changes in science that we continue educating students in skills

which we expect to be automated in the not so distant future?
Of course not! There will have to be a parallel development in
the educational system. Not only will the educational system
change the curriculum to adapt to the new scientific reality.
At the same time the educational system will have to adapt to
the new information technology (IT) reality: all information is
available at your screen by the touch of a screen, a voice com-
mand, or even a thought. Pedagogic adaptation will be natural,
active rather than passive learning will be an instrumental part
of a progressive educational system, and the flipped classroom
will be the norm rather than the exception.
As a final remark, we emphasize that we clearly see the mas-

sive effort required in future research and education that it will
take to push the existing theories and technologies further to
accomplish the grand challenges ahead of us. Undoubtedly, a
collaborative international, interdisciplinary effort in research
and education is necessary. This cannot be done alone by a few
research groups. This is a call to arms for the computational sci-
entists to continue innovating using all the new tools available
to us on a daily basis.
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