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Abstract

Background—Cannabis abuse has been associated with psychopathology, including negative 

emotionality and a higher risk of psychosis, particularly with early age of initiation. However, the 

mechanisms underlying this association are poorly understood. Because aberrant dopamine (DA) 

signaling is implicated in cannabis-associated psychopathology, we hypothesized that regular 

cannabis abuse (CA) would be associated with altered resting functional connectivity in dopamine 

midbrain-striatal circuits.

Methods—We examined resting brain activity of subcortical regions in 441 young adults from 

the Human Connectome Project, including 30 CA meeting DSM criteria for dependence, and 30 

controls matched on age, sex, education, BMI, anxiety, depression, and alcohol/tobacco usage.

Results—Across all subjects, local functional connectivity density (lFCD) hubs in subcortical 

regions were most prominent in ventral striatum, hippocampus, amygdala, dorsal midbrain, and 

the posterior-ventral brainstem. As hypothesized, CA showed markedly increased lFCD relative to 

controls in ventral striatum (where nucleus accumbens is located) and midbrain (where substantia 

nigra/ventral tegmental nuclei are located) but also in brainstem and lateral thalamus. These effects 

were observed in the absence of significant differences in subcortical volumes, and were most 

pronounced in the individuals who began cannabis use earliest in life and who reported high levels 

of negative emotionality.

Conclusions—Together, these findings suggest that chronic cannabis abuse is associated with 

changes in resting brain function, particularly in dopaminergic nuclei implicated in psychosis but 

that are also critical for habit formation and reward processing. These results shed light on 

neurobiological differences that may be relevant to psychopathology associated with cannabis use.
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Introduction

Cannabis is one of the most widely used addictive substances in the United States, with 44% 

of individuals over the age of 12 reporting cannabis use at least once in their lifetime (1). 

Despite current efforts to legalize cannabis, little is known about the long-term effects of 

cannabis abuse (CA) on brain function and neuropsychiatric outcomes. Of particular concern 

has been the association between regular CA and psychiatric symptoms such as amotivation, 

negative emotionality (2, 3) and a heightened risk for psychosis (4). Indeed, CA was 

associated with up to a 6 fold increase in the risk of schizophrenia in early-onset users (5, 6) 

and with the use of cannabis with high THC (7). The increased risk remains after controlling 

for other substances of abuse and for familial risk of psychosis (8). Aberrant dopaminergic 

function in the midbrain-striatal circuitry, a hallmark feature of schizophrenia, may underlie 

this association (9). Accordingly, CA with genetic variants that confer high midbrain-striatal 

dopamine (DA), including the DRD2 rs1076560 T allele, the DAT1 3′ 9-repeat allele, and 

the AKT1 rs2494732 C allele, have an increased risk of psychosis compared with CA that 

do not have these genetic variants (10–12). However, the effects of chronic CA on the 

functional organization of subcortical regions modulated by DA, and their relevance for 

psychiatric symptoms, is poorly understood.

Resting-state functional magnetic resonance imaging (rsfMRI) offers a non-invasive method 

for probing the functional connectedness of neural circuits. By measuring correlations 

among spontaneous low-frequency blood-oxygen-level dependent (BOLD) signals, studies 

have revealed the involvement of functional changes in subcortical circuits in psychiatric 

diseases including schizophrenia. For instance, functional connectivity between reward 

processing regions, such as nucleus accumbens (NAc) and orbitofrontal cortex (OFC), 

appears to be related to disrupted DA function, and as such, has clinical relevance: higher 

intrinsic connectivity correlated with amotivation syndrome (13) and with the duration that 

schizophrenia had been left untreated (14). Intriguingly, a similar pattern of NAc-OFC 

hyperconnectivity was reported in CA (15). However, the relevance of these effects for 

psychopathology in CA is unknown. Further, prior investigations in CA have relied mainly 

on seed-based connectivity analyses.

In contrast, local functional connectivity density (lFCD; the size of a local cluster of 

correlated voxels) is a data-driven method for identifying functional hubs in the brain (16). 

lFCD accounts for up to 70% of resting brain metabolism (17), and therefore is an index of 

local brain activity that has superior spatiotemporal resolution to PET imaging. We recently 

used this method to identify functional connectivity changes that were associated with 

cognitive and mood-related behaviors in heavy drinkers (18). To our knowledge, no studies 

have examined the effects of CA on subcortical functional hub organization, and its 

relevance to negative emotionality, which is elevated in CA (3) and schizophrenia (19). 
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Intriguingly, recent studies using a very similar approach found subcortical 

hyperconnectivity in a cohort of 95 individuals with Schizophrenia (20). We hypothesized 

similar effects may be observed in CA. To test this hypothesis, we took advantage of the 

large dataset produced by the Human Connectome Project (21). While the HCP does not 

have targeted measures that specifically assess psychosis, they do offer measures of negative 

emotionality, a symptom shared between CA and Schizophrenia (2, 22) that we have 

previously found to be associated with subcortical dopaminergic function in CA (3). Thus, 

while the present study does not directly study individuals with schizophrenia, negative 

emotionality is relevant in light of the emerging view that psychiatric disorders represent 

clusters of symptoms and traits that are elevated over a spectrum of normal functioning (23–

26), and that elevated negative emotionality predicts development of psychosis (27). We 

were particularly interested in one aspect of negative emotionality: symptoms of alienation 

(beliefs that others wish them harm, and that they are deceived by friends), after our recent 

investigation demonstrated that this may be particularly affected in CA and associated with 

aberrant brain function (2).

Materials and Methods

Participants

We analyzed data from the S500 release (https://www.humanconnectome.org/

documentation/S500/index.html) of the WU-Minn HCP Consortium (21). We only included 

participants who had a) complete structural and rsfMRI imaging data that passed a quality 

assurance check, and b) complete measures of cognitive function and emotionality (total 

n=441 participants). The HCP initiative studied young adults aged 22–35 from a wide range 

of backgrounds and behavioral profiles representative of the population at large. Thus, while 

all participants are considered generally healthy, participants with sub-clinical psychiatric 

symptomatology and recreational drug use are included.

Of the 441 participants, 36 met the DSM-IV criteria for cannabis dependence (see 

Supplementary Material for a description). Three participants were excluded for comorbid 

alcohol dependence and one was excluded for anxiety and depression ratings > 3 SD from 

the group mean. Recent studies have indicated that it is critical in studies of cannabis abuse 

to select a well-matched control group, particularly on measures of alcohol and tobacco 

usage, e.g., (28). Therefore, we matched groups on age, sex, education, BMI, anxiety, 

depression, and alcohol and tobacco usage (we calculated composite tobacco/alcohol usage 

the same way as a recent study of HCP data; see Supplementary Material and (29)). Two 

subjects from each group were excluded to ensure groups were matched on tobacco usage 

(Supplementary Material), therefore the final sample included 30 CA and 30 controls; 

demographics and statistical tests are presented in Table 1.

Behavioral Measures of Interest

We examined data related to cognitive function and negative emotionality, given the interest 

in potential chronic effects of cannabis in these domains (30). Participants completed various 

NIH toolbox measures as part of the HCP. We were particularly interested in relating the 

current work to our previous findings that CA are vulnerable to feelings of alienation, i.e. the 
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belief that others wish them harm, and that they are betrayed or deceived by friends (2). 

However, our previous work used the Multidimensional Personality Questionnaire (MPQ) 

and this was not administered as part of the HCP protocol. Therefore, we attempted to find 

analogous measures for the three main domains of the MPQ: stress reactivity, aggression, 

and alienation. For stress reactivity, we used the “perceived stress” measure; for aggression, 

we averaged together the Z-scores of “Anger Hostility” and “Anger Aggression” (i.e., one’s 

own behavior in the anger and aggressive domains); and for alienation we averaged together 

the Z-scores of “Perceived Hostility” and “Perceived Rejection” (i.e., how one perceives 

others behaving towards them). We then averaged together these stress, aggression, and 

alienation measures together for a composite negative emotionality score. All three domains 

were included to examine if the effects were specific to alienation. More comprehensive 

descriptions of cognitive and emotional measures are available in Supplementary Material 

and https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public

+500+Subject+Release.

MRI image acquisition and preprocessing

All brain images were collected on a Siemens 3T “connectome Skyra” scanner with a 32-

channel coil at Washington University in St. Louis. T1- and T2-weighted anatomical scans 

were acquired (FOV=224 mm, matrix=320, 256 slices, 0.7 mm isotropic voxels). rsfMRI 

scans were acquired with an EPI sequence (Multiband factor = 8, TR = 720 ms, TE = 33.1 

ms, flip angle = 52°, FOV = 208 mm, 104 × 90 matrix, 72 slices of 2 mm isotropic voxels, 

no gap). Two sessions were completed with two rsfMRI scans (one LR and one RL phase 

encoding) in each session. Each scan was 14:33 min, for a total of 54:15 min. For rsfMRI, 

participants were instructed to lie with eyes open, to relax and look at a white cross on a 

dark background, think of nothing and to not fall asleep. For further details on image 

acquisition, see https://www.humanconnectome.org/documentation/S500/

HCP_S500+MEG2_Release_Appendix_I.pdf.

For analysis of rsfMRI data, we used the “minimal preprocessing” datasets 

(hp2000_clean.nii files), where preprocessing included: a) gradient distortion correction, b) 

rigid body realignment, c) field map processing, d) nonlinear normalization to MNI space, e) 

high-pass filtering with independent component analysis (ICA)-based denoising, and f) brain 

masking. In our own subsequent preprocessing, we removed timepoints that were severely 

affected by motion using a ‘scrubbing’ approach (Supplementary Material). Remaining 

motion effects on fMRI time series were regressed out using the six translation and rotation 

regressors. Finally, band-pass temporal filtering (0.01–0.10 Hz) was applied. lFCD was 

computed separately on each of the four runs of processed, unsmoothed data, masked by 

each participant’s FreeSurfer subcortical parcellation (wmparc.2.nii.gz), which included 

bilateral thalamus, caudate, putamen, pallidum, amygdala, nucleus accumbens, 

hippocampus, midbrain and brainstem (see Local FCD section below). Finally, the four 

resulting lFCD maps (LR/RL; REST1/REST2) were averaged together and averaged images 

were smoothed at 2mm FWHM.
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Local FCD (lFCD) analysis

The Pearson correlation was used to assess the strength of functional connectivity, Cij, 

between voxels i and j. A positive correlation threshold of r = 0.2 (sufficient to Bonferroni 

correct for the number of correlations performed in the subcortical mask, p < 1 × 10−4) was 

used to compute the binary connectivity coefficients, aij = 1 (if Cij > 0.2) or aij = 0 (if Cij ≤ 

0.2). This threshold was lower than previous investigations (16) to have sensitivity to detect 

effects in subcortical regions that have noisier signals than the neocortex, and hence have 

weaker observed resting-state correlations (31). The local FCD (or ‘local degree’) for voxel i 

was computed as the size of a continuous cluster of voxels with aij = 1, that are connected by 

surface. A ‘growing’ algorithm was used for time-efficient estimation of lFCD (16).

Seed-based functional connectivity analysis

To examine functional connectivity differences with other regions of the brain, we computed 

seed-based connectivity using the same methods as our previous work (32, 33; 

Supplementary Material).

Statistical analysis

Second-level statistical analyses were conducted in SPM12 (http://

www.fil.ion.ucl.ac.uk/spm/software/) for imaging data and in Graphpad Prism 7.02 (San 

Diego, CA) for behavioral data. First, to examine lFCD across the larger population, we 

conducted a one-sample T-test of lFCD across all 441 participants. Next, to compare CA 

with the matched control group, we conducted a two-sample T-test of lFCD between groups. 

These analyses were thresholded at p < .001, uncorrected, with a cluster-level correction of p 
< .05 family-wise error (FWE) corrected, and a minimum cluster size of k = 100 voxels. To 

control cluster-level type I error rates (34), we calculated cluster corrections with the 

Statistical nonparametric mapping toolbox (SnPM13: http://warwick.ac.uk/snpm; 5000 

permutations). Because lFCD has a power law distribution (16), we also conducted analyses 

with log-transformed lFCD values; this did not alter the findings, and so we report these data 

in Supplementary material. We also conducted two-sample T-tests on the volume of 

subcortical nuclei (from FreeSurfer output), as well as measures of cognition and negative 

emotionality. To examine if subcortical lFCD had relevance for aberrant cognition and/or 

negative emotionality in CA, we conducted correlation analysis between lFCD in regions 

showing significant group differences and in behavioral measures showing significant group 

differences.

Results

Demographics and behavioral measures

Demographics and lifestyle factors with descriptive statistics are presented in Table 1. The 

groups did not significantly differ on any of the DSM-oriented scales, including depression, 

ADHD, panic disorder, agoraphobia, anxiety, and somatic problems (all p’s > .15), except 

the CA group reported higher levels of antisocial behavior (p = .05) and more childhood 

conduct problems (p = .008). Cognitive scores and measures of negative emotionality are 

presented in Table 2. Notably, while there were no obvious differences in cognitive 
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performance, the CA group showed significantly higher levels of negative emotionality 

(t(58) = 2.14, p = .036), particularly alienation (t(58) = 2.34, p = .023), in line with our 

previous work (2, 3).

Subcortical Volume

Volumetric data and descriptive statistics are reported in Supplementary Table S1. In line 

with recent work (28, 29), no subcortical regions showed significantly different volume 

between CA and controls. However, CA did show a trend towards smaller volume of the left 

hippocampus (p = .068), consistent with findings of structural hippocampal abnormalities by 

prior studies in CA (35).

lFCD Analyses

We first conducted a voxelwise one-sample t-test of lFCD across all 441 participants. 

Results showed widespread lFCD; to summarize, peaks were observed in ventral striatum, 

hippocampus, amygdala, midbrain, and the posterior-ventral brainstem (Figure 1; see 

Supplementary Figure S2 for maps restricted to CA and control groups). We then examined 

group differences in lFCD between CA and matched controls. In voxelwise two-sample T-

tests, CA demonstrated significantly higher lFCD in the ventral striatum, dorsal midbrain 

(including substantia nigra and ventral tegmental area), brainstem, and lateral thalamus (all 

p’s < 1×10−5, Figure 2a,b). Motion estimates were highly similar between the CA and 

control groups (mean framewise displacement across all images for CA: 0.171 ± 0.05, and 

for controls: 0.163 ± 0.05; t(58) = −.557, p = .580); results were nearly identical when 

including motion or FreeSurfer-estimated subcortical volume as covariates in the model. 

Because the lFCD values across these four ROIs was highly correlated across subjects (mean 

bivariate correlation: r = 0.78), we averaged together the lFCD values across the four ROIs 

to increase statistical power; subsequent analyses refer to this averaged value. This averaged 

lFCD value did not significantly correlate with FreeSurfer subcortical volume estimates 

across subjects (r = −.10, p = .432).

In whole-brain functional connectivity analysis using the four clusters from Figure 2A as 

seed regions, no significant between-group differences emerged at an exploratory threshold 

of p < .005 uncorrected.

Early onset of cannabis abuse in life is associated with a higher risk for poor 

neuropsychiatric outcomes (36). Therefore, we ran a one-way analysis of variance (ANOVA) 

between subcortical lFCD and self-reported age of first use. Indeed, subcortical lFCD was 

significantly different across age of first use, F(4,55) = 4.13, p = .005, such that higher lFCD 

was associated with earlier age of cannabis use onset (Figure 3a). In a two-way ANOVA 

including group and sex as factors, there was no significant main effect of sex on lFCD 

(F(1,56) = .49, p = .488), nor was there a significant group by sex interaction (F(1,56) = .09, 

p = .761). Finally, because CA reported significantly higher feelings of alienation than 

controls, in line with our previous work (2), we ran an across-subject correlation between the 

alienation scores and subcortical lFCD. CA showed a significant correlation between lFCD 

and alienation scores (r = .43, p = .019), whereas the control subjects did not (r = −.09, p = .

615) (Figure 3b). The correlation among CA may be most strongly driven by lFCD near the 
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midbrain; see Supplementary Figure S3 for a voxelwise regression analysis. These results 

remained significant when conducting a partial correlation to control for the FreeSurfer-
estimated subcortical volume of each subject (CA: r = .43, p = .04; controls: r = .02, p = .

895). The difference in slopes between CA and controls was significant, F(1,56) = 5.95, p = .

018.

Discussion

Despite the high prevalence of cannabis use, little is known about potential chronic effects of 

CA on brain function and behavior. Here, we demonstrate that heavy CA is associated with a 

marked increase in subcortical lFCD, including the midbrain (where the main DA nuclei are 

located) and the ventral striatum, relative to a well-matched control group. These effects are 

not explained by volumetric differences, and they associate with critical features of CA: 

hyperconnectivity was most pronounced in early-onset CA, a demographic that is 

particularly vulnerable to the harmful effects of CA (36), and in those reporting the highest 

levels of negative emotionality, particularly alienation. These findings indicate that the 

resting functional organization of the subcortical regions is altered in CA, and this may have 

relevance for some of the adverse effects of early-onset CA, including emotional disturbance 

and increased risk for psychosis.

Increased lFCD in the ventral striatum (VS) and midbrain, including regions where the 

substantia nigra and ventral tegmental area are located, may be related to hyperdopaminergia 

in CA. Indeed, using PET and [11C]raclopride to measure DA-induced changes to 

methylphenidate we found that CA when compared to controls showed increased DA release 

in the midbrain, though they showed an attenuated response in striatal regions (3). 

Functional connectivity between VS and VTA is higher in patients with Schizophrenia with 

symptoms of hyperdopaminergia, such as auditory and visual hallucinations, than in patients 

who do not experience these symptoms (37). Further, in healthy adults and in rats, drugs that 

increase (levodopa) and decrease (haloperidol) DA signaling have been demonstrated to 

increase and decrease functional connectivity of these regions, respectively (38, 39). 

However, it is important to note that the findings from these seed-based connectivity studies 

are likely network-specific, because abnormal DA levels attenuate the connectivity between 

different resting state networks (33, 39). This may explain why CA show hypoconnectivity 

between nodes of the mesolimbic reward network and nodes of the salience network; e.g. 

between the dopaminergic midbrain and insula (40) and between NAc and dorsal anterior 

cingulate cortex (41). Interestingly, our seed-based connectivity analysis from these regions 

did not yield significant group differences. Thus, while previous studies have observed long-

range subcortical-cortical connectivity alterations in CA, the current results appear to be 

confined to local hub differences in subcortical circuits. There are at least two possible 

explanations for this. First, this study carefully controlled for factors such as alcohol and 

tobacco usage, which may have influenced findings from previous studies. Second, the HCP 

uses a high-resolution sequence with an aggressive multiband factor, and this contributes to 

lower subcortical signal-to-noise ratio than is observed with low-resolution sequences. lFCD 

is more resilient to noise than seed-voxel correlations because lFCD capitalizes on locally 

shared synchrony and high sampling rate, which makes it possible to reach significant 

correlations in the absence of significant long-range synchrony. Nevertheless, our lFCD 
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results seem to be broadly in line with previous studies using the FCD technique, although 

evidence is limited. For instance, subcortical global FCD (a measure that is highly correlated 

with lFCD, (42)) is increased in schizophrenia relative to healthy controls ((20), but see (35), 

where the dopaminergic medication status of the patients was unknown).

On the other hand, increased lFCD in the VS and midbrain may be a general consequence of 

pathology to these circuits, as this pattern is observed in various conditions with aberrant DA 

signaling. Subcortical lFCD is increased in aging (44), ADHD (45), and cocaine use 

disorder (46), which are all implicated in altered dopaminergic function (47–49). These 

results are also generally in line with the notion that altered connectivity in high-cost hubs is 

linked to neuropsychiatric disease burden (50). An important next step is to examine how 

tonic, resting subcortical hyperconnectivity may have consequences for phasic DA-

dependent processes that are altered in CA, such as punishment-based learning. CA show 

altered subcortical activations and impaired learning from non-drug rewards and punishment 

(51, 52). If higher resting subcortical lFCD is indeed due to higher tonic DA transmission, 

then this increased baseline activity would confer weaker ability to generate the “dips” in 

activity necessary to learn from negative outcomes, in line with extant models of 

dopaminergic function (53). Future studies with combined PET-fMRI could examine this 

possibility.

We also observed heightened lFCD in CA relative to controls in the pulvinar nucleus of the 

thalamus and in the brainstem, regions critical for sensory processing and maintenance of 

autonomic functions, respectively. CA is hypothesized to increase thalamic neuronal 

excitability, disrupt burst firing patterns and impair thalamocortical connectivity, leading to 

impaired sensory processing (54). In correspondence, we find increased local thalamic 

connectivity while others found decreased thalamocortical connectivity in CA (55), and both 

are exacerbated in early-onset CA. In addition, CA show hyperactive thalamic responses to 

cannabis cues, which correlate with subjective craving of cannabis and are thought to 

contribute to sensorimotor deficits (56, 57). There has been comparatively less attention on 

changes to brainstem function in CA, perhaps because this region has lower concentrations 

of cannabinoid receptors than the basal ganglia (58). Yet CA impacts functions regulated by 

the brainstem region identified here, which includes the ventral raphe nuclei extending into 

the nucleus of the solitary tract. For instance, regular CA disrupts rapid eye movement 

(REM) sleep and increases insomnia (59, 60) and negatively influences mood (61). 

Interestingly, in individuals with post-traumatic stress disorder, sleep disturbance is 

associated with heightened brainstem glucose metabolism (62), a measure that strongly 

correlates with lFCD (17). More work is needed to describe how changes to brain functional 

organization in CA have relevance for sensory and autonomic functions.

Finally, subcortical hyperconnectivity was most pronounced in early-onset CA and 

correlated with feelings of alienation (especially in the midbrain). CA is thought to be 

particularly detrimental in adolescence because the brain is in a critical period of increased 

myelination and extensive synaptic pruning (63). Subcortical cannabinoid receptor 

development is ongoing at this time, and exogenous cannabis perturbs the normal 

development of the mesolimbic system, which is thought to contribute to psychopathology 

(64). It is well-established that early-onset CA have poor cognitive and emotional outcomes 
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(36), but the neural basis of this phenomenon is not well understood. Prior rsfMRI studies 

suggested that increased functional connectivity within cortical networks involved in self-

awareness, including the salience and default-mode networks, could lead to aberrant 

emotional/motivational processing (40). We also recently showed that glucose metabolism in 

inferior frontal gyrus negatively correlated with feelings of alienation in CA (2). These 

findings, together with the current data provide convergent evidence supporting the notion 

that impaired prefrontal regulation of subcortical activity contributes to the negative 

emotionality seen in addictions (3, 47).

The data presented here build on the small body of work in CA using HCP data. An initial 

investigation using structural MRI data found that effects of cannabis exposure on 

subcortical volumetry were minimal, but critically, they concluded that cannabis effects may 

be stronger in DA-rich regions including the VS and in the most frequent CA (65). Another 

diffusion-tensor imaging study examined 466 individuals reporting at least one lifetime 

experience with cannabis, and found that frequency of cannabis use did not associate with 

cortical volumes, but did associate with changes to the shape of the amygdala and 

hippocampus (29). Most notably, they observed that early-onset CA was associated with 

altered shape of the nucleus accumbens and loss of white matter integrity throughout the 

cortex. To our knowledge, the present study is the first to extend HCP investigations of CA 

to rsfMRI data. Because the HCP project is open access, there is a rich opportunity for 

further examination of the chronic effects of CA using a common dataset.

Limitations

The HCP does not have in vivo measures of subcortical DA release or receptor function, and 

so we could not directly assess the hypothesis of hyperdopaminergia and psychosis risk in 

CA. Resting-state lFCD is an indirect measure of neuronal activity and the true 

neurobiological basis of this measure needs further exploration. Further, how exactly 

hyperdopaminergia manifests at the neural level is disputed. While CA with psychosis do 

not show elevated striatal DA release, stimulant-induced changes in DA correlate with 

psychosis, suggesting that hyperdopaminergia may be more related to postsynaptic 

hypersensitivity than to total levels of synaptic DA (66, 67). Nevertheless, the final release of 

the HCP will include single-nucleotide polymorphism (SNP) data for all participants; future 

studies should examine how genetic differences predicting D2/3 function, e.g. Taq1A and 

C957T SNPs, predict risk for CA and subcortical lFCD, which would help shed light on this 

issue. Additionally, it remains unknown whether emotional disturbance is directly caused by 

CA or if individuals use cannabis to self-medicate feelings of negative emotionality (30). 

Finally, we cannot rule out the possibility that subcortical hyperconnectivity may be 

associated with cannabis withdrawal and the extent to which it abates with prolonged 

abstinence, as has been observed with other functional connectivity abnormalities in CA 

(41).

Conclusion

Despite increased usage of cannabis worldwide, little is known about the neuropsychiatric 

effects of CA, especially in early-onset users. Here we show that resting connectivity of 

subcortical functional hubs, particularly within dopaminergic nuclei implicated in 
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psychopathology, is greatly increased in CA. This pattern was exaggerated in individuals 

who began using in early adolescence and were associated with high levels of negative 

emotionality. Thus, subcortical functional connectivity may be a useful marker for tracking 

the development of psychopathology with prolonged CA.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Subcortical lFCD results across the larger population of 441 HCP participants. Maps are 

thresholded at T > 10, for visualization. Hot colors indicate regions with high local 

connectivity density.
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Figure 2. 
Subcortical regions where lFCD was significantly higher in CA than controls (two-sample t-
test, CA > CTRL). Results are thresholded voxelwise at p < .001, with a nonparametric 

cluster-level threshold of p < .05 family-wise error (FWE) corrected, using SnPM13. See 

Table 3 for coordinates of each cluster in MNI space. Error bars represent standard error of 

the mean (SEM). NOTE: SN/VTA = Substantia Nigra/Ventral Tegmental Area; VS = Ventral 

Striatum

Manza et al. Page 15

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Associations between subcortical lFCD and A) age at first use of cannabis and B) self-

reported feelings of alienation. The difference in slopes between CA and CTRL groups was 

significant, p = .018.

Manza et al. Page 16

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Manza et al. Page 17

Table 1

Demographics of the CA and control samples. Values are reported as mean ± standard deviation. Depression, 

anxiety, tobacco, and alcohol use values were converted to Z-scores based on the larger population of 441 

participants. See Tobacco and Alcohol Use section in Supplementary Material for a description of how the 

combined past- and present use measures were derived.

CA CTRL t-test p-value

Age 29.17 ± 3.07 30.23 ± 2.74 0.161

Sex 22 Male 20 Male χ2 = 0.573

Edu 14.6 ± 1.89 14.6 ± 1.92 1.000

BMI 27.17 ± 3.6 26.83 ± 4.89 0.757

DSM Depression 0.03 ± 0.86 −0.13 ± 0.83 0.452

DSM Anxiety 0.07 ± 1.04 −0.16 ± 0.95 0.383

Alcohol Use (Composite Z) 0.27 ± 0.4 0.15 ± 0.38 0.250

Tobacco Use (Composite Z) 0.57 ± 0.83 0.32 ± 0.85 0.260
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Table 2

Scores on measures of cognition and negative emotionality in CA and controls. Values are reported as mean ± 

standard deviation. Raw values for each measure were converted to Z-scores based on the larger population of 

441 participants.

CA CTRL t-test p-value

Cognition (Composite Z) 0.02 ± 0.49 −0.05 ± 0.49 0.572

Episodic Memory −0.33 ± 1.16 −0.11 ± 0.99 0.440

Working Memory −0.07 ± 0.9 0.17 ± 1.08 0.344

Flexibility 0.17 ± 0.96 −0.05 ± 0.82 0.343

Inhibitory Control 0.03 ± 0.97 0.09 ± 0.93 0.799

Processing Speed 0.1 ± 0.85 −0.09 ± 1.25 0.494

Delay Discounting 0.02 ± 0.85 −0.28 ± 1.06 0.229

Fluid Intelligence 0.28 ± 0.79 −0.03 ± 0.96 0.183

Spatial Orientation 0.22 ± 0.98 0.01 ± 0.96 0.393

Verbal Episodic Memory −0.24 ± 1.04 −0.18 ± 0.93 0.799

Negative Emotionality (Composite Z) 0.35 ± 0.74 −0.05 ± 0.71 0.036

Aggression 0.42 ± 0.96 0.14 ± 0.82 0.240

Alienation 0.43 ± 0.85 −0.1 ± 0.92 0.022

Stress 0.2 ± 1.05 −0.2 ± 1.02 0.138
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