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Neutralization of CD95 ligand protects the
liver against ischemia-reperfusion injury
and prevents acute liver failure
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Abstract
Ischemia-reperfusion injury is a common pathological process in liver surgery and transplantation, and has
considerable impact on the patient outcome and survival. Death receptors are important mediators of ischemia-
reperfusion injury, notably the signaling pathways of the death receptor CD95 (Apo-1/Fas) and its corresponding
ligand CD95L. This study investigates, for the first time, whether the inhibition of CD95L protects the liver against
ischemia-reperfusion injury. Warm ischemia was induced in the median and left liver lobes of C57BL/6 mice for 45 min.
CD95Fc, a specific inhibitor of CD95L, was applied prior to ischemia. Hepatic injury was assessed via consecutive
measurements of liver serum enzymes, histopathological assessment of apoptosis and necrosis and caspase assays at
3, 6, 12, 18 and 24 h after reperfusion. Serum levels of liver enzymes, as well as characteristic histopathological changes
and caspase assays indicated pronounced features of apoptotic and necrotic liver damage 12 and 24 h after ischemia-
reperfusion injury. Animals treated with the CD95L-blocker CD95Fc, exhibited a significant reduction in the level of
serum liver enzymes and showed both decreased histopathological signs of parenchymal damage and decreased
caspase activation. This study demonstrates that inhibition of CD95L with the CD95L-blocker CD95Fc, is effective in
protecting mice from liver failure due to ischemia-reperfusion injury of the liver. CD95Fc could therefore emerge as a
new pharmacological therapy for liver resection, transplantation surgery and acute liver failure.

Introduction
Hepatic ischemia-reperfusion injury (IRI) is a patho-

physiological process in liver surgery and transplantation,
as well as in trauma, hypovolemic shock and sepsis. In an
effort to ameliorate the problem of the severe shortage of
available organs for transplantation, grafts from extended
criteria donors, which are often highly susceptible to IRI,
are increasingly being used for transplantation. Thus,

there is an urgent clinical need for protective strategies
against IRI in order to promote better graft function1–5.
IRI of the liver is mediated by a complex series of

mechanisms, including the production of reactive oxygen
species (ROS), as well as local and systemic inflammatory
responses, which are mediated by the release of pro-
inflammatory cytokines from innate immune cells (i.e.
Kupffer cells). Furthermore, activated macrophages, cytotoxic
T lymphocytes and natural killer (NK) cells tend to migrate to
the liver6, resulting in the death of endothelial lining cells and
hepatocytes via a multistep process involving both apoptosis
and necrosis7–10. Given the prolific expression of death
receptors on hepatocytes, primarily of the death receptor
CD95 (Apo-1/Fas), the liver is particularly susceptible to
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death receptor-mediated apoptosis7,11–14. Upon activation by
the CD95 ligand (CD95L), the oligomerization of the CD95
death receptor leads to the recruitment of cytoplasmic
adaptor proteins, which activate apical caspases of the apop-
totic signaling pathway, mainly caspase-8 and caspase-9.
These subsequently mediate the recruitment of downstream
effector caspases, such as caspase-3, in the execution phase of
apoptosis15–20.
Using a mouse nonlethal hepatic ischemia-reperfusion

(IR) model, we assessed the role of the CD95 signaling
pathway for the development of IRI. Based on the
assumption that the CD95 death-receptor system might
essentially determine IR-related liver damage, we set up a
novel intervention strategy with a CD95Fc decoy con-
struct consisting of the extracellular domain of the CD95
receptor and the Fc domain of an Immunoglobulin G
(IgG) antibody21. CD95Fc binds to the CD95L, thereby
inhibiting the activation of the CD95 pathway by CD95L.
CD95Fc-mediated blocking of the CD95 signaling path-
way significantly attenuated CD95-mediated apoptosis
and toxicity following IRI. Inhibition of the
CD95 signaling pathway may thus represent a novel and
promising approach to protect the liver against IRI-
related diseases.

Materials and methods
Reagents
The CD95Fc decoy construct, herein referred to as

CD95Fc, consists of the extracellular domain of the CD95
receptor and the Fc domain of an IgG antibody. CD95Fc
binds to the CD95L, thereby inhibiting the activation of the
CD95 pathway by CD95L. CD95Fc was kindly provided by
Apogenix GmbH (Heidelberg, Germany). IgG was pur-
chased from Talecris Biotherapeutics (Frankfurt, Germany).

Animal model
Ten-week-old male C57BL/6 mice (Charles River

Laboratories, Sulzfeld, Germany) were used in all
experiments. The animals received humane care, had free
access to food and water, and were kept on a 12-h light/
dark cycle in a temperature-controlled room. The Animal
Care and Use Committee of the University of Heidelberg
approved the protocol.
Normothermic ischemia was applied to the liver of the

animals followed by reperfusion, as described pre-
viously22,23. The animals were anesthetized briefly with
xylazine 10mg/kg and ketamine 100mg/kg by intraper-
itoneal injection. The animals’ body temperature was
maintained with a warming pad. After median lapar-
otomy, the liver was mobilized. The median and left liver
lobes, which together make up about 70% of the liver
mass, were clamped with an atraumatic microvascular
clamp (Fine Science Tools, Heidelberg, Germany) at its
base, including all structures of the portal triad (the

hepatic artery, the portal vein, and the bile duct). Using
this method, an external shunt can be avoided because the
blood flow is directed through the right and caudate lobes,
thereby preventing mesenteric venous congestion22,24.
Reperfusion was initiated by removal of the clamp after
45 min. Sham-operated animals underwent identical
anesthetic and surgical procedures, but had no clamp
application.
The animals in the treatment group received a total of

two intravenous (IV) injections of CD95Fc (30 mg/kg) at
12 h and at 30min before warm ischemia. Control ani-
mals received an analogous dosage of IgG (30 mg/kg). The
animals were sacrificed at 3, 6, 12, 18 and 24 post ischemic
hours and blood and tissue samples were harvested.
Serum levels of alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and lactate dehydrogenase
(LDH) increased progressively after the 45min ischemic
insult and peaked at 12 h after reperfusion. Thereafter,
serum levels decreased at 18 and 24 post ischemic hours
in accordance with enzymatic half-life variations. We
observed a significant decrease of the levels of ALT, AST
and LDH in CD95Fc-treated animals in comparison with
IgG-treated animals for the time points of 6, 12, 18, and
24 post ischemic hours (Fig. 2). The time points of 12 and
24 h of reperfusion were chosen for further serological
and histopathological analyses.
Whole blood samples were allowed to clot and then

centrifuged at 1000×g for 5 min. Serum was collected and
stored at −80 °C. Liver sections were either fixed in 4%
phosphate-buffered formalin and subsequently embedded
in paraffin or snap frozen in liquid nitrogen and stored at
−80 °C for histological analysis. The experimental design
is outlined in Fig. 1a, b.

Assays
Serum ALT, AST and LDH were measured in the

Institute of Clinical and Laboratory Medicine at the
University Hospital Heidelberg according to standard
procedures.
For detection of caspase activity, caspase-3, caspase-8

and caspase-9 fluorometric assays (R&D Systems, Wies-
baden, Germany) of protein extracts of homogenated
tissue from post ischemic livers were performed, as pre-
viously described25.

Histology
For terminal deoxynucleotidyl transferase-mediated

dUTP nick-end labeling (TUNEL) staining, cryosections
of the mouse livers (5 µm in thickness) were stained using
the In Situ Cell Death Detection Kit (Roche Diagnostics,
Indianapolis, IN, USA), as described in the manufacturer’s
instructions. For subsequent evaluation, slides were
scanned using a NDP NanoZoomer (Hamamatsu Photo-
nics, Japan). The VisioMorph software system
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(Visiopharm, Denmark) was used for automated image
analysis (i.e. staining intensity analysis, quantification, etc.,
as previously described26–28. A specific protocol was
developed to enable the software to distinguish between
TUNEL-positive and TUNEL-negative cells. TUNEL-
negative staining on three heterogenic, full slide sections
(tissue artifacts were excluded from analysis by visual
inspection), and TUNEL-positive staining were defined by
two observers (N.S. and N.H.). Three independent full
slide sections were then used to validate the approach.
After validation, tissue samples from all mice (three full

sections from each mouse and serial sections with spacing
of 30 µm) were included in the analysis. As reproducibility
of corresponding sections from the same mice was
excellent (Spearman’s rank correlation, r= 0.92, p=
0.001), data analyses for all three sections from each
mouse were pooled. For each section, the percentage of
TUNEL-positive tissue surface area was calculated as
follows:

TUNEL� positive tissue surface area= complete section area� background area� tissue artifactsð Þ½ ��100

For evaluation of necrosis, the livers were fixed in 4%
buffered formalin and embedded in paraffin. Sections
(3 µm in thickness) were cut and H&E staining was per-
formed according to standard protocols. Slides were
evaluated without knowledge of the origin of the speci-
mens and with special regard to liver architecture, cellular
changes, and extent of necrosis (% of liver).

Statistical analysis
Variables are expressed as mean values and standard

deviation (S.D.). We applied multivariate analysis of var-
iance (MANOVA) to test for statistical significance. Sta-
tistical analysis was carried out using the SAS software
system (SAS Institute Inc., Cary, NC, USA). A p-value of
less than 0.05 was considered statistically significant.

Results
CD95Fc decreases liver enzymes after hepatic IRI
Using a mouse nonlethal hepatic IRI model, we found

that neutralization of CD95L significantly decreased IR-
induced liver damage assessed by elevated liver enzymes
and LDH. The levels of ALT, AST, and LDH in control
mice reached values of 2727± 1002 U/l, 2713± 1505 U/l
and 6550± 3166 U/l, respectively, whereas the presence of
CD95Fc significantly reduced hepatic injury by 35% for
ALT (p= 0.0014), 40% for AST (p= 0.0074), and 43% for
LDH (p= 0.0064) 12 h after reperfusion in the treated
animals. This effect was still present 24 h after reperfu-
sion. ALT, AST and LDH values were lowered by 46%
(p= 0.0089), 34% (p= 0.0201) and 30% (p< 0.0001),
respectively, in the CD95Fc-treated animals vs. the con-
trol animals (Fig. 2a–c).
Thus, neutralization of CD95L significantly ameliorates

hepatocyte damage of mouse livers which have undergone
IRI.

Neutralization of CD95L exerts hepatoprotective effects
Liver histopathology was assessed for signs of hepatic

injury (Fig. 3a–f). CD95Fc was shown to significantly
decrease the extent of hepatocellular necrosis from 25±
6% in the controls to 10± 4% (p= 0.0008) 12 h after
reperfusion and also from 20± 4% in the controls to 8±
3% (p= 0.0002) 24 h after reperfusion (Fig. 3g). The dis-
tribution of necrosis around perivenous hepatocytes as a
reflection of zonal oxygen gradients in both groups did
not differ. To ascertain the extent of apoptosis, we per-
formed TUNEL staining of the liver sections to determine
DNA fragmentation (Fig. 4a–f). Mice, that were admi-
nistered CD95Fc, showed a 3.25-fold decrease (p<
0.0001) in the number of TUNEL-positive cells compared
to the control mice 12 h after reperfusion and an eight-
fold decrease (p< 0.0001) in the number of TUNEL-

positive cells 24 h after reperfusion (Fig. 4g).
In summary, pathological examination revealed better

preserved lobular structure and significantly less necrosis
and less apoptosis after CD95L neutralization in the
treatment group in comparison to the control group.
Thus, CD95L neutralization diminished otherwise

Fig. 1 Experimental design. a and b Animals received a total of two
IV injections of CD95Fc (30 mg/kg) at 12 h and again at 30 min before
the induction of 45 min of warm ischemia of the median and left
lateral liver lobe (68% of the liver). Control mice received the same
volume of IgG (30 mg/kg) antibody. Mice were sacrificed after 3, 6, 12,
18 and 24 h following reperfusion and blood and tissue samples were
harvested for serological and histological assessment of liver damage.
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abundant hepatocellular necrosis/apoptosis, manifested as
reduced frequency of TUNEL-positive cells within the
liver.

CD95L inhibition using CD95Fc reduces caspase activity in
liver IRI
The treatment of mice with CD95Fc significantly

reduced the activity of caspase-3 by 4.3-fold (p= 0.0013),
of caspase-8 by 2.3-fold (p= 0.0002), and of caspase-9 by

2.1-fold (p= 0.0003) in comparison to the levels in the
control mice. These results were observed after 12 h of
reperfusion in homogenates of post ischemic liver tissue.
In line with a reduction of caspase activity after 12 h of
reperfusion, we also observed a 2.3-fold (p= 0.0039), 1.8-
fold (p= 0.0005) and 1.9-fold (p< 0.0001) decrease of
caspase activity of caspase-3, caspase-8, and caspase-9
activity in CD95Fc-treated mice after 24 h of reperfusion
(Fig. 5a–c).
In summary, neutralization of CD95L protects the liver

against IRI, attenuates liver damage, diminishes apoptosis
and necrosis and thus prevents acute liver failure in mice.
These data highlight the functional importance of the
CD95/CD95L death receptor ligand pathway in protect-
ing the liver from IRI-induced injury.

Discussion
Findings obtained in the present study allow us to

propose a new model for the molecular mechanisms of
action of the CD95L/receptor signaling pathway in IRI of
the liver. Ischemia followed by reperfusion in the liver is a
source of morbidity and mortality after liver transplan-
tation, resection surgery, sepsis or hemorrhagic shock. IRI
is a series of events that result in cell death by apoptosis
and/or necrosis and serious dysfunction of hepato-
cytes10,29. Despite intensive studies, interventions with
clinically proven efficacy remain to be developed. The
understanding of the molecular mechanisms underlying
cell death in hepatic IRI will provide the basis for the
development of new therapeutic strategies for prevention
of IRI and improvement of survival of the graft and patient.
Our manuscript describes the key role of the CD95L/

receptor system in the mediation of cell death after IRI in
the mouse liver. We show here that neutralization of
CD95L with the CD95L-blocker, CD95Fc, is effective in
protecting mice from acute liver failure due to IRI.
CD95Fc could therefore emerge as a new pharmacological
therapy in many clinical settings, such as liver resection,
transplantation surgery, sepsis or shock.
The serum levels of ALT, AST and LDH are subject to

rapid change after IRI to the liver and are clinically used as
indicators of the severity of tissue/liver damage. There-
fore, a distinct temporal pattern of enzyme levels due to
enzyme-specific half-lives following IRI are crucial para-
meters in investigating and describing hepatic failure30.
We observed an outstanding decrease of the levels of
ALT, AST and LDH in CD95Fc-treated animals in com-
parison with IgG-treated control animals.
On the tissue level, the injury detected after transient

clamping of hepatic blood flow, is determined by a com-
plex network and cross talk of multiple molecular and
cellular interactions. The result of these processes is an
initial phase characterized by the release of ROS and
proinflammatory mediators by both Kupffer and

Fig. 2 Serum liver enzymes (transaminases and lactate
dehydrogenase) are reduced by application of CD95Fc. Following
45min of warm ischemia of the median and left lateral liver lobe,
serum was collected after 3, 6, 12, 18 and 24 h from CD95Fc-treated
and control mice. ALT alanine aminotransferase a, AST aspartate
aminotransferase b, and LDH lactate dehydrogenase c were measured
(mean ± S.D., n = 5. *p < 0.0001, MANOVA, between-subject-effect
compared to IgG, time points 3, 6, 12, 18 and 24 h were considered as
repeated measurements)
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sinusoidal endothelial cells6,31–33. ROS lead to oxidative
damage, induction of p53, apoptosis and necrosis of
hepatocytes and endothelial cells. The late phase (6–48 h
after reperfusion) is characterized by neutrophil-mediated
inflammatory responses23,31,32,34–40. Thus, pathways reg-
ulating the cellular redox equilibrium, p53-dependent
apoptosis and cellular death receptors represent potential
targets for novel pharmaceutical interventions to protect
hepatocytes fromIRI-induced cell death.

The death receptors known to mediate hepatocyte
death include the CD95 (Apo-1/Fas), the tumor necrosis
factor receptor 1 (TNF-R1), the tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL)-receptor 1
(TRAIL-R1), and the TRAIL-receptor 2 (TRAIL-R2), all of
which are ubiquitously expressed in the liver7,29,41–44.
Death receptors are activated by their corresponding
ligands (CD95L, TNFα, and TRAIL), which subsequently
trigger intracellular signaling pathways7,8,45,46.

Fig. 3 Hepatocellular necrosis is ameliorated by the application of CD95Fc. Liver injury was induced by 45 min of warm ischemia of the median
and left lateral liver lobe after prior application of two IV injections of CD95Fc (30 mg/kg) or the same volume of IgG (30 mg/kg) antibody at 12 h and
at 30 min before ischemia. After 12 h and again after 24 h of reperfusion, liver tissue was harvested and processed for histopathology. Representative
H&E-stained liver sections (×100 magnification, areas of necrosis marked with an asterisk). a sham, reperfusion 12 h; b IgG, reperfusion 12 h; c CD95Fc,
reperfusion 12 h; d sham, reperfusion 24 h; e IgG, reperfusion 24 h; f CD95Fc, reperfusion 24 h. g Area of necrosis (% of area) (mean ± S.D., n = 6. *p <
0.0001, MANOVA, between-subject-effect compared to IgG, time points 12 and 24 h were considered as repeated measurements)
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ROS, which are produced by both the Kupffer and
sinusoidal endothelial cells soon after reperfusion, are
key players in inducing the up-regulation of CD95L in
hepatocytes via the activation of nuclear factor-κB
(NF-κB)41,47. Furthermore, CD95L is expressed on the
cell surface of activated lymphocytes. Soluble forms of
CD95L, released by polymorphonuclear cells (PMN), may
also be present in the serum15,17,18,48,49.
The interaction of CD95 with its ligand CD95L plays a

predominant role in apoptosis of the liver50. In a

landmark study, the application of the agonistic anti-
CD95 antibody Jo2, lead to massive apoptotic cell death of
hepatocytes, resulting in imminent hepatic failure in
mice51,52. In a study with a rat model of liver IRI, the
number of apoptotic and CD95 positive hepatocytes
gradually increased after reperfusion in parallel with an
increase in the number of neighboring infiltrating CD95L
positive cells. There was a massive intrusion of lympho-
cytes, monocytes, macrophages, PMN, and NK cells,
predominantly around the central vein, 6 h after

Fig. 4 CD95L neutralization protects against apoptosis in ischemia-reperfusion injury of the liver. Liver injury was induced by 45 min of warm
ischemia of the median and left lateral liver lobe after prior application of two IV injections of CD95Fc (30 mg/kg) or the same volume of IgG (30 mg/
kg) antibody at 12 h and at 30 min before ischemia. After 12 h and again after 24 h of reperfusion, liver tissue was harvested and processed for
histopathology. Representative TUNEL-stained liver sections are presented (×100 magnification). a sham, reperfusion 12 h; b IgG, reperfusion 12 h;
c CD95Fc, reperfusion 12 h; d sham, reperfusion 24 h; e IgG, reperfusion 24 h; f CD95Fc, reperfusion 24 h. g Percentage of TUNEL-positive tissue
surface area [%] (mean ± S.D., n = 6. *p < 0.0001, MANOVA, between-subject-effect compared to IgG, time points 12 and 24 h were considered as
repeated measurements)

Al-Saeedi et al. Cell Death and Disease  (2018) 9:132 Page 6 of 9

Official journal of the Cell Death Differentiation Association



reperfusion. The infiltration of inflammatory cells peaked
after 12 h with a concomitant rise in the quantity of the
liver enzymes in the serum, thereby indicating hepato-
cellular damage14. The activation of the CD95/CD95L
pathway, as well as the kinetics of the liver enzymes with a

peak at 12 h, are in line with our results in a mouse non-
lethal hepatic IR model. The prominent effects of ther-
apeutical CD95 L neutralization in our study may thus be
explained by effects on both—apoptotic cell death and
inflammation. Therefore, the therapeutical neutralization
of CD95L might be applicable for a more global clinical
application beyond the transplant and surgical setting in
ischemia/reperfusion conditions like sepsis and shock.
The results of our study provide further evidence that

the CD95 signaling pathway and consecutive activation of
caspases play a major role in the mechanism of hepatic
IRI. In our experiments, we demonstrated that inter-
ference with this pathway via the inhibition of the CD95L
with CD95Fc, thereby inhibiting activation of the CD95
receptor, leads to a dramatic reduction in the amount of
liver injury as shown by amelioration of histology, inhi-
bition of caspase activation, reduction of apoposis and
necrosis and promotion of tissue regeneration.
Of utmost clinical importance is the fact that the anti-

body that we have applied is a new fully human fusion
protein that consists of the CD95 receptor and the Fc
domain of an IgG antibody. This antibody has been
developed for the treatment of solid tumors and malig-
nant hematological diseases and has been evaluated in the
treatment of glioblastoma (phase II trial) and myelodys-
plastic syndromes (phase I trial). The excellent tolerability
of this antibody was shown in a double-blind, placebo-
controlled phase I trial in healthy volunteers. This makes
the antibody a promising tool as a targeted therapy for
IRI. Proof-of-concept trials will have to be set up to
evaluate the efficacy of this compound in the treatment of
patients with IRI.
In summary, our data highlight the functional impor-

tance of the CD95/CD95L signaling pathway in the
mediation of IRI of the liver. Furthermore, and of clinical
relevance, we provide evidence that neutralization of
CD95L exerts potent hepatoprotective effects in vivo.
These findings can be translated into therapeutic use for
liver protection in many conditions, such as liver trans-
plantation, partial hepatectomy, shock, sepsis and acute
liver failure of other etiologies. Hence, neutralization of
CD95L may serve as a new targeted therapy to attenuate
liver ischemia reperfusion injury53–59.
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