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Abstract

The previously unexplored metal-catalyzed [5 + 2] cycloadditions of vinylcyclopropanes (VCPs) 

and electron-rich alkynes (ynol ethers) have been found to provide a highly efficient, direct route 

to dioxygenated seven-membered rings, a common feature of numerous natural and non-natural 

targets and building blocks for synthesis. The reactions proceed in high yield at room temperature 

and tolerate a broad range of functionalities. Substituted VCPs were found to react with high 

regioselectivity.

Graphical abstract

New reactions, reagents, and catalysts change how we think about bond construction, 

thereby enabling new strategic choices for step economical and greener, if not ideal, 

syntheses.1 As part of our studies on new cycloaddition reactions,2,3 we previously reported 

a route to seven-membered rings involving the metal-catalyzed [5 + 2] cycloaddition of 

vinylcyclopropanes (VCPs) and π-components.4 Rhodium catalysts have proven to be the 

most general for this CC bond activation process, working thus far intramolecularly with 

alkynes, alkenes and allenes and intermolecularly with alkynes and activated allenes as 2C 

components.2,3,5

*Corresponding Author: wenderp@stanford.edu.
†Kanazawa University, Kanazawa, 920–1192, Japan.
‡Universität Konstanz, 78462 Konstanz, Germany.
ORCID
Paul A. Wender: 0000-0001-6319-2829
Fuyuhiko Inagaki: 0000-0003-2999-083X

Author Contributions
The manuscript was written through contributions of all authors.

Notes
The authors declare no competing financial interest.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b02765.
Experimental procedures and characterization data for all reactions and products (PDF)

HHS Public Access
Author manuscript
Org Lett. Author manuscript; available in PMC 2018 November 03.

Published in final edited form as:
Org Lett. 2017 November 03; 19(21): 5810–5813. doi:10.1021/acs.orglett.7b02765.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To extend the reach of these [5 + 2] cycloaddition reactions and more generally other [m + 

n] processes, we have been exploring the use of π-component equivalents of otherwise 

inaccessible, difficult to use, or unsafe π-systems including allene6 and buta-1,2,3-triene4c 

equivalents of gaseous allenes and cumulenes as well as tetramethyleneethane7 (TME) 

equivalents of the unstable and difficult to access TME. Here we report the use of ynol 

ethers (Scheme 1, left) as ketene (Scheme 1, right) equivalents in [5 + 2] cycloadditions with 

VCPs.8

While ketenes can be used as π-components in some metal-catalyzed cycloadditions,9 their 

electron-poor nature, propensity to dimerize, and incompatibility with a range of 

functionalities limits their utility.10 In contrast, ynol ethers are electron-rich and easily 

prepared by alkylation of the parent metal alkoxyacetylide.11 However, their use in metal-

catalyzed cycloadditions is largely unexplored and potentially problematic due to their 

reported “instability” in the presence of cationic rhodium complexes.12,13 Beyond their 

mechanistic interest, the study of ynol ethers as 2C components in [5 + 2] cycloadditions is 

further motivated by the potential use of such a process in accessing diverse targets.2,14 

Numerous natural (estimated at >3000)15 and non-natural products, including many of 

research and therapeutic importance,16 incorporate functionalities derivable from 

cycloheptan-1,4-diones (CHDs).17,18 Yet few methods exist for the direct construction of 

such systems.19 We have now found that the metal-catalyzed cycloaddition of ynol ethers 

and VCPs provides a solution to this problem.

To determine the suitability of ynol ethers as substrates20 in [5 + 2] cycloadditions, 1-

ethoxy-1-octyne (2c, R = n-hexyl) was chosen as a test reactant in an initial catalyst 

screening (for substrate syntheses, see Supporting Information (SI)).

We first tested [RhCl(CO)2]2 as a catalyst in the reaction of 2c at 25 °C with commercially 

available VCP 1a. Cycloadduct 3c did not form. Upon heating at 90 °C, the reaction gave 3c 
albeit in only 52% yield. A recently introduced cationic Rh(I) catalyst ([Rh(dnCOT)

(MeCN)2]SbF6)4a,b provided only complex mixtures. In contrast, [Rh(naph)(COD)]SbF6, 

another cationic Rh catalyst,21 gave promising initial results (Table 1, entry 1:60% of 3c), 

working even at 25 °C in 2,2,2-trifluorethanol (TFE), and was thus selected for further study.

Interestingly, when excess ynol ether 2c (3.0 equiv) was used to increase the yield, 

cycloadduct 3c was obtained but in only 35% yield, suggesting that the ynol ether inhibits 

catalysis (Table 1, entry 2). To test this point, the catalyst was stirred with ynol ether 2c for 2 

h after which VCP 1a was added (entry 3). No cycloadduct was formed and only starting 

materials were isolated. To overcome this substrate inhibition problem, the catalyst loading 

was increased (5 mol %) and the amount of the ynol ether was decreased (1.1 equiv, entry 

4). An improved yield (74%) was obtained. Finally, to further minimize the inhibitory effect 

of the ynol ether, 2c was added dropwise over 2 h. Under these conditions, the cycloadduct 

was formed in excellent yield (91%, entry 5). No reaction was observed in the absence of 

catalyst, even when the reaction was heated for 4 h (entry 6).

Using the above conditions, a broad range of ynol ethers yielded CHDs in good to excellent 

yields (Scheme 2). Terminal alkyne 2a (EtOCCH) and TMS-analogue 2b (EtOCCTMS), 
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equivalents of ketene itself, reacted efficiently, both giving dione 3a after workup. Alkyl-

substituted (2c–2g, 2i–2j) and aryl-substituted ynol ethers (2k–2q) were also effective 

substrates. Halogen containing substrates (2e, 2f) reacted efficiently along with terminal 

alkene 2g (84% yield). Of mechanistic interest, trisubstituted alkene 2h gave a complex 

mixture, potentially due to catalyst deactivation by chelative coordination. Supporting this 

hypothesis, the otherwise efficient reaction of 2d with VCP 1a, in the presence of 2h, 

yielded no cycloadduct 3d. Benzyl substituted ynol ethers (2i and 2j) also worked 

moderately well. For aryl-containing ynol ethers, a solvent mixture of 1,2-dichloroethane 

(DCE) and TFE (1:1) was used.6 Phenyl derivative 2k gave cycloadduct 3k in 94% isolated 

yield and 65–80% yields were obtained for both electron-rich and electron-poor aryl 

derivatives. The electron-rich anisole 2n required slower addition (4 h) to overcome its 

hypothesized coordinative deactivation of the catalyst. Supporting this idea, slower addition 

of the ynol ether produced cycloadduct 3n in 80% yield (see SI, Table S1). Nitro-groups 

(3l), esters (3m), additional ethers (3n) and aryl-bromides (3j, 3o–3q) were also well 

tolerated. Bromide substitution was accommodated at all aryl positions, providing versatile 

handles for subsequent diversification.

While many alkyl-substituted ynol ethers can be made in pure form,20 their purification over 

silica results in substantial decomposition. The use of crude ynol ethers was therefore tested 

as an alternative. Two substrates (2c and 2d), purified and unpurified (see SI, Table S2), gave 

identical yields. The aryl substrates were more robust and were purified using triethylamine 

neutralized silica.

Next, catalyst loading and reaction scale were investigated (see SI, Table S3). With 5 mol % 

catalyst, ynol ether, 2a gave cycloadduct 3a in 87% isolated yield (Scheme 2). Significantly, 

a near equivalent yield (86%) was obtained with 1 mol % of catalyst. When tested on a 1 

mmol scale at room temperature using 1 mol % of catalyst, 3a was obtained in 87% yield 

(Scheme 3). To check substrate generality, 2e was also tested, giving 3e in 93% isolated 

yield (Scheme 3).

To explore regioselectivity, the reactivity of VCP 1b was examined. In this case, 2 equiv of 

VCP 1b provided improved yields. Significantly, only the 5,7-dialkyl substituted 

cycloadducts 4d and 4e were isolated to indicate a 1:1 mixture of diastereomers (Scheme 4).

Two regioisomers are possible depending on the ynol ether orientation during insertion. 

Previous studies have shown that alkyl-substituted terminal alkynes exhibit moderate 

regioselectivity (up to 7:1) using VCP 1b.22 Internal ynol ethers have not been tested 

previously. Providing the first experimental data on this issue of more general mechanistic 

and synthetic importance, ynol ethers 2d and 2e were found to react with excellent 

regioselectivity (>20:1).

To determine whether access to 6-substituted CHDs could also be achieved, the reaction of 

VCP 1c was examined. As observed with ynol ethers 2d and 2e (Scheme 4), the 

cycloaddition of VCP 1c and ynol ether 2a proceeded with excellent regioselectivity to give 

only one regioisomer, CHD 5a, in 76% yield (Scheme 5).
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Significantly, this method is not limited to oxygen substituted VCPs. Alkyl substituted VCPs 

also work well, as shown by the reaction of VCP 1d with ynol ether 2a, which gave 

cycloheptenone 6a in 73% (Scheme 6, top). This method provides a strategically 

complementary route to cycloheptenones, as one can choose the more accessible VCPs and 

alkynes to produce a common product.5a

To further test functional group tolerance, the reaction of VCP 1a with ynol ether 2k was 

conducted in the combined presence of acetone, ethyl acetate, diethyl ether, triethyl amine, 

cyclohexene and maleic anhydride (0.3 equiv of each). Using the conditions given in 

Scheme 2, cycloadduct 3k was isolated in 86% yield, indicating broad functional group 

tolerance. Prompted by these results and the previously reported preference for DCE and 

TFE as solvents,21b the cycloaddition was conducted in acetone. Significantly, excellent 

yields were obtained in a room temperature reaction that was complete in 30 min (Scheme 

7). Slow addition was not required. Acetone is thus a superb non-halogenated solvent option 

for both aryl- and alkyl-ynol ether substrates.

In summary, we report the first use of ynol ethers as ketene equivalents in the rhodium-

catalyzed intermolecular [5 + 2] cycloaddition reaction with VCPs and the first study of 

reaction regioselectivity. The cycloaddition proceeds at room temperature within minutes to 

hours and provides substituted cyclohepta-1,4-diones in good to excellent yields. The 

reaction tolerates a wide range of functionality commonly encountered in synthesis and can 

be run in various solvents (DCE, TFE, acetone). Substituted VCPs can also be used and 

react with unprecedentedly high regioselectivity. For cost, safety and time considerations, 

these exploratory experiments were conducted on a small scale but are not affected by a 10-

fold scale increase and can be done with a catalyst loading of 1 mol %. The use of these 

substituted CHDs in synthesis and as scaffolds in designed libraries will be reported in due 

course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Use of Ynol Ethers as Ketene Equivalents
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Scheme 2. Substrate Scoped

aAdditional 12% of double bond migration byproduct were isolated. bComplex product 

mixture was formed. c2n was added over 4 h. dReaction conditions: 5 mol % catalyst, 1.0 

equiv VCP, 1.1 equiv ynol ether added dropwise over 2 h. Solvent: TFE (3a–3h), TFE/DCE 

1:1 (3i–3q). For aryl substituted ynol ether (3k–3q), the reaction mixture was stirred for 

additional 2 h.
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Scheme 3. 
Cycloaddition with Reduced Catalyst Loading at 1 mmol Scale
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Scheme 4. 
Regioselective Access to 5,7-Disubstituted Cyclohepta-1,4-diones
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Scheme 5. 
Regioselective Access to 6-Substituted Cyclohepta-1,4-dione
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Scheme 6. 
Application of an Alkyl-Substituted VCP
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Scheme 7. 
Use of Acetone As a Solvent
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