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Abstract

Objective—Electrical stimulation is a widely used and effective tool in systems neuroscience, 

neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by 

stimulation prevent the detection of spiking activity on nearby recording electrodes, which 

obscures the neural population response evoked by stimulation. We sought to develop a method to 

clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the 

underlying neural spiking activity.

Approach—We created ERAASR: an algorithm which performs Estimation and Removal of 

Array Artifacts via Sequential principal components Regression. This approach leverages the 

similar structure of artifact transients, but not spiking activity, across simultaneously recorded 

channels on the array, across pulses within a train, and across trials. The ERAASR algorithm 

requires no special hardware, imposes no requirements on the shape of the artifact or the 

multielectrode array geometry, and comprises sequential application of straightforward linear 

methods with intuitive parameters. The approach should be readily applicable to most datasets 

where stimulation does not saturate the recording amplifier.

Main results—The effectiveness of the algorithm is demonstrated in macaque dorsal premotor 

cortex using acute linear multielectrode array recordings and single electrode stimulation. Large 

electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the 

cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas 

spontaneously active channels exhibited evoked spikes which closely resembled spontaneously 

occurring spiking waveforms.

Significance—We hope that enabling simultaneous electrical stimulation and multielectrode 

array recording will help elucidate the causal links between neural activity and cognition and 

facilitate naturalistic sensory protheses.
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1. Introduction

Electrical stimulation is a method of modulating neural activity that is widely used within 

neuroscience and neuroengineering, as well as for treatment of chronic neurological 

pathologies. Within neuroscience, microstimulation is used to probe the functional 

organization of neural circuits. Whereas electrophysiological recordings provide correlative 

insights that neural activity in a brain region appears related to a specific behavior, electrical 

stimulation can demonstrate causal contributions of brain regions to specific cognitive 

functions (Salzman et al., 1990). In particular, intracortical microstimulation (ICMS) has 

been used to identify neural networks underlying perception, attention, cognition, and 

movement (see Tehovnik, 1996; Cohen and Newsome, 2004; Clark et al., 2011; Histed et al., 

2013, for a review). ICMS can also drive reliable percepts in humans and animal models, 

including somatosensory vibration (Romo et al., 2000) and visual phosphenes (Tehovnik and 

Slocum, 2007), which underscores its utlity for delivering artificial sensation in visual 

(Tehovnik et al., 2009) and motor prosthetic systems (Berg et al., 2013; O’Doherty et al., 

2011). In clinical contexts, stimulation, especially delivered to deeper brain structures, has 

demonstrated efficacy for the treatment of neurological and neuropsychiatric conditions 

(Wichmann and Delong, 2006; Holtzheimer and Mayberg, 2011) and recently as an avenue 

for providing sensory information as will be needed for a range of emerging brain-machine 

interface systems (Flesher et al., 2016).

As with all perturbations to the nervous system, accurate interpretation of the results relies 

on a solid understanding of the effects of the perturbation made (e.g., Jazayeri and Afraz, 

2017; Otchy et al., 2015). With lesion and pharmacology studies, understanding the size of 

the affected region, completeness of the intended effect, the timecourse of the effect and 

recovery, and the influence of compensatory or homeostatic adaptation mechanisms are all 

critical to drawing correct conclusions from the behavioral impairments observed. 

Analogously, with ICMS, it is essential to understand the effect that electrical stimulation 

has on neural activity in order to draw correct inferences from causal experiments. However, 

whereas the traditional conception of ICMS assumes dense, localized activation near the 

electrode tip (Stoney et al., 1968; Tehovnik, 1996; Tehovnik et al., 2006), recent evidence 

suggests that the net effect of ICMS may be significantly more complex and distributed than 

previously appreciated (e.g. Histed et al., 2009; Logothetis et al., 2010; Graziano et al., 

2002; Butovas and Schwarz, 2003).

In the context of neural prosthetics, researchers aim to improve the fidelity of artificial 

perception with sophisticated spatiotemporal patterning (e.g., Dadarlat et al., 2015) and to 

optimize stimulation parameters to maximize therapeutic benefit. Obtaining a clear picture 

of the effects of particular stimulation paradigms will likely prove essential to this goal, 

enabling closed-loop tuning of stimulation parameters relative to a desired effect on the local 

neural activity.
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The effects on neural firing patterns evoked by ICMS have been difficult to characterize 

because the electrical artifact induced by stimulation interferes with the electrophysiological 

recording equipment used to record neuronal responses (Ranck, 1975; Merrill et al., 2005). 

A variety of approaches have been developed to work around these artifacts, which can be 

organized into several categories. Online approaches employ special hardware within the 

signal recording pathway to remove the stimulation artifact online (e.g., Wichmann and 

Devergnas, 2011; Brown et al., 2008; Müller et al., 2012). While effective, hardware 

approaches can be expensive or challenging to scale to high channel count recording arrays 

and typically require very stable artifacts over time for proper removal. Offline approaches 

employ standard electrophysiology collection hardware to record neural signals and then 

estimate and subtract the artifact post hoc. The most common approach for artifact 

estimation is to simply interpolate across the artifact (O’Keeffe et al., 2001; Montgomery et 

al., 2005) and/or to average over repeated stimulation epochs (Hashimoto et al., 2002; 

Montgomery et al., 2005; Klink et al., 2017) and subtract, exploiting the larger stereotypy of 

the stimulus artifact relative to variable neural responses. Others have employed curve fitting 

approaches to estimate the artifact, exploiting the differences in the shape of artifact and 

action potentials, thereby allowing for small variations in the observed artifact across trials 

(Wagenaar and Potter, 2002; Erez et al., 2010).

These previous approaches have two major shortcomings addressed in this work. First, these 

approaches only recover neural signals occurring after the stimulation pulse is completed, 

with a typical window of several milliseconds during which signal is discarded. However, 

ICMS is typically delivered in trains of stimulation pulses occurring at frequencies 

approaching several hundred pulses per second (e.g., Churchland and Shenoy, 2007; Klink et 

al., 2017). This failure to recover neural activity concomitant with the stimulation pulses 

renders a large fraction of the peri-stimulation signal unusable for spike detection and 

waveform discrimination. Secondly, prior work has focused on artifacts detected at a single 

electrode, not exploiting the similar structure of contaminating artifacts across multiple 

electrodes using a multielectrode array. A notable exception to both of these shortcomings 

was developed by Mena and colleagues (2016), where they addressed both of these 

limitations using a modern statistical framework to isolate electrical artifacts from neural 

spiking signals in multielectrode array recordings of the retina in vitro. However, this 

approach currently requires the availability of electrical images for each neuron’s spike 

waveform on multiple surrounding electrodes. Unfortunately, for the multielectrode array 

configurations commonly employed in in vivo cortical electrophysiology, the electrical 

image of most neurons is confined to a single electrode. Additionally, since the set of 

recorded neurons is biased towards a highly active subset of neurons (Barth and Poulet, 

2012), we anticipate that some neurons that are driven to spike by electrical stimulation may 

be quiet outside of the stimulation period, and thus omitted in the dictionary of available 

electrical images.

In this paper, we present a fast method for removing electrical stimulation artifacts from 

multielectrode array recordings. We term this approach ERAASR: Estimation and Removal 

of Array Artifacts via Sequential principal components Regression. ERAASR does not 

require any special hardware and can recover the full timecourse of neural signals during 

and after stimulation, requiring only that the electrical artifact does not saturate the amplifier 
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on the recording electrodes. Our algorithm exploits the similarity of artifacts across multiple 

electrodes, multiple pulses within a pulse train, and multiple trials of repeated stimulation. 

The ERAASR algorithm is structured as a sequence of cascaded, linear operations—PCA 

and linear regression—across each axis of the data tensor. We validate our method on neural 

signals collected during an arm-movement task with 24-channel linear multielectrode arrays 

(“V probes”, Plexon Inc.) in macaque dorsal premotor cortex, demonstrating that spiking 

waveforms extracted during the stimulation period closely resemble spontaneous spiking 

waveforms on each electrode.

2. Methods

2.1. Subjects

Animal protocols were approved by the Stanford University Institutional Animal Care and 

Use Committee. The subject was one adult male macaque monkey (Macaca mulatta), 

monkey P. After initial training, we performed a sterile surgery during which the macaque 

was implanted with a head restraint and a recording cylinder (NAN Instruments) which was 

located over left, caudal, dorsal premotor cortex (PMd). The cylinder was placed normal to 

the skull and secured with methyl methacrylate. A thin layer of methyl was also deposited 

atop the intact, exposed skull within the chamber. Before stimulation sessions began, a small 

craniotomy (3 mm diameter) was made under ketamine/xylazine anesthesia, targeting an 

area in PMd which responded during movements and palpation of the upper arm (17 mm 

anterior to interaural stereotaxic zero).

2.2. Reaching task

For the purposes of this study, we engaged the monkey in a reaching task in order to drive 

task-related neural activity in premotor cortex where our electrodes were located. We trained 

the monkey to use his right hand to grasp and translate a custom 3D printed handle 

(Shapeways, Inc.) attached to a haptic feedback device (Delta.3, Force Dimension, Inc.). The 

other arm was comfortably restrained at the monkey’s side. The monkey was trained to 

perform a delayed reaching task by moving the haptic device cursor towards green 

rectangular targets displayed on the screen. Successful completion of each movement 

triggered a juice reward.

2.3. Electrophysiology and stimulation configuration

At the start of each experimental session, both a stimulation electrode and a recording probe 

were secured to two independently controllable, motorized micromanipulators (NAN 

Instruments). Both probes were lowered simultaneously through blunt, non-penetrating 

guide tubes into dorsal premotor cortex at 3 μm=s to an approximate depth of 2 mm (Figure 

1a). The stimulation electrode was a single tungsten microelectrode with approximately 1 

MΩ impedance at 1 kHz (Part #UEWLGC-SECN1E, Frederick Haer Company). The 

recording probe was a linear electrode array consisting of 24 contact sites located at 100 μm 

spacing along the length of the shank (V-probe PLX-VP-24-15ED-100-SE-100-25(640)-

CT-500, Plexon Inc.). The recording probe penetration site was located at an approximate 

distance of 0.75 mm to 1.5 mm from the stimulation site. As best possible, the stimulating 
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electrode was inserted at the same location and to the same depth, whereas we changed the 

location of the recording electrode for each recording session.

The stimulation was performed using a StimPulse electrical stimulation system used as a 

combined function generator and isolated current source (Frederick Haer Company). The 

electrical stimulation current flowed through the brain via the electrode to a “ground screw” 

located at the posterior pole of the implant whose tip was in contact with the dura below the 

skull. Microstimulation trains consisted of 20 biphasic pulses delivered at 333 Hz for 57 ms 

(150 μs cathodic, 100 μs pause, 150 μs anodic). Stimulation amplitude was varied between 5 

μA to 40 μA. Stimulation delivered at the start of most experimental sessions, while the arm 

was in a passive, resting position, triggered brief movements of the contralateral upper arm 

and shoulder at thresholds typically > 140 μA. Stimulation onset was triggered via TTL 

pulse delivered by the task engine (Simulink Real-time Target, The Mathworks; NIDAQ 

digital to analog card, National Instruments). Stimulation was delivered on 20–40% of trials. 

Stimulation amplitude was fixed within each block of trials, where we collected at least 8–10 

repetitions of each stimulation trial type for each block. Within each session, we typically 

began with blocks of lower amplitude stimulation before proceeding to higher amplitude 

stimulation.

The recording probe was connected to a 3-headed switching headstage, a component of the 

Blackrock StimSwitch system (Blackrock Microsystems). The probe connects to one bank 

of inputs, control lines from the StimSwitch control box connect to the second bank of 

inputs, and outgoing voltage signals leave via the third bank of outputs. During these 

experiments, this component was configured to act as a unity gain buffer (head stage) which 

simply relays the voltage signals to a shielded ribbon cable (Samtec Inc.) to the amplifier 

(Blackrock Microsystems). Each electrode is differentially amplified relative to a common 

reference line in the V-probe itself, which is also shorted to surrounding guide tube for better 

noise rejection.

Broadband voltages were recorded from all 24 electrode channels of the recording probe. 

We also recorded from the stimulation electrode during initial penetration to verify that we 

could see nearby neurons on the electrode. We then disconnected the stimulation electrode 

from the recording system and connected it to the StimPulse stimulator. Broadband signals 

were filtered at the amplifier (0.3 Hz 1 pole high-pass filter, 7.5 kHz 3 pole low-pass filter), 

digitized to 16 bit resolution over ± 8.196 mV (resolution = 0.25 μV), and sampled at 30 

kHz.

2.4. Unit selection

During experiments, we recorded any units or multi-units that could be isolated on the 

multielectrode array, without regard for their responsiveness or modulation by the task. 

Before analysis, we applied a screening procedure which looked only at non-stimulated 

trials in order to remove neurons that were very unreliable or very weakly modulated by the 

task. Briefly, we filtered non-stimulated trials spike trains with a 30 ms Gaussian window, 

then aligned trials separately from 100 ms pre-target onset to 70 ms post go cue, and then 

from 300 ms pre-movement to 600 ms post, then averaged within groups of trials with the 

same reach target. We defined each unit’s “signal” to be the range of firing rates over time 
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and conditions, and “noise” to be the maximum standard error of the mean firing rate. We 

included units where the ratio of signal to noise exceeded at least 2, a total of 138 units in 

monkey P. Note that this selection process looked only at non-stimulation trials.

2.5. Artifact amplitude model

The amplitude of the electrical artifact was measured on each recording channel as the peak 

to peak voltage concomitant with the first stimulus pulse, averaged across trials. We then 

devised a model relating spatial location to artifact size that allowed us to pinpoint the 

location of the recording probe in each session relative to the stimulation source. Amplitude 

measurements were used to fit a model relating artifact amplitude to the distance of each site 

to the stimulation source. This model jointly optimizes parameters defining the distance-

dependent amplitude scaling and the location of the recording probe in each session (relative 

to the stimulation source). We define xs as the distance measured laterally from the probe to 

the closest point on the stimulating electrode; we define ys as the vertical distance along the 

penetration path from the most superficial electrode on the probe to the tip of the stimulating 

electrode. The location of each electrode e in each session s relative to the probe location (x, 
y)s is given by

(1)

where ∆ = 100 μm spacing between sites. This contact site is located at a distance

(2)

from the stimulation source which lies at the origin. We then assume that the amplitude of 

the artifact on each electrode for a specific stimulation amplitude Ia, falls off as the 

reciprocal of this distance.

(3)

where v0 has units V/(μA mm). The parameters of this model are this single scaling 

parameter v0 as well as a pair of location coordinates for the probe on each session. We then 

fit this model using constrained non-linear curve fitting (lsqcurvefit in Matlab) to minimize 

the squared error between empirical and modeled artifact amplitude across electrodes, 

sessions, and amplitudes. Confidence intervals of the parameters were obtained using the 

Jacobian of the fitted model.

We note that ERAASR makes no assumptions regarding the artifact amplitudes across 

electrode channels. This model is fit solely to demonstrate basic features of the evoked 

artifacts in our datasets and to infer the location of the recording probes.
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2.6. Synthetic dataset generation

We generated synthetic datasets on which to test the performance of ERAASR when evoked 

spiking activity was highly reliable relative to the electrical stimulus. We applied ERAASR 

to real datasets and extracted the estimated artifacts for an individual channel. We then 

added a known, representative spiking waveform on top of this artifact at specific times 

during stimulation. These spikes were added to a subset of pulses at offsets drawn from a 

normal distribution with a fixed mean and specified standard deviation or jitter. The 

proportion of pulses with synthetic spikes and the jitter were jointly varied systematically. 

White noise was then added to the resultant traces to match that channel’s RMS voltage. 

This synthetic channel then replaced the original channel, resulting in a synthetic dataset 

with 23 real channels and 1 synthetic channel for which “ground truth” spike times and the 

spiking waveform were known. We then applied ERRASR to the synthetic data tensor, 

followed by high pass filtering at 250 Hz and thresholding at-5x RMS voltage to extract 

spiking waveforms. The mean recovered waveform was then compared to the true spiking 

waveform filtered by the same high-pass filter.

2.7. Reduced channel count comparison

To probe the dependence of ERAASR performance on channel count, we applied ERAASR 

to subsets of channels selected from the original datasets. We first identified “spike-free” 

channels that had no spontaneous or evoked spiking activity, which were typically very 

superficial. For a given channel count, we randomly selected groups of channels of that size 

from the original 24, ensuring that at least one of the chosen channels was spike-free. For 

each spike-free channel, we computed the RMS voltage of the channel post cleaning and 

high-pass filtering, against the RMS value computed for that channel using non-stimulation 

trials passed through the same filter. This provided direct quantification of the effectiveness 

of ERAASR in removing corrupting artifact. We averaged this normalized RMS value over 

channels and over 10 random groups of channels for each channel count (except 24, where 

all channels were included).

3. The ERAASR algorithm

We describe the operation of the ERAASR algorithm as applied to a representative example 

dataset recorded in macaque PMd. Pseudocode is provided in Algorithm 1.

3.1. Precise temporal alignment and tensor construction

We began with the raw, unfiltered voltage traces for each stimulation trial, collected 

simultaneously on the 24 channels, sampled at 30 kilosamples/sec. We first corrected the 

small amount of jitter between triggering the stimulator to the beginning of the stimulation 

train, typically on the order of a few milliseconds. We began by precisely aligning the 

stimulation trials to each other in time. This process was performed separately for each 

group of trials sharing a common stimulation amplitude. We extracted the raw voltage data 

off of one electrode channel in a 60 ms window surrounding the triggering event, high-pass 

filter the signal with a fourth-order, 250 Hz corner frequency Butterworth filter, to remove 

slow drift. We then detected the onset of the artifact due to the first biphasic pulse on each 

trial using an appropriately low negative threshold, set to avoid spiking activity but reliably 
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detect artifacts at the lowest stimulation amplitude. We then realigned the voltage data for 

each trial to this threshold crossing event. An outlier detection procedure was performed to 

detect rare instances of stimulator failure, including trials where 19 or 21 pulses were 

delivered instead of 20. Outlier detection was performed by projecting the realigned, 

unfiltered voltage traces onto the first 10 principal components of that group, and detecting 

trials where the absolute value of the z-scored scores in any of the first 10 PCs exceeded a 

value of 5. Outlier trials (typically < 2% of trials) were excluded from subsequent analysis. 

The traces were then up-sampled 10x to 300 kHz using spline interpolation and the set of 

trials were precisely aligned in time. We manually verified the results of this procedure to 

ensure successful artifact removal and accurate alignment of the artifact pulse trains. The 

aligned traces are then resampled at the original 30 kHz sampling rate.

We constructed a data tensor for each group of trials sharing a common stimulation 

amplitude and extract a 60 ms window of the trial-aligned broadband voltage data across the 

trials, yielding a data tensor Xraw with size C (number of channels) × T (number of 

timepoints per pulse) × P (number of pulses) × R (number of trials). In our datasets C = 24 

channels, T = 90 timepoints per pulse (3 ms at 30 kHz sampling), P = 20 pulses, and R was 

typically on the order or 100–200 trials. We lightly high-pass filtered the raw signals in time 

with a fourth-order, 10 Hz corner frequency Butterworth filter, which removed slow drifts 

from the traces and makes subsequent processing more robust. We first attempted to clean 

each channel by exploiting the similarities of the artifact across simultaneous channels 

(Figure 2a).

3.2. Removal of shared structure over channels

We then unfolded the data tensor into an RTP × C matrix Mc (Figure 2b), and performed 

principal components analysis. This allows us to re-express each channel’s response vector 

(RTP × 1) as a linear combination of principal components, each RTP × 1. As the artifact 

waveform is very large relative to the interesting spiking activity and shared across all 

channels, one would expect the top few principal components to capture preferentially 

shared variance due to the artifact. Empirically, we determined that the top KC = 4 principal 

components (PCs) captured much of the artifact shape (Figure 2c). We then reconstructed 

each channel’s response omitting the contribution from the artifact. The simplest method to 

accomplish this would be to reconstruct the channel’s response by using a linear 

combination of all PCs except the first KC. However, in some cases, especially when lower 

currents were used and the magnitude of the artifact relative to the spiking activity was 

smaller, we observed that some of the top PCs would begin to incorporate a small amount of 

spiking activity from individual channels. By reconstructing those channels from the 

remaining PCs, the spiking activity itself would be partially distorted because a fractional 

portion of those spikes would be subtracted along with the artifact. We addressed this issue 

by again exploiting the locality of spiking activity, by assuming that spiking activity from 

any one channel would not be present on other channels except the immediately adjacent 

channels. However, the artifact is shared on a much larger spatial scale and can be separated 

from the spiking activity. Therefore, for each channel c, we used the following procedure: 

reconstruct the top Kc PCs using all channels except c and its immediately adjacent 

neighbors c − 1 and c + 1, that is, using a modified version of the loading weights  for 
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the kth principal component in which we set the weights for c; c – 1, c + 1 to 0. More 

generally, we define parameter λC that dictates the number of adjacent channels excluded 

from the reconstruction. We refer to this vector of modified loading weights as .

(4)

Using these loading weights, we reconstruct the matrix of the top KC artifact-capturing PCs, 

where each column is given by

(5)

We then regress the channel’s response vector against these artifact components and subtract 

this reconstructed artifact from the channel’s response:

(6)

This cleaning across channels captured (Figure 2d) and removed (Figure 2e) much of the 

artifact from each pulse. However, when examining the responses on an individual channel 

across each of the 20 pulses superimposed, we observed consistent structure in the traces 

(Figure 2f).

3.3. Removal of shared structure over pulses

This structure indicated that there remained artifact structure that is unique to individual 

channels but shared among the pulses in each trial. To address this, we rearrange  into a 

new matrix MP with size TRC × P, a set of responses to each individual pulse, concatenated 

over trials and channels (Figure 3a). We determined that the top KP = 2 principal 

components (PCs) captured much of the artifact shape. Consequently, we used the same PC 

regression procedure to estimate and subtract the artifact on each pulse, omitting the 

contribution of the pulse under consideration and optionally adjacent pulses within λP. For 

our dataset, λP = 0 was used. If  is a vector of P loading weights describing the kth 

principal component, and for each pulse p,  is given by:

(7)

For each pulse, we reconstructed the matrix of the top KP artifact-capturing PCs, whose 

columns are given by:
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(8)

We then regressed the channel’s response vector against these artifact components and 

subtract this reconstructed artifact from the channel’s response:

(9)

This cleaning procedure over pulses captured much of the common artifact structure 

observed within each train (Figure 3b). It is also possible to perform this cleaning over 

pulses separately for each channel, following an approach like that described below for 

cleaning over trials.

We next examined the set of cleaned traces for individual channels and pulses in the train, 

over the full set of trials. We observed that there remained common artifactual structure in 

these traces, which suggests that there is artifact structure unique to that channel and pulse 

number but shared among many trials (Figure 3c). In most cases, this shared structure was 

similar among nearby trials but exhibited a slow drift in the shape of the artifacts over the 

experimental session.

3.4. Removal of shared structure across trials

To remove these residual artifacts, we again employed a principal components regression 

approach, exploiting the shared structure of the artifact over multiple trials. We performed 

this operation separately for each channel. We rearranged the cleaned  into a set of C 

data matrices  for c ∈ {1,…, C}, each with size TP × R (Figure 4a). We determined that 

the top KR = 4 PCs captured much of the artifact shape over trials. If  is a vector of R 
loading weights describing the kth principal component for channel c, we defined:

(10)

where λR adjacent trials were excluded from the reconstruction. For our dataset, λR = 0 was 

used.

For each trial, we reconstructed the matrix of the top KR artifact-capturing PCs, whose 

columns are given by:

(11)
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We then regressed the trial’s response vector against these artifact components and subtract 

this reconstructed artifact from the trial’s response:

(12)

We then rearranged the set of cleaned  back into a C × T × P × R tensor Xcleaned. This 

cleaning procedure captured much of the residual artifact (Figure 4c). The cleaned signals in 

Xcleaned did not display features obviously indicative of residual stimulation artifact, but did 

on some channels contain readily detectable spiking activity (Figure 4c, bottom panel). We 

then spliced the cleaned data back into the full trials, adding appropriate offsets to preserve 

continuity at the first and last timepoints of the inserted segment.

3.5. Post-stimulation transient cleaning

Following stimulation offset, a slower transient was observed in all channels. These 

transients were highly similar among trials. Consequently, we employed a similar principal 

components regression procedure to remove these slow transients. We performed the 

following procedure for each stimulation amplitude separately. We began by aligning the 

trials to stimulation offset and extracting voltage data in a 30 ms time window beginning 

after stimulation end, yielding a tensor Xpost with size R by T by C. We then rearrange this 

tensor into a set of C data matrices  for c ∈ {1,…, C}, each with size T × R. We 

determined that much of the transients’ temporal structure was present in each trial for a 

given channel and that the top Kpost = 2 principal components (PCs) of these  matrices 

captured much of the transient shape over trials. Consequently, we repeated the same 

principal components regression approach described in eqs. (10) to (12) to clean the post-

stimulation transients over trials. We then rearranged the set of cleaned  back into a R 
by T by C tensor Xpost–cleaned. The signals in Xpost–cleaned were then reinserted into the full 

voltage traces for each stimulation trial.

3.6. Spike thresholding and sorting

The cleaned voltage traces, along with the original voltage traces on non-stimulated trials 

were then high-pass filtered using a fourth-order 250 Hz corner frequency Butterworth filter, 

as is typically done online before spike detection. We then thresholded each signal at-5x 

RMS voltage, using a greedy procedure in which the spike threshold crossings were detected 

in order of size (largest to smallest), and no further threshold crossings were considered 

within a lockout period extending 0.3 ms prior to and 1.0 ms after the current threshold 

crossing. We then hand-sorted the spiking waveforms using MKsort (Matthew Kaufman and 

Ripple, Inc., https://github.com/ripple-neuro/mksort).

4. Results

We delivered high-frequency (333 Hz) biphasic electrical stimulation in macaque dorsal 

premotor cortex through a tungsten microelectrode, while simultaneously recording neural 

spiking activity using a second 24-channel linear multielectrode array (Figure 1a). When a 
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stimulus train was delivered through the electrode, a highly stereotyped stimulation artifact 

appeared on all channels of the recording array (Figure 1b). Amplitudes could exceed ±7500 

μV which is nearly two orders of magnitude larger than spiking waveform amplitudes (~100 

μV). The artifact traces resembled filtered versions of the original current stimulus; similar 

transients were evoked for each of the 20 biphasic pulses. These artifacts increased in 

amplitude with larger stimulation current and smoothly varied over the 24 channels of the 

recording probes (Figure 5a,b).

4.1. Array location inference from artifact size

We used these amplitude profiles over channels for each session to fit a model relating 

artifact amplitude and the reciprocal of the distance of each electrode to the stimulation 

source. The model jointly optimizes a scaling parameter of the amplitude-distance 

relationship as well as parameters specifying the location of the recording probe on each 

session (See Methods). We fit this model to data collected in 9 recording and stimulation 

sessions in macaque prefrontal cortex. Figure 5c shows the recorded artifact amplitude 

(normalized by stimulation current) under the model against the model prediction, in which 

artifact size falls off with distance from the stimulation site (squared correlation R2 = 0.91). 

The fitted probe locations are plotted in Figure 5d; these closely aligned with the 

approximate locations noted during probe insertion. We note that ERAASR itself does not 

assume any particular relationship among the artifact sizes among electrode channels; 

instead, ERAASR uses PC regression to identify and remove shared structure over the array 

channels. The close fit of the model to the empirical artifact size is consistent with a 

distance-dependent attenuation of the electrical stimulus, but we expect that ERAASR could 

be applied to datasets with arbitrary shared artifact structure among channels.

4.2. Artifact removal via ERAASR

We applied ERAASR to remove the artifacts from these traces. The ERAASR algorithm 

leverages several features of these recording datasets. First, it assumes that the true neural 

signal is corrupted by an additive stimulation artifact, which depends critically on the 

assumption that no information is lost due to amplifier saturation during the stimulation 

period. For the 5 μA to 40 μA range of stimulation amplitudes used, the stimulation artifact 

produced did not saturate the amplifier’s range (±8196 μV) on any of the recording channels 

in any experimental session. Therefore, if the artifact shape can be properly estimated, it can 

be removed via simple subtraction. Second, because we recorded simultaneously on 

multiple, closely spaced channels, we have multiple simultaneous observations of the 

electrical stimulation artifact at different points in space, whereas the individual channels do 

not share the same spiking waveforms, especially if we exclude immediately adjacent 

channels. Third, the stimulation train contains 20 repeats of identical biphasic pulses, which 

produced highly similar artifact transients. Finally, we deliver the stimulation train over 

many trials, yielding similar artifacts on each repetition. Because spiking activity evoked 

during the stimulation period is unlikely to occur at precisely the same time relative to each 

pulse and on each trial, we can use these repeated artifact measurements to build an estimate 

of the artifact shape for subsequent removal.
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Figure 6a shows a set of traces for a single trial across the array on one of the recording 

sessions before high-pass filtering is performed; Figure 6b shows the same data after high-

pass filtering before spike detection. The raw, pre-cleaned voltage traces for this same trial 

are shown in Figure 1b, demonstrating that the vast majority of the artifact initially present 

has been removed. These high-pass filtered traces were then thresholded to extract spikes 

and then manually sorted into different units.

To evaluate the artifact removal process, we use prior knowledge about the multielectrode 

array channels. The most superficial (low numbered) and deepest (high numbered) channels 

were located above cortex and in white matter respectively, which we inferred from the 

signals observed on these channels, the density of neural signals on intermediate channels 

presumed to lie within cortex, and the known thickness of premotor cortex relative to the 

depth span of the probe. During non-stimulated trials, no detectable spiking waveforms were 

observed on these superficial and deep channels, therefore the presence of threshold 

crossings in the cleaned stimulation voltage traces on these channels would be surprising, 

and suggest that the cleaning procedure had failed to fully remove the stimulation artifact. 

However, as expected, the presence of evoked spiking activity during the stimulation 

window is limited to the intermediate channels, where spontaneous spiking activity was also 

observed (Figure 6). For closer inspection, we superimposed the raw voltage traces with 

cleaned, artifact-removed, high-pass filtered voltage traces for individual trials. Figure 7a–b 

shows such a comparison for the most superficial channel, where neither spontaneous nor 

evoked spiking activity was detectable. Figure 7c–d shows the same comparison for a 

channel with spontaneous spiking as well as robust evoked spiking activity.

Next, it is essential to ensure that threshold crossings detected during the stimulation period 

are likely due to real neural spiking activity, as opposed to residual transients due to 

stimulation artifact that persists through the cleaning procedure. We reasoned that threshold 

crossings created by residual artifact on a specific channel would not be expected to 

resemble the spontaneous spiking waveforms collected during non-stimulated trials on a per-

trial basis. For each session, we generated a visual comparison of the spiking waveforms 

detected on non-stimulated trials with those detected within the stimulation window 

(putatively “evoked” spikes). These evoked spiking waveforms detected during the 

stimulation period were highly similar to the spiking waveforms detected during non-

stimulation trials. Figure 8 demonstrates this similarity for a representative pair of 

experimental sessions. We note that these waveforms need not be identical, as evoked 

spiking activity from other neurons located further from the electrode could superimpose to 

corrupt the waveforms from nearby neurons, especially when this faraway spiking activity is 

highly synchronized by stimulation.

We can also quantify the amount of residual artifact directly, by again utilizing channels that 

displayed no spontaneous spiking activity. Figure 9a compares the RMS voltage of these 

individual channels sampled from the post-cleaning stimulation window against a time 

window taken before stimulation. This metric captures the amount of baseline noise (largely 

thermal noise) on each channel, thereby providing an expectation for the variance of a given 

channel if the entirety of the corrupting artifact were successfully removed. For low 

amplitudes, the RMS voltage is often slightly lower than the pre-stimulation RMS, which is 
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possible due to the greedy nature of the cleaning procedure. For larger amplitudes, the 

stimulation RMS remains acceptably close to pre-stimulation RMS. Figure 9b summarizes 

the similarity of spiking waveforms on each channel observed both spontaneously and 

during the stimulation window.

4.3. Effects of spike reliability and channel count

Fundamentally, ERAASR estimates electrical artifacts by exploiting the stereotypy of the 

artifact relative to variable spiking activity over channels, pulses, and trials. Over channels, 

this assumption is satisfied provided that the electrodes are spatially distributed enough to 

sample different populations of neurons; the regression step is performed so as to exclude 

channels sharing common spiking activity. Over pulses and trials, however, ERAASR relies 

on the assumption that evoked spiking activity is not perfectly reliable, such that spikes may 

be present on a subset of pulses with non-zero jitter in the pulse to spike latency. In order to 

better assess the distortion introduced for stably evoked activity that violates these 

assumptions, we performed a set of simulations. Here, we applied ERAASR to real datasets 

and extracted the estimated artifact on a single channel with no spiking activity. We then 

superimposed a known representative spiking waveform on this artifact at certain times, 

thereby generating synthetic datasets in which we varied the fraction of pulses with evoked 

spikes (the reliability) and the standard deviation of the spike timing relative to the previous 

pulse (the jitter). As expected, when spikes were inserted on nearly every pulse with a very 

narrow latency distribution, ERAASR recovered partially distorted versions of the true 

waveform (Figure 10a,b) and failed to recover an increasing proportion of the spike times 

(Figure 10c).

We also explored the dependency of channel count on ERAASR cleaning performance. 

Beginning with a real dataset, we applied ERAASR on subsets of channels with varying 

size. We then evaluated ERAASR performance by comparing the RMS of cleaned channels 

with no spiking activity, where the cleaned signal should be quiescent, against the RMS on 

those channels during non-stimulated trials. Figure 10d demonstrates that for these datasets, 

cleaning performance is poor and highly variable for low channel counts, but begins to 

saturate above 15 channels. However, additional channels would likely be more helpful in 

datasets where the channels exhibit more heterogeneity. Additionally, more channels may be 

beneficial when variability in the artifact over pulses and trials is increased, reducing the 

utility of these subsequent cleaning steps.

5. Discussion

We discuss the main features of our method for estimating and removing electrical 

stimulation artifacts in comparison with existing approaches, as well as limitations of our 

approach and possible improvements. We also highlight a set of interesting neuroscientific 

arenas where the ability to observe electrically perturbed neural activity might be 

particularly illuminating, underscoring the utility of artifact removal methods.

Here, we have applied the ERAASR algorithm to artifacts recorded on a linear 

multielectrode array (1D). However, we reiterate that ERAASR makes no assumptions 

regarding the electrode array geometry. The PCA regression step allows for artifacts on each 
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electrode to be described as linear combinations of individual, shared components. 

Consequently, we anticipate that ERAASR should be readily applicable to 2D and 3D arrays 

with arbitrary geometry, provided that the artifact remains within the amplifier linear regime 

on the channels of interest so that no information is lost.

We also note that variability in electrode impedance should also not degrade ERAASR 

performance. The algorithm does not assume any relation between the artifact amplitudes 

over channels. Changes in the artifact size due to drifting impedance over experimental 

sessions could simply be dealt with by applying ERAASR independently on each dataset. If 

the artifact size/shape is sufficiently unstable within a recording session, the cleaning step 

over trials will play a larger role in artifact removal. However, extensions of the algorithm 

leveraging a PC regression step in which the components and channel loading weights are 

allowed to vary smoothly in time across a session could be developed. Differences in the 

shape of the artifact could also result due to variability in impedance over channels. This 

transformation should be linear in nature and result in different frequency bands having 

electrode-specific gains and phase delays, which should be decomposable into individual 

components across channels. Therefore, ERAASR should deal gracefully (and 

automatically) with differences in impedance across electrodes, although our recordings did 

not provide sufficient variability to verify this. The artifact shapes in our dataset were largely 

similar across channels, and the remaining channel-specific structure was cleaned 

subsequently by exploiting shared structure across pulses and trials.

5.1. Comparison to other methods

ERAASR exploits similarities in the electrical artifact observed across multiple channels, 

pulses within a stimulus train, and trials with repeated delivery of the same stimulus. Of 

these, the shared structure of simultaneously recorded artifact across multiple channels was 

most useful. Most previously described attempts exploit only the shared structure across 

trials, typically using an averaging or moving average approach (Hashimoto et al., 2002; 

Montgomery et al., 2005; Klink et al., 2017) to estimate artifacts on an individual channel. 

However, these approaches are necessarily quite sensitive to variability in artifact shape or 

amplitude across trials. While this variability may be small in relative terms, the much larger 

amplitude of artifacts relative to neural spiking waveforms can create meaningfully large 

errors in the residual signal, requiring that several milliseconds of the signal in the vicinity 

of the stimulation pulse be discarded. Another common approach is to exploit differences in 

the shape of stimulation artifacts relative to spiking waveforms, by using curve-fitting 

algorithms to capture artifacts in the voltage signal but exclude spiking activity (Wagenaar 

and Potter, 2002; Erez et al., 2010). Similarly, these fits reliably capture artifact shape at a 

fixed delay from the stimulation pulse, but struggle to capture earlier portions of the 

transient (Erez et al., 2010), requiring peri-stimulus signal to be discarded. Motivated by the 

popularity of high-frequency pulse trains in ICMS experiments, our method addresses the 

problem of observing neural activity through the entire stimulation pulse without discarding 

signal.

Our algorithm combines a series of simple, intuitive, linear operations along the channels, 

pulses, and trials axes of the data tensor. The core operation is principal components 
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regression, in which PCA is used to identify a template describing shared structure across a 

given axis of the tensor, followed by a regression step in which the artifact on a given 

channel (or pulse, or trial) is reconstructed by excluding that channel (pulse, trial) and its 

neighbors. This approach mitigates the risk of removing spiking signals during the cleaning 

process, exploiting the local nature of spiking responses across channels and the inherent 

biological variability in spiking responses on each pulse and each trial. Furthermore, each of 

these stages is intuitive and the results easily understood. A small set of key parameters, 

including the number of principal components and the set of neighbors excluded from the 

reconstruction at each stage, can be adjusted to trade off between more aggressive cleaning 

and more veridical preservation of spiking waveform shape.

Our method operationally separates the process of artifact estimation from spike detection 

and extraction, which is performed as usual using typical high-pass filtering and 

thresholding on all voltage data after the cleaning process is complete. In contrast, a 

promising alternative method for multi-channel artifact removal is presented by Mena and 

colleagues (2016) for multielectrode array recordings of the retina. This approach employs a 

statistical model describing both the artifact and the spike generation process, jointly 

estimating artifact and spikes present in the voltage signals. This method exploits shared 

structure of the artifact across a local group of channels around the stimulation source, but 

also requires that the electrical image of each neuron (the shape of spiking waveforms over 

several nearby electrodes) be known as an input to the cleaning algorithm. While this 

approach is highly effective and appropriate in the context of retinal recordings, where 

individual neurons are recorded on many densely spaced electrodes, the electrical images of 

neurons in primate cortex using typical multielectrode arrays are often limited to one or two 

electrodes.

5.2. Limitations

First, our approach relies critically on the assumption that stimulation artifact linearly 

superimposes with neural spiking signals. This requirement is difficult to avoid; when the 

amplifier saturates, information about the spiking activity that would superimpose with the 

artifact is lost. Therefore, ERAASR’s utility is limited to stimulation configurations and 

amplitudes which occupy the linear, non-saturated regime of the amplifier, or at least to 

timepoints within the stimulation period where the artifact is not saturating. Practically, this 

sets a minimum distance between the electrode array and the stimulation source for a given 

stimulation amplitude. This distance could be designed such that the return path of the 

electrical current steers the electric field so as to minimize the recorded artifact amplitude 

(Rattay and Resatz, 2004). This problem can also be effectively managed in hardware, 

employing special circuitry to estimate and partially cancel artifacts online (Wichmann and 

Devergnas, 2011; Brown et al., 2008; Müller et al., 2012). A hybrid approach employing 

multi-channel artifact removal circuitry to prevent saturation using a predictable 

transformation of the recorded signal, supplemented with post hoc artifact cleaning 

procedure like the one described here could be effective across a much larger range of 

stimulation amplitudes.
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Second, our algorithm sequentially removes shared structure across channels, pulses, and 

trials. We accomplish this by reshaping the voltage data tensor into a matrix (or set of 

matrices) so that familiar methods like PCA can be employed. This problem of finding 

shared structure naturally lends itself to tensor decomposition (Kolda and Bader, 2009), 

which could identify shared structure jointly over each of these axes and potentially improve 

the artifact estimation. Tensors naturally arise in neuroscientific data collection contexts, and 

decomposition methods are becoming increasingly useful for identifying population 

structure (Seely et al., 2016; Elsayed and Cunningham, 2017; Williams et al., 2017).

Third, our algorithm operates by greedily removing any shared structure as artifact, which 

can inadvertently remove or distort spiking waveform signals as well. In our dataset, we did 

not observe this while removing shared structure across channels, as we explicitly excluded 

adjacent channels from the reconstruction process. However, removing shared structure 

across pulses and trials assumes that spiking responses evoked by a stimulation pulse are 

variable in time. Moreover, with increasing stimulation amplitude, the temporal precision of 

evoked spikes may increase (Ranck, 1975; Butovas and Schwarz, 2003), which would lead 

to waveform distortion due to overzealous reconstruction and removal of spiking signals as 

artifact. We experimented with using matched filters for robust spike detection while 

relaxing the artifact estimation technique (data not shown), though we did not explore 

whether this would be applicable at higher currents and more synchronous evoked spiking. 

In these circumstances, we expect that a joint estimation of artifact and spiking as proposed 

by Mena et al. (2016) could be adapted to more effectively recover highly regular evoked 

spiking by exploiting other differences in the structure of spikes from artifact.

Fourth, the computational complexity of our algorithm could likely be improved. For a 

dataset with 24 channels, 60 ms time windows at 30 kHz, and 150 trials, the full alignment 

and cleaning procedure can be performed in approximately 75 seconds on a laptop. The 

computational time complexity of the ERAASR algorithm as implemented is 

 where C is channel count, R is trial 

count, P is pulse count, and T is timepoints per pulse. The algorithm comprises three rounds 

of PCA and linear regression on the rearranged artifact tensor. Faster, approximate versions 

of these algorithms exist and could be used to improve the computation time. To support 

online neural signal estimation, many of these steps could be precomputed and artifact 

subtraction applied to new observations one pulse at a time.

5.3. Motivation for direct observation of electrically perturbed neural activity

The initial conception of ICMS suggests that stimulation activates most neurons within a 

sphere surrounding the electrode tip (Stoney et al., 1968; Tehovnik, 1996; Tehovnik et al., 

2006). This idea derives originally from the findings of Stoney et al. (1968), who cleverly 

side-stepped the issue of stimulation artifacts by using collisions of antidromic and 

orthodromic spikes in a dual-stimulation paradigm as an indirect measure of local neuronal 

activation. A large body of subsequent work (e.g. Ranck, 1975; Asanuma et al., 1976; 

Tehovnik, 1996; Rattay, 1999; Tehovnik and Slocum, 2007; Marcus et al., 1979; Nowak and 

Bullier, 1996; Nowak and Bullier, 1998b; Nowak and Bullier, 1998a; Kimmel and Moore, 

2007) has demonstrated that an individual current pulse primarily evokes spikes at axons–in 

O’Shea and Shenoy Page 17

J Neural Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particular, the excitable axon initial segment–and that the likelihood of evoking a spike in a 

neuron depends on distance, pulse duration, and current according to a relatively simple 

power law. The spatial localization of ICMS is consistent multiple behavioral studies as well 

(e.g. Murasugi et al., 1993; Tehovnik et al., 2004; Tehovnik et al., 2005; Bartlett et al., 2005; 

Tehovnik and Sommer, 1997). These studies derive an estimate of the effective activation 

volume and dependency on stimulation parameters by combining behavioral readouts with 

known features of cortical spatial organization. For example, Murasugi et al. (1993) found 

that low current ICMS delivered to monkey area MT could bias perceived dot motion 

direction, but that ICMS currents above 20 μA less effectively biased perception. The 

authors conclude that below this threshold current, electrical activation is confined to a 

single “directional” column in MT, about 0.2 mm in diameter (Albright et al., 1984).

However, recent evidence challenges this traditional view of localized, dense activation. 

Using two-photon calcium imaging, Histed et al. (2009) demonstrated that low-intensity 

ICMS activated a sparse collection of neurons distributed in a relatively large volume 

extending several hundred μm in mice, and as far as 4 mm away in cats with 10 μA 

stimulation, perhaps resulting from lateral axons extending multiple millimeters within layer 

2/3 of visual cortex. By advancing the electrode 30 μm, the authors found that an entirely 

non-overlapping sparse set of cells was activated, suggesting that ICMS at low currents (10–

25 μA) activates axonal processes within ≈ 15 μm of the electrode tip. The directly activated 

population is therefore potentially sparse, widely distributed, and stochastic due to a precise 

dependence on axonal proximity to the stimulating electrode.

Many mapping studies have focused on direct activation in response to a single isolated 

current pulse, whereas multiple pulses at high frequency are much more common in 

scientific and prosthetic experiments. When longer pulse trains are used, particularly at high 

currents, electrical stimulation might readily engage a large collection of neural circuits 

while driving temporally complex neural responses (Strick, 2002; Graziano et al., 2002). 

ICMS induces transsynaptic spiking in connected neurons (Stoney et al., 1968; Butovas and 

Schwarz, 2003), and as larger currents activate more neurons, the effect of transsynaptic 

activation may be enhanced due to the summation of many from this larger directly activated 

population. Cortically evoked spiking may also depend on subthreshold activity in neurons, 

which is continuously modulated by ongoing task or stimulus-evoked responses (Kara et al., 

2002). Short-term synaptic depression commonly seen in cortex would also modulate the 

effectiveness of transynaptically evoked spiking (Thomson and Deuchars, 1994; Stratford et 

al., 1996; Deisz and Prince, 1989; Varela et al., 1997).

Larger stimulation currents can recruit inhibitory interneurons and result in inhibition of 

cortical responses lasting hundreds of milliseconds after stimulation (Berman et al., 1991; 

Watanabe et al., 1966; Li et al., 1960; Chung and Ferster, 1998; Creutzfeldt et al., 1966; 

Kara et al., 2002; Masse and Cook, 2010; Seidemann et al., 2002; Butovas et al., 2006; 

Butovas and Schwarz, 2003). Additionally, in an experiment combining cortical stimulation 

with fMRI and extracellular recording, Logothetis et al. (2010) conclude that high-frequency 

ICMS disrupts normal information flow along cortico-cortical pathways, by recruiting 

strong inhibition that prevents the spread of activation beyond the regions whose direct 

afferents were stimulated. Consequently, a population of cells perturbed electrically may 
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undergo a complex, time-varying pattern of modulation that reflects circuit micro-

architecture, local circuit dynamics, short-term synaptic plasticity, recruitment of inhibition, 

and an interaction with ongoing task-related activity.

With this evident complexity, directly recording the effect of ICMS on neural activity will 

likely clarify the circuit mechanisms underlying intriguing aspects of the interaction between 

microstimulation and behavior. An accurate picture of this interaction could address many 

longstanding questions, such as how electrically evoked eye movements interact with visual 

guided eye movements (Sparks and Mays, 1983), how precise timing of electrical pulses 

modulates saccadic effects (Kimmel and Moore, 2007), how perceptual decisions are biased 

by stimulation of LIP (Hanks et al., 2006), how motor preparation recovers subsequent to 

electrical disruption (Churchland and Shenoy, 2007; Shenoy et al., 2011), and how motor 

cortical stimulation can evoke complex movements converging on a specific endpoint 

(Graziano et al., 2011) and effectively nullify the contribution of goal-directed behavior in 

the motor cortical output (Griffin et al., 2011). A detailed comparison with the effect of 

optogenetic stimulation could clarify the differences (Gerits and Vanduffel, 2013; Diester et 

al., 2011; Ohayon et al., 2013) and similarities (Dai et al., 2013) observed between the two 

modalities’ effects on behavior. Lastly, a detailed model of microstimulation’s interaction 

with cortical dynamics could facilitate delivery of more reliable or realistic artificial sensory 

perception in visual, auditory, and motor prostheses (Otto et al., 2005; Tehovnik et al., 2009; 

O’Doherty et al., 2011; Bensmaia and Miller, 2014; Dadarlat et al., 2015).

6. Conclusion

We developed ERAASR, an algorithm for estimating and removing artifacts caused by 

electrical stimulation on multielectrode array experiments. ERAASR assumes that artifact is 

shared over many channels and that evoked transients are highly repeatable across pulses 

and trials, whereas spiking activity is highly local and temporally jittered. Shared structure 

in the voltage signals is identified and removed sequentially across channels, across pulses 

in a stimulus train, and across trials, using straightforward linear methods. We believe our 

technique will be useful to neuroscientists in drawing precise causal links between 

perturbations and the effect of stimulation on neural activity and behavior and aid in the 

design and implementation of enhanced neural prosthetic systems capable of restoring lost 

sensation and facilitating precise control.

7. Code availability

Full Matlab code for ERAASR is available at https://github.com/djoshea/eraasr along with a 

link to a representative example dataset.
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Figure 1. 
Our technique facilitates electrical recordings of local neural activity during and after nearby 

electrical stimulation, provided that the electrical artifact does not saturate the amplifier. (a) 

A schematic of the recording setup. A tungsten stimulating microelectrode and linear 

multielectrode array are inserted in parallel into dorsal premotor cortex. The linear array 

records the electrical activity of nearby neurons spanning the layers of cortex, while 

electrical current is introduced by the tungsten microelectrode. (b) An example of real 

electrical recordings on the linear multielectrode array (ch. 1–24) during delivery of a single 

40 μApulse train (red, stim) through the stimulating electrode. The recording channels span 

2.3 mm and are labeled from 1 (most superficial, typically above cortex) through 24 (deep, 

typically in white matter).
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Figure 2. 
The first stage of artifact removal removes shared structure recorded simultaneously across 

linear electrode array channels. (a) The electrical artifact evoked by a single pulse of a 

stimulus train is highly similar across the 24 channels of the array. (b) To identify the 

common artifact structure present across channels, we rearrange the artifact data into a 

matrix with dimensions time × pulses × trials (T × P × R) by channels (C), shown 

transposed. (c) The principal components of this matrix are linear combinations of the 

electrode channels. The projections of the recordings along these components clearly display 

artifact structure shared across channels. (d) Voltage recordings for the first pulse of the 

stimulus train, plotted separately for each channel with the responses on each trial 

superimposed. Raw voltage recordings are shown in black, with the artifact inferred via 

principal components regression shown in red. (e) Same presentation as in (d) but with the 

residual voltage recordings shown in blue, after the inferred artifact has been subtracted. (f) 

Cleaned voltage recordings for a single trial with the responses to each individual pulse 

superimposed. The top panel shows a superficial channel which had no detectable 

spontaneous neural activity, and the bottom panel shows a lower channel where a well-

isolated single unit was spiking spontaneously.
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Figure 3. 
The second stage of artifact removal removes common artifact structure across the 

successive pulses of the stimulus train. (a) To isolate structure across pulses, we rearrange 

the artifact data into individual matrices for each channel, each with dimensions time (T) × 

trials (R) × channels (C) by pulses (P). (b) Voltage recordings for a single trial, plotted 

separately for each channel with the responses to each pulse superimposed. Raw voltage 

recordings are shown in black, with the artifact inferred via principal components regression 

shown in red. (c) Cleaned voltage recordings for a single pulse with the responses to all trials 

superimposed. The top panel shows a superficial channel which had no detectable 

spontaneous neural activity, and the bottom panel shows a lower channel where a well-

isolated single unit was spiking spontaneously.
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Figure 4. 
The third stage of artifact removal removes common artifact structure across trials in which 

identical electrical stimulus trains were delivered. (a) To isolate structure across trials, we 

rearrange the artifact data into individual matrices for each channel, each with dimensions 

trials (R) by time × pulses (T × P). (b) Voltage recordings for a single pulse, plotted 

separately for each channel with the responses to each trial superimposed. Raw voltage 

recordings are shown in black, with the artifact inferred via principal components regression 

shown in red. (c) Cleaned voltage recordings for a single trial with the responses to all pulses 

superimposed. The top panel shows a superficial channel which had no detectable 

spontaneous neural activity, and the bottom panel shows a lower channel where a well-

isolated single unit was spiking spontaneously.
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Figure 5. 
Electrical artifacts recorded on the electrode array resemble scaled, filtered versions of the 

original stimulus pulse train. The artifact amplitude varies smoothly with stimulation current 

and electrode distance, enabling post hoc inference of the locations of the recording probes 

in each session. (a) Electrical artifact amplitude (peak to peak) across multielectrode array 

channels. Each plot corresponds to a recording session in which the multielectrode array was 

inserted in a new location. (b) Electrical artifacts recorded on several trials on a superficial 

electrode with increasing electrical stimulation current. (c) A simple model was fit to artifact 

amplitudes across recording sessions, which assumes that the amplitude scales linearly with 

stimulation current and falls off with the reciprocal of Euclidean distance from the 

stimulating electrode tip. These distances are themselves inferred from the data as 

parameters describing the position of the electrode array in each session. The fitted model 

predicted amplitudes (black curve flanked by gray 95% CI) align well with the empirical 

amplitudes observed on each session (groups of connected dots, each color corresponds to a 

session). (d) The fitted locations of the recording probe on each session relative to the 

stimulating electrode tip. Marker size is scaled according to artifact amplitude. Cross-hairs 

indicate 95 % CI for probe location both laterally and vertically.
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Figure 6. 
The cleaned single trial voltage recordings exhibit very little residual stimulation artifact. (a) 

Electrical recordings on the linear multielectrode array for the same trial shown in 1(b). 

Spiking activity during the stimulus is readily apparent on multiple channels, including 

several where spontaneous neural activity was observed. (b) The same recording example as 

in (a), following high-pass filtering to isolate spiking activity.
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Figure 7. 
Comparison of raw and artifact cleaned signals. (a) Raw (red) and cleaned (black) voltage 

traces for a single trial on the most superficially located recording channel where no 

spontaneous activity was recorded, and no spiking activity is detected during stimulation. (b) 

Zoomed view of (a). (c) Same as (a) but for a channel located within cortex where 

spontaneous activity was present. (d) Zoomed view of (c) demonstrating evoked spikes 

visible during the stimulation period.
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Figure 8. 
Recovered spiking waveforms detected during the stimulation period closely resemble 

spontaneously occurring waveforms recorded on the same channel. (a–b) Superimposed 

waveforms from each channel with spiking activity of two representative recording sessions. 

Each pair of columns compares spontaneously occurring (spont.) vs. peri-stimulus period 

(stim.) spiking waveforms. Waveform colors denote hand-sorted unit identity.
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Figure 9. 
Summary of artifact removal quality across recording sessions. (a) RMS voltage on 

electrode channels which displayed no spontaneous spiking activity, across all recording 

sessions. Post-cleaning peri-stimulation RMS voltage is similar to spontaneous pre-stim 

RMS on each channel. (b) Summary of correlation coefficients between spontaneous spiking 

waveforms and recovered waveforms during stimulation, across all recovered units in all 

recording sessions.
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Figure 10. 
(a–c) Recovery of spiking waveforms from synthetic datasets in which one channel was 

replaced by a generated signal with known spike waveforms and times. (a) Correlation of 

mean recovered waveform after application of ERAASR with the true waveform added to 

the signal, as a function of the fraction of pulses containing a spike and the jitter in the pulse 

to spike latency. Recovered waveforms displayed ditortion as the spikes are evoked very 

reliably (higher fraction of pulses) and with very tight latency (lower jitter), as they become 

less distinguishable from artifact. (b) Mean waveforms recovered as a function of increasing 

jitter when all pulses contained a spike. (c) Fraction of spiking waveforms detected as 

threshold crossings. (d) Quality of artifact removal when ERAASR was applied to subsets of 

channels of varying cardinality on the multielectrode array. RMS voltages are calculated 

only for channels which exhibited no spontaneous or evoked spiking activity and are 

normalized to each channel’s RMS voltage during non-stimulated trials. Error bars denote 

standard deviation over channels.
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Algorithm 1

ERAASR algorithm pseudocode
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