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Background: All-trans-retinoic acid (ATRA) is a differentiating agent used in the treatment of acute-promyelocytic-leukemia (APL)
and it is under-exploited in other malignancies despite its low systemic toxicity. A rational/personalized use of ATRA requires the de-
velopment of predictive tools allowing identification of sensitive cancer types and responsive individuals.

Materials and methods: RNA-sequencing data for 10 080 patients and 33 different tumor types were derived from the TCGA and
Leucegene datasets and completely re-processed. The study was carried out using machine learning methods and network analysis.

Results: We profiled a large panel of breast-cancer cell-lines for in vitro sensitivity to ATRA and exploited the associated basal
gene-expression data to initially generate a model predicting ATRA-sensitivity in this disease. Starting from these results and using
a network-guided approach, we developed a generalized model (ATRA-21) whose validity extends to tumor types other than
breast cancer. ATRA-21 predictions correlate with experimentally determined sensitivity in a large panel of cell-lines representative
of numerous tumor types. In patients, ATRA-21 correctly identifies APL as the most sensitive acute-myelogenous-leukemia sub-
type and indicates that uveal-melanoma and low-grade glioma are top-ranking diseases as for average predicted responsiveness
to ATRA. There is a consistent number of tumor types for which higher ATRA-21 predictions are associated with better outcomes.

Conclusions: In summary, we generated a tumor-type independent ATRA-sensitivity predictor which consists of a restricted
number of genes and has the potential to be applied in the clinics. Identification of the tumor types that are likely to be gener-
ally sensitive to the action of ATRA paves the way to the design of clinical studies in the context of these diseases. In addition,
ATRA-21 may represent an important diagnostic tool for the selection of individual patients who may benefit from ATRA-based
therapeutic strategies also in tumors characterized by lower average sensitivity.
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Introduction

All-trans-retinoic acid (ATRA) [1] is used in the treatment of acute-

promyelocytic-leukemia (APL) [2]. ATRA is a non-conventional

anti-tumor agent endowed with cyto-differentiating activity [3].

The unusual mechanism of action, the clinical results obtained in

APL and numerous pre-clinical data in various types of neoplastic

diseases have raised interest in ATRA for the treatment of other

tumors. In a previous study, we demonstrated that luminal and

ERþbreast cancer cell-lines are generally characterized by sensitivity

to the anti-proliferative action of ATRA [4], while triple-negative

cell-lines tend to be resistant to the retinoid. Nevertheless, it must be

stressed that there are several exceptions in both categories [5]. A ra-

tional use of ATRA in oncology requires the identification of the in-

dividual patients who may benefit from therapeutic strategies based

on the retinoid. The present work reports on the identification of a
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gene-expression model originally developed to predict the in vitro

anti-proliferative action of ATRA in breast cancer cell-lines. The

model generated via a machine-learning approach has been further

refined and proved to be of potential use in predicting ATRA-

sensitivity in a tumor-type independent manner.

Materials and methods

ATRA-sensitivity scores and gene-expression
analysis

Breast cancer cell-lines (N¼ 48) were exposed to vehicle (DMSO) or five loga-

rithmically increasing concentrations of ATRA (0.001–10.0 lM) for 9 days. At

the end of the treatment, cell growth was determined with the sulforhodamine

assay [4]. Each experimental point consisted of six cell-culture replicates and

each experiment included an internal positive control represented by a full-

dose–response curve of the highly sensitive SKBR3 cell line. For each cell line

at least two independent experiments were carried out. ATRA-scores were

determined as detailed in supplementary File S1 and Figure S1, available at

Annals of Oncology online. ATRA-score¼ log2 transformation of the product

of AUC 3 Amax, rescaled in a range between 0 and 1. ‘0’ and ‘1’ indicate total

resistance and maximal sensitivity, respectively, to ATRA.

Gene-expression data for the cell-lines and tumor samples were obtained

from Cancer Cell-line Encyclopedia [6], The Cancer Genome Atlas (TCGA; http://

cancergenome.nih.gov) and Leucegene (http://leucegene.ca/leucegene/resources.

php) databases. RNA-Seq data processing/quantification, fusion-transcripts de-

tection and gene-expression to phenotype associations were carried out as

described in supplementary File S1, available at Annals of Oncology online.

ATRA-139 model generation

We trained several machine learning algorithms using gene-expression data of

30 breast cancer cell-lines and evaluated their performance on an independent

test-set consisting of a further 18 cell-lines. The composition of the respective

subsets is provided in supplementary File S2, available at Annals of Oncology

online: Table S1. The best performing algorithm is a penalized ridge linear re-

gression model (ATRA-139) which was trained on a subset of pre-selected

genes. A detailed description of the feature selection strategy used for develop-

ing ATRA-139 and a comparison of all tested machine learning algorithms

(supplementary File S2: Table S2, available at Annals of Oncology online) are

provided in supplementary File S1, available at Annals of Oncology online.

Generation of co-expression networks and ATRA-
21 model development

Co-expression networks for 24 different cancer types were generated using the

ARACNE algorithm [7] implemented in the Cytoscape Network Inference

Toolbox. We determined a consensus network that is conserved across tumor

types and used it to perform additional feature selection on the original

ATRA-139 model. Through this procedure we could restrict the predictive

model to 21 genes (ATRA-21). The entire-workflow leading to ATRA-21

model development and its comparison to randomly generated models are de-

tailed in supplementary File S1, available at Annals of Oncology online.

Results

ATRA-responsiveness of breast cancer cell-lines
and development of a predictive gene-expression
model

We defined the profile of ATRA-sensitivity in 48 breast cancer

cell-lines representing the heterogeneity of the disease. The drug

response of each cell-line (Figure 1A and supplementary File S2:

Table S1, available at Annals of Oncology online) was quantified

by computation of a sensitivity score (ATRA-score, supplemen

tary Figure S1, available at Annals of Oncology online). In general,

luminal, ERþand HER2þ cells are characterized by high ATRA-

scores (high sensitivity).

To develop a tool capable of predicting ATRA-sensitivity, we

trained machine learning models by linking basal gene-expression

to the ATRA-score in the cell-lines that were split into a training-

(n¼ 30) and a test-set (n¼ 18). Different models were trained and

tested for predictive performance (supplementary File S2: Table

S2, available at Annals of Oncology online). The best performing

model was developed by pre-selecting features highly correlated to

the ATRA-score, using a 10-times repeated Leave Half Out (LHO)

cross-validation procedure (Figure 1B) and discarding non-

significantly correlated genes (average Spearman’s rho signifi-

cance>0.05). The resulting 139 genes were used to train a ridge re-

gression model (ATRA-139) (supplementary File S2: Table S3,

available at Annals of Oncology online). ATRA-139 predicts respon-

siveness of cross-validated samples and maintains performance in

the test-set (r¼ 0.93) (Figure 1C), indicating no overfit of the

training data. Expression levels of the corresponding features

across the cell-lines are shown in Figure 1D.

ATRA-139 sensitivity predictions and co-expression
modules in mammary tumors

We used ATRA-139 to predict ATRA-sensitivity in primary

breast cancers (TCGA, The Cancer Genome Atlas) and stratified

the predictions according to different classifications (Figure 2A–

C). In general, the predictions based on ATRA-139 are consistent

with the results obtained in our panel of cell-lines, as they support

the idea that luminality and ER-positivity are major determinants

of ATRA sensitivity in breast cancer.

We applied the ARACNE algorithm to define the co-

expression network of the TCGA breast cancer cases. We found

several co-expressed genes positively or negatively associated

with the features of ATRA-139, which were used as seed nodes

(hubs) in the network generation step. We identified seven major

modules showing a strong association with specific biological

pathways (Figure 2D and supplementary File S2: Table S4, avail-

able at Annals of Oncology online).

The largest module (TPX2-Module) is enriched in genes

involved in cell cycle and proliferation pathways. The second-

largest module (ER-Module) is centered on ER and includes

RARa. The presence of a module consisting of genes directly

associated with ATRA-sensitivity and involved in ER-regulated

processes is consistent with the experimental results obtained in

our panel of breast cancer cell-lines. Three other identified mod-

ules are: HOXA/CXCL12-Module, which is enriched in

Epithelial-to-Mesenchymal-Transition (EMT) genes; STAT1-

Module and SIRPA-Module that are enriched for genes involved

in interferon-/immune-responses. The last two identified mod-

ules (EME2-Module and ATF2-Module) do not show strong asso-

ciations with any biological pathway. Following stratification of

mammary tumors according to PAM-50, we evaluated differ-

ences in the expression levels of the genes belonging to all mod-

ules (supplementary Figure S2, available at Annals of Oncology

online).
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Figure 1 ATRA sensitivity profiles in breast cancer cell-lines and ATRA-139 model. (A) The indicated breast cancer cell-lines were treated for 9 days with increasing concentrations of ATRA
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ATRA-139 correctly predicts retinoid
responsiveness of APL

The only neoplastic disease that is known to be highly sensitive to

ATRA is APL, a subtype of acute-myeloid-leukemia (AML).

Thus, we turned to the 178 AML samples of the TCGA dataset.

Indeed, ATRA-139 correctly predicts APL (FAB:M3) as the AML

subgroup characterized by the highest average sensitivity to the

retinoid (Figure 3A, left). These results were confirmed in the

Leucegene dataset, where ATRA-139 identifies PML-RARþAML

as the most ATRA-sensitive subtype (Figure 3A, right).

We derived a co-expression network also in this type of leuke-

mia using the same approach described for breast cancer.

Noticeably, most of the ATRA-139 genes are organized in mod-

ules characterized by the same hub composition observed in

mammary tumors. In addition, although the co-expressed genes

in AML and breast cancer are not necessarily the same, six of the

modules identified in AML are enriched for the same biological

pathways (Figure 3B and supplementary File S2: Table S5, avail-

able at Annals of Oncology online). Not surprisingly, the only

module which is not conserved in AML is the ER-Module.

Overall, our data support the idea that the majority of the mod-

ules defined by ATRA-139 regulate processes of general relevance

for different types of tumors. Thus, at least some of the ATRA-

139 features may be predictive of ATRA sensitivity in a tumor-

type independent fashion. To identify these features, we defined a

consensus network among different cancers. First, we generated

24 tumor-type specific co-expression networks (supplementary

Figure S3 and File S2: Table S6, available at Annals of Oncology

online). Subsequently, we considered only the edges present in

more than one-third of the networks, identifying six modules

whose constituents are co-expressed in a tumor-type independ-

ent manner (Figure 4). Except for the ER- and EME2-Modules, all

the other modules are analogous to those identified in breast can-

cer and AML. Of the initial ATRA-139 genes, 21 are maintained

in this consensus network (supplementary File S2: Table S7,

available at Annals of Oncology online). Using the refined subset

of 21 genes, we trained a new ridge regression model (ATRA-21)

on the 48 breast cancer cell-lines with ATRA-score set as the re-

sponse variable (supplementary File S2: Table S7, available at

Annals of Oncology online).

ATRA-21 correctly predicts in vitro sensitivity in a
broad panel of tumor cell-lines of different origin

To further evaluate whether ATRA-21 predictions are exportable

to other tumor types, we considered a large number of cell-lines,

representative of different tumors, which were profiled for

in vitro ATRA-sensitivity [Genomic-of-Drug-Sensitivity-in-

Cancer (GDSC) project]. The experimental conditions that we

employed to measure ATRA-sensitivity in breast cancer cell-lines

are different from those used by the GDSC. In particular, the

treatments in GDSC were limited to 3 days, while they extended

to 9 days in our conditions. GDSC results may underestimate real

ATRA-sensitivity, as our experiments demonstrate that several

cell-lines respond only after prolonged treatments. We assessed

the comparability between our predictions and the GDSC experi-

mental data in breast cancer cell-lines (supplementary Figure S4

and File S2: Table S8, available at Annals of Oncology online). The

two parameters are significantly correlated. The correlation be-

comes even more evident when analysis excludes low-responding

cells which may include potential false negatives (<20% differ-

ence in the number of cells between controls and samples treated

with the highest ATRA concentration).

Having set the conditions of comparability, we extended the

analysis to all the 427 cell-lines representative of different tumor

types (Figure 5A, left). We observed a significant correlation be-

tween ATRA-21 predictions and the experimentally determined

ATRA sensitivity values (GDSC-scores). This correlation is main-

tained if cell lines are grouped according to the tumor type

(Figure 5A, right). Taking into consideration the cell-lines char-

acterized by the above mentioned 20% minimal response thresh-

old, a higher correlation between the ATRA-21 predictions and

experimentally determined ATRA-sensitivity is obtained (Figure

5B, left). Grouping of the cell-lines for the tumor type, results in

an even higher correlation value (Pearson’s r¼ 0.70, P¼ 0.0003;

Figure 5B, right). The significance of these results was further

supported with randomly generated models (supplementary File

S1 and Figure S5, available at Annals of Oncology online). Taken

together, the data demonstrate that the predicting validity of

ATRA-21 is not limited to breast cancer and extends to all other

tumor cell-lines. The ATRA-sensitivity predictions for the entire

panel of 935 cell-lines present in the CCLE database are presented

in Figure 5C, after grouping for the tumor type. Neuroblastoma

and different hematological cell-lines are predicted to be particu-

larly responsive to ATRA.

Predictions of ATRA sensitivity in the TCGA tumor
collection

ATRA-21 was used to predict ATRA-sensitivity in the 9,850

TCGA samples, representing 33 different tumor types. Relative to

ATRA-139, ATRA-21 better predicts the higher sensitivity of APL

among all other AML subtypes (Figure 6 and supplementary File

S2: Table S9, available at Annals of Oncology online). The result is

confirmed in the Leucegene dataset (supplementary Figure S6,

available at Annals of Oncology online). Thus, reduction from 139

to 21 genes improves the ability of the model to correctly assess

ATRA-sensitivity across AMLs. Noticeably, ATRA-21 still pre-

dicts high ATRA sensitivity in ERþbreast cancer, despite the ab-

sence of 13/14 ATRA-139 ER-related genes. On the basis of our

data (Figure 6), it is interesting to notice that, on average, uveal

melanoma, lower grade glioma and thyroid carcinoma are pre-

dicted to be even more sensitive to ATRA than APL, although fur-

ther evidence is necessary to support this contention.

Correlations between ATRA-sensitivity predictions
and clinical outcomes

We tested the association between ATRA-21 predictions and

overall survival in the different TCGA tumor types using Cox-

Proportional-Hazard analysis (Figure 7A, left). As this analysis

may be affected by various confounding factors, we further tested

statistical significance in two ways. First, we compared ATRA-21

with 100 models, generated with 21 randomly selected genes.

Second, we carried out multivariate analysis for tumor stage,

which is a potent prognostic factor (Figure 7A, right). Among the

13 tumors with a significant association after univariate analysis,
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7 were confirmed by randomization, 10 were confirmed by multi-

variate analysis and 6 by both types of analysis (Figure 7A, red).

The majority of these last tumors (5/6) show negative Hazard

ratios. Moreover, we observed a significant inverse correlation

between Hazard ratios and median ATRA-21 scores in the differ-

ent tumor types (Figure 7B).

Discussion

A rational use of ATRA in oncology calls for the identification of

the types of neoplasia which are most responsive to the anti-tumor

activity of this natural retinoid. In view of precision medicine

approaches to treatment, it is also important to predict and confirm

ATRA responses in single patients independently of the tumor type.

In the present study, we developed a gene-expression model,

consisting of 21 genes, which is associated with and predicts

ATRA-sensitivity in a tumor-type independent fashion (ATRA-

21). ATRA-21 predicts sensitivity in APL patients. Moreover,

ATRA-21 predictions are highly correlated with experimentally

determined ATRA-sensitivity in the large panel of GDSC cell-

lines from 37 different tumors. The results obtained in the cell-

lines prompted us to apply ATRA-21 to all the tumor types pre-

sent in the TCGA database. Uveal melanoma is the neoplasia with

the highest predicted sensitivity, followed by low grade glioma,

thyroid cancer, paraganglioma/pheochromocytoma, diffuse large

B-cell lymphoma and adrenocortical cancer. The metastatic form

of uveal melanoma is very aggressive and lacks therapeutic op-

tions [8], which suggests that ATRA-based protocols should be

tested in this tumor context. Paragangliomas/pheochromocyto-

mas are rare neuroendocrine tumors, which are deemed to be re-

sponsive to the differentiating action of ATRA [9]. Diffuse large

B-cell lymphoma is the most frequent form of non-Hodgkin

Lymphoma and there is evidence that derived cell-lines are
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responsive to the apoptotic action of ATRA [10, 11], confirming

our predictions. As for adrenocortical cancer, there is recent evi-

dence, consistent with our data, which indicates that the ATRA

analogue, 9-cis-retinoic acid, exerts anti-tumor effects in xeno-

grafts of this tumor type [12, 13]. The results described above

provide insights into the types of tumors which are likely to rep-

resent targets for the study of ATRA-based therapeutic strategies.

However, it must be noticed that there is a significant dispersion

of the predictions within each type of tumor. Thus, even tumor

types characterized by low-predicted average sensitivity to ATRA

include a proportion of cases which may be sensitive to the retin-

oid. This has far-reaching implications in the context of personal-

ized treatments, as it suggests that ATRA-21 should be

implemented as a diagnostic tool for the selection of cancer pa-

tients who may benefit from ATRA-based therapeutic strategies.

Development of a clinically useful diagnostic tool requires further

studies aimed at the optimization of the measures in terms of

standardization and application in the clinical setting. In this

context, it is worth mentioning that ATRA-21, which was de-

veloped from RNA-Seq derived gene-expression data, can be

applied to microarray data as well. In fact, comparison between

predictions obtained by applying ATRA-21 to RNA-Seq and

microarray data available for 519 breast cancer patients (TCGA)

demonstrates a highly significant correlation (supplementary

Figure S7, available at Annals of Oncology online).

The associations between ATRA-21 predictions and survival of

tumor patients determined in our study are also very intriguing.

In fact, there is a consistent number of tumor types for which

higher ATRA-21 predictions are associated with better outcomes,

independent of tumor stage. If we assume that the endogenous

circulating levels of ATRA (10�9–10�8 M), which fall in the range

of in vitro active concentrations, have an inhibitory effect on the

growth/progression of ATRA-sensitive tumors, then the observa-

tion supports the idea that ATRA-21 is positively correlated with

sensitivity to the retinoid. This may further sustain the validity of

our model. It is also interesting that ATRA-21 may not only rep-

resent a useful diagnostic tool in view of personalized treatments

but it may also be a prognostic factor for some tumors. ATRA-21

prognostic relevance may be associated with the anti-tumor

properties of endogenous ATRA.

The integrated and innovative approach pursued in this study

led to the development of ATRA-21, a model predicting retinoid

sensitivity across tumor types. ATRA-21 consists of a restricted

number of genes, which has the potential to be applied in the clin-

ics for the selection of patients affected by different tumor types

who may benefit from therapeutic regimens based on the retin-

oid. Identification of the tumor types that are likely to be gener-

ally sensitive to the action of ATRA paves the way to the design of

specific pre-clinical and clinical studies. We propose that the glo-

bal approach used in this study can be applied to known or po-

tential therapeutic agents other than ATRA.
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