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The genomic-plasticity of the immune system creates a broad immune repertoire engaged to tackle cancer cells. Promising
clinical activity has been observed with several immune therapy strategies in solid tumors including melanoma, lung, kidney,
and bladder cancers, albeit as yet immunotherapy-based treatment approaches in pancreatic ductal adenocarcinoma (PDAC)
remain to have proven value. While translational and early clinical studies have demonstrated activation of antitumor immunity,
most recent late-phase clinical trials have not confirmed the early promise in PDAC except in MSI-High PDAC patients. These
results may in part be explained by multiple factors, including the poorly immunogenic nature of PDAC along with immune
privilege, the complex tumor microenvironment, and the genetic plasticity of PDAC cells. These challenges have led to
disappointments in the field, nonetheless they have also advanced our understanding that may tailor the future steps for
immunotherapy for PDAC. Therefore, there is significant hope that progress is on the horizon.
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Introduction

pancreatic ductal adenocarcinoma (PDAC) is one of the most

challenging cancers for patients, physicians, and scientists, due to

its complex molecular characteristics, tumor microenvironment,

and immune privilege. Surgical removal of the primary tumor is

currently the only curative treatment, applicable to 10%–15% of

patients diagnosed with this disease, albeit most patients who do

undergo surgery ultimately recur and die of their disease. For the

majority of patients with advanced pancreatic adenocarcinoma,

systemic therapies are the mainstay of disease control. Although

cytotoxic regimens such as FOLFIRINOX [1], gemcitabine, and

nab-paclitaxel [2] have improved clinical outcomes, there has

not been significant progress with targeted treatments. This is

believed to be due to multiple compensatory pathways that pro-

vide redundant signaling to escape the inhibitory effects of tar-

geted therapy [3]. Recently, more attention has been paid to

immunotherapy to abolish these rebound and bypass mechan-

isms. Herein, we review immunotherapy in PDAC from early

interaction between cancer cells and the immune system to de-

veloping strategies of immunotherapy to counteract this disease.

Immune surveillance, immunoediting, and

immune privilege

The immune response against cancers cell has been investigated

over decades and it has been identified that the immune system

actively patrols the body [4]. Once transformed, cancer cells are

recognized by immune effector cells such as natural killer cells

(NK) and cytotoxic T cells and are destroyed before development

of clinical disease [5]. However, throughout this malignant trans-

formation process, cancer cells may gain multiple mechanisms to

evade immune response and be rendered ‘invisible’. This dy-

namic process between the immune system and the cancer cell is

called ‘immunoediting’. For example, abundant expression of

B7-H1, better known as programmed death ligand 1 (PD-L1), in-

duces T-cell apoptosis and evades immune reaction in many

tumors including PDAC [6]. Interestingly expression of PD-L1 is

augmented with interferon gamma which is also a mediator of

immune activation, suggesting that cancer cells are able to coun-

teract via compensatory pathways to minimize immune response

[6]. Cancer cells are also capable of altering their metabolism in

the tumor microenvironment to evade the immune system. For
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example, increased expression of indoleamine-2,3-dioxygenase

(IDO) depletes tryptophan, which is an important amino acid for

routine functioning of immune system cells including NK and

cytotoxic T cells in PDAC [7]. Moreover, PDAC cells secrete

granulocyte-macrophage colony-stimulating factor (GM-CSF)

which induces the infiltration of myeloid derived cells to the

tumor microenvironment and suppresses antigen specific T-cell

response [8]. Myeloid cell-inflamed PDAC [8], unlike tumor

infiltrating T-cell inflammation [9], creates a safe haven for

PDAC cells and is associated with more aggressive behavior. T

regulatory cells (Tregs), negative regulators of tumor-specific

cytotoxic T cells, also infiltrate the tumor microenvironment of

PDAC and suppress antitumor immunity [10]. Tregs are re-

cruited by various tumor cells throughout an epithelial-to-

mesenchymal (EMT) process via releasing mediators such as C-C

motif chemokine ligand 2 (CCL2) [11]. Moreover, cancer cells

abolish cell-mediated immunity by downregulating expression of

antigen presenting molecules including major histocompatibility

antigen (MHC) class I [12].

PDAC cells also generate immune tolerance by directly inter-

acting with activated tumor antigen-specific T cells; a process

called ‘immune privilege’. Many pathways have been shown to be

involved in this process. For example, PDAC cells are capable of

downregulating Fas receptor signaling to evade immune attack

and intensify Fas ligand expression which induces apoptosis of

activated antitumor cytotoxic T cells [13–15]. Foxp3 (forkhead

box P3), a transcription regulator, highly expressed on both

Tregs and PDAC cells, may also mediate immune privilege by

suppressing proliferation of activated cytotoxic T cells [16].

Collectively, these mechanisms facilitate escape of cancer cells

from immune system recognition but also underpin opportuni-

ties in cancer immunotherapy which are further detailed below

(Figure 1).

Cancer vaccines

Cancer cells express various antigens that are potentially im-

munogenic due to mutations creating neoepitopes or simply due

to aberrant expression of certain proteins. Utility of these anti-

gens as cancer vaccines has been interrogated in translational and

clinical studies in different models using peptide-based and

whole cell cancer vaccines. In peptide-based vaccines, anticancer

immune activation is generated via specific predetermined anti-

gens that are potentially immunogenic, while whole cell cancer

vaccines sensitize T cells against cell to cell recognition which is

further discussed below.

Peptide-based cancer vaccines

Mesothelin, an overexpressed peptide present in various cancers

including PDAC, has been extensively evaluated as a target anti-

gen. In an animal model, activation of cytotoxic T cells via virus-

like particles containing human mesothelin induced substantial

tumor suppression [17]. Mesothelin has also been used for in vivo

cross priming of T cells that are implemented in whole cell cancer

vaccine studies [18]. Mucin1 (MUC1), a cell surface associated

glycoprotein expressed in PDAC, has also been investigated. In a

phase I/II study, 12 patients who underwent surgical resection

received MUC1-pulsed autologous dendritic cells (DCs) as an ad-

juvant therapy. About 4 out of 12 (25%) had a 4-year disease-free

survival [19]. The patients received a total of four doses over

6 months. Fluctuations in circulating CD4þ and CD8þ cells were

observed before and after vaccinations suggesting a real-time

negative regulation of activated T cells. To avoid self-tolerance

and enhance an immune response, MUC1 has been engineered to

express more antigenic epitopes and murine models have shown

improved outcomes though this approach has yet to be explored

in clinical studies [20] (Table 1).

Telomerase, an immortality-related ribounucleo-protein, is

frequently overexpressed in transformed malignant cells render-

ing it a potential target antigen for immunotherapy. Telomerase

in combination with GM-CSF was identified to be safe and early

signals were promising for antitumor immunity [21]. However, a

recent phase III trial of a combination of telomerase peptide with

chemotherapy did not show any improvement in survival out-

comes [22]. Currently, human telomerase reverse transcriptase

(hTERT), a subunit of the telomerase enzyme, is being evaluated

both as a single agent and in combination with IL-12 DNA in a

phase I trial for solid tumors including PDAC (Table 2;

NCT02960594). Survivin, a well-known tumor-related antigen,

has also been investigated as a cancer vaccine. A gemcitabine-

resistant patient treated with a survivin-based vaccination strat-

egy had a complete remission although disease progression

occurred once the vaccination was discontinued [23]. Wilms’

tumor 1 (WT1), a mutated peptide expressed in various cancers,

including PDAC, has been used to sensitize effector T cells to

PDAC [24]. DCs were designed to present WT1 via either MHC

class I, II, or I/II (combined model) and the best clinical response

was observed with MHC class I/II combined model which was

associated with an increased delayed hypersensitivity reaction.

Administration of biweekly MHC-restricted WT1 vaccine, when

combined with gemcitabine, also appears to be a safe approach in

advanced stage PDAC patients [25]. More recently, to overcome

progressive self-tolerance to cancer related antigens, exploration

of personalized peptides known as cancer peptides with an ability

to activate pre-existing host immunity in a HLA specific manner

has been conducted [26, 27]. Early phase studies of these peptides

have shown a tolerable safety profile and signals of clinical benefit

in both chemotherapy-naive and chemotherapy-resistant pa-

tients with advanced stage PDAC [26, 27].

Whole cell cancer vaccines

In the early 1990s, tumor cells were genetically engineered to se-

crete GM-CSF (GVAX) and foster immune activation. A phase I

study of this approach in PDAC showed a favorable safety profile

and suggested signals for enhanced antitumor immunity [28].

However, one of the most common challenges observed in

vaccine-based clinical trials is compensatory infiltration of Tregs

into the tumor microenvironment leading to non-durable

immune responses. In an open-label phase I safety study, a com-

bination of GVAX with low-dose cyclophosphamide (Cy)

(250 mg/m2), the latter used to deplete Tregs, relatively improved

survival outcomes were observed compared with GVAX alone

[29] (2.3 versus 4.3 months). This approach was further de-

veloped in a clinical trial with the addition of mesothelin-

expressing listeria monocytogenes (CRS-207) to boost immune
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response [30]. In a phase II trial, previously treated advanced

PDAC patients were enrolled in two arms to receive two doses

Cy/GVAX followed by four doses of CRS-207 (A) versus six doses

of Cy/GVAX alone (B) [30]. The authors reported a better overall

survival (OS) in arm A (6.1 versus 3.9 months P¼ 0.02). The

presence of a mesothelin-specific CD8þ T-cell response was

found to be associated with an improved course in both groups.

In a phase IIB trial (ECLIPSE) of this approach, previously

treated advanced stage PDAC patients were enrolled in three

arms to receive Cy/GVAX and CRS-207 versus CRS-207 alone

versus physician’s choice of single agent chemotherapy. The re-

sults of this study was disappointing with evidence of lack of effi-

cacy for the combination of CRS-207 and Cy/GVAX compared

with chemotherapy although there was a signal from the CRS-

207 alone arm compared with chemotherapy alone (5.4 versus

4.6 months, respectively) [31].

The potential benefits of GVAX in PDAC have also been inves-

tigated in different clinical settings. For example, a single arm

phase II clinical trial assessed GVAX in combination with chemo-

therapy in an adjuvant setting [32]. Individuals received 5�108

GVAX after 8–10 weeks of surgery, followed by 5-FU based che-

moradiation [32]. In this uncontrolled single-arm study, the in-

corporation of immunotherapy with adjuvant chemoradiation

was reported to be safe and potential signals for better outcomes

were observed compared with historical controls. Currently, the

rationale of using Cy/GVAX6CSR-207 in combination with

chemotherapy and checkpoint inhibitors is being examined in

neoadjuvant settings (Table 2; NCT00727441, NCT02451982).

The clinical utility of Cy/GVAX in locally advanced disease is

currently being studied in a phase II trial in combination with

SBRT (Stereotactic body radiation therapy) and pembrolizumab

(NCT02648282).

Algenpantucel-L, a whole cell cancer vaccine composed of irra-

diated cancer cells expressing a-GT(alpha-1,3-galactosyltransfer-

ase), has been investigated in PDAC. In a single arm phase II trial,

safety was demonstrated in combination with chemotherapy and

chemoradiotherapy and promise identified in an adjuvant setting

[33]. However, a phase III trial of algenpantucel-L (IMPRESS)

did not reach to its primary end point [34]. A press-release in

2016 announced the results which showed that overall survival in

control and study groups were 30.4 versus 27.3 months, respect-

ively [34].

Although cancer vaccines are clearly able to activate antitumor

immunity, lack of significant clinical benefit and durable immun-

ity has led to investigation of combination approaches of vaccine

and immune modulatory agents [35]. Ipilimumab combined

with GVAX appears to have favorable survival outcomes and fur-

ther sustained antitumor immunity compared with ipilimumab

alone in a small phase I study in advanced PDAC (OS; 5.7 versus

3.6 months, respectively) [35]. Clinical trials are currently investi-

gating the role of this combination and a vaccine only approach

in late stage PDAC patients (NCT01896869, NCT02548169).
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Figure 1. Interaction between immune and cancer cells and their receptors (PD-1, PD-L1, and CTLA4), which are targeted by monoclonal
antibodies.
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Table 1. Selected completed trials assessing vaccine-based immunotherapeutic approaches in PDAC

Identification Trial and strategy Mechanism of action Study design Results

Lepisto et al. [19] Phase 1/2 study of mucin-1
loaded dendritic cells in ad-
juvant setting

Activation of T cells against
Mucin-1 expressing PDAC
cells

1� 106 Dendritic cells loaded
with mucin-1 peptide were
administered in the adju-
vant setting at week 1,
week 3, week 6 and
6 months to 12 months

Well tolerated with no tox-
icity. N¼4 of 12 patients
had 4-year disease-free
survival

Bernhardt et al. [21] Phase 1/2 study of telomerase
as a cancer vaccine in com-
bination with GM-CSF in
advanced stage PDAC
patients

Induction of T-cell clones re-
active to telomerase

Arm A: low-dose telomerase.
Arm B: intermediate dose

telomerase.
Arm C: high-dose telomerase

Well tolerated. Median OS
8.6 months in intermedi-
ate group and was sig-
nificantly better
compared with low- and
high-dose groups
(P¼0.006 and P¼0.05,
respectively)

Middleton et al. [22] Phase III study of telomerase
as a cancer vaccine in com-
bination with gemcitabine
and capecitabine in
advanced stage PDAC
patients

Induction of T-cell clones re-
active to telomerase and
enhancement of clinical re-
sponse to chemotherapy

Arm A: chemotherapy alone.
Arm B: chemotherapy with se-

quential telomerase peptide
Arm C: chemotherapy with

concurrent telomerase
peptide

Neither concurrent or se-
quential telomerase vac-
cine therapy improved
the clinical outcomes
(P¼0.6)

Jaffee et al. [28] Phase I study of GVAX alone
in stage 1, 2, and 3 PDAC
patients

Activation of CTLs with GM-
CSF secreting PDAC cells

Arm A: patients received
1 x 107 vaccine cells

Arm B: patients received
5 x 107 vaccine cells

Arm C: patients received
10 x 107 vaccine cells

Arm D: patients received
50 x 107 vaccine cells

Well tolerated.
GVAX with a dose

of� 10 x 107 vaccine cells
induced delayed hypersen-
sitivity reaction and appears
to correlate with disease-
free survival

Laheru et al. [29] Phase I study of GVAX in com-
bination with low-dose
cyclophosphamide (Cy/
GVAX) in advanced PDAC

Activation of CTLs with GM-
CSF secreting PDAC cells
and inhibition of regulatory
T cells

Arm A: six doses of GVAX with
21-day intervals.Arm B:
cyclophosphamide 1 day
prior to GVAX initiation fol-
lowed by 6 doses of GVAX

Both approaches were well
tolerated with minimal
toxicity. GVAX in combin-
ation with cyclophospha-
mide demonstrated a
tendency toward better
clinical outcomes (4.3
versus 2.3 months)

Le et al. [30] Phase II trial of Cy/GVAX in
combination with CRS-207,
as compared with GVAX
alone in advanced stage
PDAC patients

Activation of CTLs with GM-
CSF secreting PDAC cells,
mesothelin and inhibition
of T regulatory cells

Arm A: two doses of Cy/GVAX
with subsequent four doses
of CRS-207.

Arm B: six doses of Cy/GVAX
with 21-day intervals

OS was 6.1 months versus
3.9 months in arm A and
arm B, respectively
(P¼0.02). Enhanced mes-
othelin specific T-cell
clones were associated
with a better prognosis

ECLIPSE trial [31] Phase IIb trial of Cy/GVAX in
combination with CRS-207
versus GVAX alone versus
physician choice chemo-
therapy in advanced stage
PDAC patients

Activation of cytotoxic T cells
with GM-CSF secreting
PDAC cells and inhibition
of T regulatory cells

Arm A: GVAX and CRS-207
Arm B: CSR-207 alone
Arm C: physician choice

chemotherapy

No evidence of benefit. OS
was 3.8 months,
5.4 months and
4.6 months in GVAX and
CRS-207, CSR-207 alone
and chemotherapy
alone, respectively

Hardacre et al. [33] Phase II trial of
Algenpantucel-L in com-
bination with chemother-
apy in resectable PDAC

Induction of cytotoxic T cells
against PDAC cells with
hyperacute rejection
(hypothetical)

Single arm: 100 million vac-
cine cells injected intrader-
mally for up to 14
vaccinations over 8 months
in combination with
chemo in adjuvant setting

A trend toward improved
clinical outcomes.
Twelve-month disease-
free survival and 12-
month overall survival

Continued
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Table 1. Continued

Identification Trial and strategy Mechanism of action Study design Results

were 62% and 86%,
respectively

IMPRESS trial [34] Phase III trial of
Algenpantucel-L in com-
bination with chemother-
apy versus chemotherapy
alone in resected PDAC
patients

Induction of cytotoxic T cells
against PDAC cells with
hyperacute rejection
(hypothetical)

Arm A: up to 18 immuniza-
tions of 300 million im-
munotherapy cells in
combination with standard
care in adjuvant settings.

Arm B: standard care

No evidence for benefit.
Three- and four-year sur-
vival were 41.4% versus
42.1% and 32.6% versus
32.7% for the control and
study groups, respect-
ively. The median OS was
30.4 and 27.3 months for
the control and study
group, respectively

PDAC, pancreatic adenocarcinoma; CTL, cytotoxic T cells; DCs, dendritic cells; OS, overall survival; DLT, dose-limiting toxicity.

Table 2. Selected ongoing clinical trials evaluating immunotherapeutic approaches in PDAC

Identifier Trial and strategy Mechanism of action Design of clinical trial Primary and secondary
end points

NCT00727441 Phase II study of GVAX vac-
cine6cyclophosphamide
in resectable PDAC

Induction of effector immune
cells and inhibition of T
regulatory cells via whole
cell cancer vaccine

Arm A: GVAX day 1 and
6–10 weeks after surgery on
day 15.

Arm B: CTX day 0 and GVAX
day 1 and 6–10 weeks after
surgery (day 15).

Arm C: GVAX day 1 and
6–10 weeks after Sx, CTX
days 1–7 and days 1–7 after
surgery

PE: safety, feasibility, and
immune response SE: OS
and PFS

NCT02451982 Phase 1/2 study of neoadju-
vant/adjuvant GVAX vacci-
ne6nivolumab (anti PD-1)

Induction of effector immune
cells with whole cell cancer
vaccine6removal of nega-
tive regulatory signals

Arm A: CTX day 0, GVAX day 1
and 6–10 days after Sx
(4 course), Sx day 15 and
Adjuvant

Arm B: CTX day 0, GVAX day 1
and 6–10 weeks after Sx (4
course), Sx day 15 and nivo-
lumab day 0 and 6–
10 weeks after Sx

PE: median IL17A expres-
sion in vaccine-induced
lymphoid aggregates SE:
OS and DFS

NCT01896869 Phase II study of Ipilimumab
(anti-CTLA4) and GVAX vac-
cine in metastatic PDAC

Induction of effector immune
cells with whole cell cancer
vaccine6removal of nega-
tive regulatory signals

Arm A: FOLFIRNOX followed
by IpilimumabþGVAX;
Ipilimumab and GVAX will
be administered every
3 weeks for 4 doses, then
every 8 weeks.

Arm B: FOLFIRINOX
continuous

PE: OS
SE: adverse effects, PFS, ob-

jective response, immune-
related PFS, CA19-9

NCT02548169 Phase I study of antigen-
loaded Dendritic cell in
combination with
chemotherapy

Induction of effector immune
cells

Arm A: DC Vaccineþstandard
of care chemotherapy in re-
sectable or locally advance
disease

Arm B: DC Vaccineþstandard
of care chemotherapy in
metastatic PDAC patients

PE: safety and feasibility
SE: OS, PFS

Continued
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Table 2. Continued

Identifier Trial and strategy Mechanism of action Design of clinical trial Primary and secondary
end points

NCT02243371 Phase II study of GVAX vac-
cine and CRS-
2076nivolumab in meta-
static PDAC patients

Induction of effector immune
cells with whole cell cancer
vaccine6removal of nega-
tive regulatory signals

Arm A: CRS day 2 (1 x 109

CFU) of cycles 3–6, GVAX
day 1 of cycles 1 and 2 and
nivolumab day 1 of cycles
1–6.

Arm B: CRS day 2 (1�109 CFU)
of cycles 3–6, GVAX day 1
cycles of 1 and 2

PE: OS
SE: systemic toxicities, TTP, im-

mune-related PFS, response
rate (RECIST), CA19-9

NCT01473940 Phase I study of ipilimumab
with gemcitabine in
advanced stage PDAC

Induction of effector immune
cells by removing negative
regulatory signals

Single arm induction: ipilimu-
mab weeks 1, 4, 7, and 10;
gemcitabine weeks 1–7 and
9–11.

Maintenance: ipilimumab
every 12 weeks and gemci-
tabine once weekly for
3 weeks

PE: safety and adverse effects
SE: OS, PFS, RR, and T-cell

response

NCT02558894 Phase II study of durvalumab
(anti-PD-
L1)6tremelimumab (anti-
CTLA4) in metastatic PDAC

Induction of effector immune
cells by removing negative
regulatory signals with im-
mune check point
inhibitors

Arm A: durvalumab single
agent i.v. infusion.

Arm B: durvalumab in com-
bination with
Tremelimumab i.v. infusion

PE: objective RR.
SE: duration of response, dis-

ease control rate, progres-
sion free survival,
pharmacokinetics

NCT02268825 Phase I, IIA study of pembroli-
zumab (anti-PD-1) in com-
bination with mFOLFOX in
advanced stage GI cancers

Induction of effector immune
cells by removing negative
regulatory signals with im-
mune check point inhibitor

Single arm: pembrolizumab
day 1 of each cycle of
FOLFOX (total 14 days)

PE: safety and tolerability in
combination with
mFOLFOX

NCT02309177 Phase I study of Nivolumab
(anti-PD-1) with Nab-pacli-
taxel6gemcitabine in
advanced stage PDAC

Induction of effector immune
cells by removing negative
regulatory signals with im-
mune check point inhibitor

Arm A: nivolumab days 1 and
15 of each 28-day cycle.
Nab-paclitaxel days 1, 8, and
15.

Arm B: nivolumab days 1 and
15 of each 28-day cycle.
Nab-paclitaxel days 1, 8, and
15, and gemcitabine days 1,
8, and 15

PE: dose limiting toxicities,
safety.

SE: OS, PFS, disease control
rate, duration of response

NCT02303990
(RADVAX trial)

Phase I study of
Pembrolizumab in combin-
ation with hypofractio-
nated radiation therapy

Induction of effector immune
cells by immune check
point inhibitor and sensi-
tization of T cells by
radiotherapy

Single arm: pembrolizumab
along with radiation
treatment

PE: safety and dose limiting
toxicities

NCT02077881 Phase 1/2 study of Indoximod
(IDO inhibitor) in combin-
ation with gemcitabine
and nab-paclitaxel in meta-
static PDAC

Induction of effector immune
cells by modifying tumor
metabolism

Single arm: indoximod twice
daily�28 days each cycle.
Gemcitabine, Nab-pacli-
taxel days 1, 8, and 15
28 days

PE: dose determination, OS (in
phase II)

SE: RR, biomarker response,
and time to progression of
disease

Sx, surgery; CTX, cyclophosphamide; PE, primary end point; SE, secondary end points; OS, overall survival; PFS, progression-free survival; RR, response rate;
DFS, disease-free survival; TTP, time-to-progression.
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Combination of Cy/GVAX and CRS-207 with or without nivolu-

mab is also currently being investigated in both metastatic PDAC

and neoadjuvant/adjuvant settings (Table 2; NCT02243371,

NCT02451982).

Checkpoint inhibitors and other immune

modulatory strategies

Recent discoveries have revealed many immunomodulatory re-

ceptors involved in immune evasion [36, 37] (Figure 1).

Monoclonal antibodies targeting these inhibitory signals, also

called immune checkpoint inhibitors, can induce antitumor im-

munity [38, 39]. Promising outcomes observed in other solid

tumors have led to investigation of checkpoint inhibitors in

PDAC. Ipilimumab, an anti-CTLA4 antibody, in a phase II study

as a single agent treatment was found to be safe, though did not

demonstrate significant activity [40]. In this study, 1 of 27 pa-

tients, had a delayed response after initial progression (Table 3).

Tremelimumab, another anti-CTLA4 antibody, was assessed and

combined with gemcitabine in the treatment of metastatic PDAC

patients [41]. In this single arm, phase I study, no dose-limiting

toxicity was observed and the median OS was 7.4 months with

two patients achieving a partial response. A phase I study of an-

other immune checkpoint inhibitor, BMS-936559 (an anti-PD-

L1 antibody), showed no responses in 14 patients who had been

previously treated for advanced PDAC although significant

tumor regressions were observed in other solid tumors such as

melanoma and lung cancer [42]. Due to the lack of signal for im-

mune response with the use of single agent checkpoint inhibitors,

combination durvalumab and tremelimumab (anti-PD-L1, anti-

CTLA4 antibodies) has been assessed and results are awaited

(NCT02558894). Pembrolizumab and nivolumab, anti-PD-1

antibodies, other immune checkpoint inhibitors, are currently

being evaluated in combination with FOLFOX, and gemcitabine

and-Nab-paclitaxel with/without gemcitabine, respectively, in

early phase studies for safety and efficacy (NCT02268825,

NCT02309177). An abscopal effect induced by radiotherapy at a

distant site to which the radiation is being administered, may also

enhance the effect of immunotherapy and several trials are cur-

rently investigating this approach, e.g. pembrolizumab in com-

bination with hypofractionated radiotherapy in advanced PDAC

(RADVAX trial, NCT02303990).

Costimulatory molecules and chemokine pathways may also

have important roles in recruitment of antitumor immunity.

CD40, an APC receptor that upregulates T-cells function, tar-

geted to boost antitumor immunity [43]. A trial evaluating a

CD40 agonist combined with gemcitabine in 28 chemotherapy-

naive advanced stage PDAC patients reported decreased FDG

uptake in hepatic lesions of four patients [43]. Activation of

CD40-CD40L receptor-ligand axis may enhance dendritic cell re-

sponse and thus recruit CD8þ T cells to the tumor microenviron-

ment [44]. Provocation of CD40 was also hypothesized to deplete

the immunosuppressive tumor stroma which enhances cytotoxic

T-cell activity against PDAC cells as observed in animal models

[45]. Depletion of tumor-associated fibroblasts by targeting the

CXCl12-CXCR4 axis may also enhance tumor specific T-cell in-

filtration when combined with an anti-PD-L1 antibody [46].

Ulocuplumab, an anti-CXCR4 antibody, has been investigated in

combination with nivolumab in a phase 1/2 trial (NCT02472977)

and results are awaited. Inhibition of PD-1 along with CXCR2,

which is involved in recruitment of myeloid-derived suppressor

cells, may also potentiate tumor immunity [47]. A recent phase

Ib study evaluated PF-04136309, a CCR2(C-C chemokine recep-

tor type2) inhibitor to suppress tumor associated macrophages,

was evaluated in combination with FOLFIRINOX in borderline

resectable and locally advanced PDAC [48]. The authors reported

safe use of PF-04136309 in combination with FOLFIRINOX, and

although only six patients were enrolled in the FOLFIRINOX

alone arm (five evaluable for response), an improved objective

tumor response was observed in the experimental arm compared

with FOLFIRINOX alone (49% versus 0%) and improved dis-

ease control (97% versus 80%). However, the small size of

the study precludes definitive conclusions and other reports of

FOLFIRINOX in this setting have noted significantly higher

response rates. Recently, a phase I study of this agent in combin-

ation with gemcitabine and nab-paclitaxel completed recruit-

ment. (NCT02732938) and further decisions on development are

pending.

Inhibition of the CCR5/CCL5 axis, which mediates homing of

Tregs, inhibits tumor invasion and metastasis and enhances anti-

tumor immune response in animal models [49]. Depletion of

Tregs with or without a cancer vaccine reduces tumor burden in

murine models [50]. Inhibited activity of IDO enhances tumor

specific T-cell response and reduces conversion to Treg-like cells

[51]. The combination of indoximod, an IDO inhibitor, with

gemcitabine/nab-paclitaxel was evaluated in treatment-naive

metastatic PDAC patients [52]. Interim results of this study

showed an objective response in 11/30 (37%) patients including

one complete response suggesting there may be additive role for

use of IDO inhibitors in combination with chemotherapeutics

[52].

Adoptive cell therapies

The repertoire of the adaptive immune system is one of the most

important factors that determines the responsiveness of immun-

ity against cancer vaccines. Lack of immune response and limited

durability of induced immune activation via cancer vaccines and

immunomodulatory agents have led to the evaluation of adoptive

immune therapies in PDAC. In this approach, T-cell clones are

expanded from tumor infiltrating lymphocytes (TILs), or genet-

ically engineered T cells expressing either chimeric antigen recep-

tors (CAR-T) or T-cell receptors (TCR).

Adoptive immune therapy strategies which have shown favor-

able responses in liquid tumors are also under investigation in

PDAC. For example, MUC1-reactive cytotoxic T cells have been

studied in PDAC patients [53]. Eight patients with unresectable

and 20 patients with resectable PDAC, received an infusion of

MUC1-reactive T cells that were expanded ex vivo. Early results

showed reduced liver recurrence with adoptive T-cell treatment.

The median survival time was similar to historical controls, and

was 17.8 months in patients who underwent curative surgery

with 1-, 2-, and 3-year survival rates of 83.3%, 32.4%, and 19.4%,

respectively. A similar study demonstrated activity with infusion

of anti-MUC1 cytotoxic T cells in which one patient had a com-

plete response after adoptive T-cell infusion [54]. Natural-killer
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Table 3. Selected trials assessing novel immunomodulatory agents in PDAC

Identification Trial and strategy Mechanism of action Study design Results

Royal et al. [40] Phase II study of single agent
ipilimumab (CTLA4 inhibi-
tor) in locally advanced and
metastatic PDAC patients

Check point inhibitor to over-
come T-cell exhaustion

Single arm: patients received
Ipilimumab intravenously
(3.0 mg/kg every 3 weeks; 4
doses/course) for a max-
imum of 2 courses

Three patients had grade
>3 adverse effects. N¼ 1
of 27 had a delayed ob-
jective response, but had
confirmed POD initially

Aglietta et al. [41] Phase I study of single agent
tremelimumab in combin-
ation with gemcitabine in
chemotherapy naive PDAC
patients

Check point inhibitor (CTLA4
inhibitor) to overcome
T-cell exhaustion

Single arm: 34 patients
received tremelimumab on
the first day of the 84-day
cycle and standard gemci-
tabine dosing (1000 mg/m2

on days 1, 8, and 15 of
each 28-day cycles)

Well tolerated. Grade 3/4
asthenia and nausea. No
DLT. Two patients out of
34 had a partial response
all of whom received
complete course of
tremelimumab

Brahmer et al. [42] Phase I study of BMS-936559
(an anti-PD-L1 antibody) as
a single agent in advanced
stage PDAC patients

Check point inhibitor (CTLA4
inhibitor) to overcome
T-cell exhaustion

Single arm: multiple solid
tumor patients included.
Fourteen PDAC patients
received BMS-936559 with
a dose of 0.3–10 mg/kg on
days 1, 15, and 29

Well tolerated. No objective
response was demon-
strated in PDAC patients

Beatty at al. [43] Phase I study of anti-CD40
antibody in combination
with gemcitabine in
advanced stage PDAC
patients

CTL activation with CD40
provocation

Single arm: CP-870,893 (anti-
40 antibody) at 0.1 or
0.2 mg/kg were infused on
day 3 of each 28-day cycle
along with standard gemci-
tabine treatment

One dose limiting event
(CVC). Grade 1/2 cytokine
release syndrome. Mixed
response in metastatic le-
sions with decrease FDG
uptake

Nywening et al. [48] Phase Ib trial of CCR2 inhibi-
tors in combination with
FOLFIRINOX in borderline
resectable and locally
advanced PDAC patients

Inhibition of tumor associated
macrophages to remove
the negative/inhibitory
feedback on cytotoxic
T cells

Arm A: FOLFIRINOX (N¼ 9
pts).

Arm B: oral PF-04136309
(small molecule CCR2 in-
hibitor), administered at a
starting dose of 500 mg
twice daily in a standard
3þ3 dose de-escalation de-
sign with concurrent
FOLFIRINOX (N¼ 39 pts)

One patient had dose limit-
ing event. Otherwise well
tolerated. Objective re-
sponse in FOLFIRINOX
alone and experimental
arm were 49% versus 0%,
respectively. Disease con-
trol was achieved in 97%
of experiment group and
80% with FOLFIRINOX
alone

Kondo et al. [54] Generation of adoptive im-
munotherapy against
Mucin-1 by using DCs in
unresectable and recurrent
PDAC patients

CTLs reactive to mucin-1 were
generated by DCs present-
ing mucin-1 to create anti-
tumor immunity

Single arm: N¼ 20 patients
received expanded clone
CTLs which were gener-
ated ex vivo environment

Well tolerated. N¼ 5 had
stable disease. One pa-
tient had complete re-
sponse. Median OS was
9.8 months

Hecht et al. [73] Phase 1/2 trial of intratumoral
endoscopic ultrasound in-
jection of ONYX-015 in
unresectable PDAC

Proliferation of genetically
modified adenoviruses
viruses in p53-mutant pan-
creatic cancer cells to in-
duce oncolysis

Single arm; N ¼ 21 received
2 x 1010 (n ¼ 3) or 2 x 1011

(n ¼ 18) viral copies/treat-
ment which were injected
directly into pancreatic
tumor. Patients also
received standard dose of
gemcitabine

Feasible approach.
Generally, well tolerated.
N¼ 10 either had partial
response or stable dis-
ease and N¼ 11 patients
had progressive disease

PDAC, pancreatic adenocarcinoma; CTL, cytotoxic T cells; DCs, dendritic cells; OS, overall survival; DLT, dose-limiting toxicity.
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group-2 member D expressing NK and cytotoxic lymphocytes

may also be effective once they are further activated with cyto-

kines [55]. In a phase II study, ex vivo expanded cytokine-

induced killer cells in gemcitabine-refractory PDAC patients

suggested encouraging clinical activity [56]. Cytokine-induced

killer cells targeting CD133 via bispecific antibodies may also

promise enhanced tumor immunity by selectively targeting more

tumorigenic clones [57].

T cells genetically engineered to express chimeric antigen re-

ceptors (CAR-T cells) have been also explored as a therapy for

PDAC. In one trial, MUC1-specific CAR-T cells were infused to

mouse models and induced tumor suppression [58]. CAR-T cells

with CD24 and Her2 receptors targeting PDAC stem cell markers

were administered in animal models [59]. In this study, CAR-T

cells inhibited the growth and metastasis of orthotopic tumor

cells and extended the survival of the mice. In one early human

study, mesothelin-specific CAR-T cells were infused safely with

antitumor effect observed in one PDAC patient [60]. However,

the stromal barrier in the tumor microenvironment may also

pose challenges for genetically engineered T cells by inducing T-

cell exhaustion [61]. For example, one study examined genetic-

ally engineered T cells expressing affinity-enhanced TCR against

a mesothelin antigen and demonstrated progressive inhibition of

T cells requiring multiple recurrent infusions to achieve a sus-

tained antitumor response [62]. Although the trial suggested sig-

nificant antitumor activity, it is important to note that

cumulative inhibitory signals orchestrated by tumor stroma lead-

ing to tumor evasion may be a threat for the future of adoptive

T-cell therapies. Nonetheless, adoptive T cells may surmount

progressive exhaustion if their inhibitory signals are modified

[63]. Enhanced infiltration of engineered T cells to the tumor

microenvironment and diminished myeloid derived suppressor

cells have been observed when the PD1-PD-L1 axis is genetically

modified with adoptive T cells before infusion [63]. A recent re-

port of a colorectal cancer patient with a KRAS G12D mutation

reported significant tumor regression after infusion of expanded

tumor infiltrating polyclonal CD8þT cells reactive against the

KRAS G12D antigen [64]. However, in the same study, the au-

thors also observed a recurrent/new metastasis with loss of a sub-

type of class I MHC molecule indicating that cancer cells may

mask antigenic peptides and evade immunity by modifying their

antigen presenting molecules. Moreover, lack of common tumor

infiltrating cytotoxic T cells in KRAS mutant PDAC patients sug-

gests that cancer cells may selectively present peptides which in-

duce T-cell anergy.

Aside from NK and cytotoxic T cells, recent studies indicate

that tumor regression may also be achieved by tumor infiltrating

CD4þT cells that are reactive against specific tumor antigens

[65]. This important discovery suggests that anticancer immun-

ity may be further augmented with immune-orchestrating cells.

Oncolytic viruses

Oncolytic viruses have a long history in cancer research as a thera-

peutic tool to manipulate T cells and to remove virus infected

cancer cells. Cancer terminator virus (CTV) selectively infects

cancer cells expressing progression elevated gene-3 (PEG3) by

using its promoter region and leading to interferon gamma

release [66]. Animal models suggest replication of this virus in

PDAC cells may promote tumor suppression by fostering an im-

mune response [66]. Herpes simplex virus (HSV) and reoviruses

may also induce an antitumor effect in animal models of PDAC

by enhancing cytotoxic T-cell infiltration [67–69]. Adenovirus

selectively replicates in p53-mutant human cancer cells [70].

Animal models of PDAC cell lines with mutant p53 were treated

with a mutated adenovirus (lacking 55-kDa E1B protein), known

as ONYX-15, and the authors observed a marked reduction of

tumor volume [71]. ONYX-15 has also been injected into pri-

mary PDAC site in a phase I trial with favorable safety although

arguably a negative study as target viral replication was not

achieved [72]. A phase I/II study investigated ONYX-15 in com-

bination with gemcitabine and no response was observed until

initiation of gemcitabine treatment suggesting limited activity in

early phase of treatment [73]. Vaccina viruses have been engin-

eered to express interleukin 10 and have been investigated in

murine models which showed induction of CD8þ and CD4þT

cells and reduction of tumor implants [74]. Although oncolytic

viruses can potentially promote apoptosis in cancer cells and lead

to tumor regression, the transient nature of the responses, bar-

riers to delivery of oncolytic viruses to cancer tissue, and the risk

of infection are significant challenges for the future of oncologic

virotherapy [75].

Discussion and future perspectives

The studies summarized herein have focused on concepts of im-

munotherapy in PDAC. The favorable responses seen in preclin-

ical models unfortunately, have yet to be realized in clinical

practice.

The absence of immune response to single agent checkpoint in-

hibitors such as CTLA4 or PD-1/PD-L1 antagonists is consistent

with the known poorly immunogenic nature of PDAC. The evi-

dence to date suggests that monotherapy with checkpoint inhibi-

tors is not a promising strategy for the general PDAC population.

However, checkpoint blockade may induce a significant clinical

response in a subset of immunogenic, MSI (microsatellite

instability)-High PDAC patients which have been reported with a

frequency as low as 1% to as high as 22% of resected PDACs [76,

77]. Recent data suggest the frequency of MSI-High PDAC is

closer to 1%–2%. In this subgroup, the malfunction of the mis-

match repair machinery leads to microsatellite instability, which

in turn leads to the generation of a higher volume of mutation-

associated neoantigens that are targeted by the immune system

[78]. Recently, the FDA approved the use of pembrolizumab in

patients with MSI-H tumors including six PDAC patients based

on the fast track review of promising clinical data obtained from

five clinical studies that enrolled 149 patients with MSI-High

tumors [79]. Results of an ongoing pembrolizumab trial in MSI-

High non-colorectal gastrointestinal cancers including PDAC,

has also demonstrated single agent activity to checkpoint inhibi-

tors in a small subgroup of PDAC patients [80]. One emergent

challenge is deciding which screening methods to use to appro-

priately identify this small subset of MSI-High PDAC patients re-

sponsive to checkpoint blockade. Checkpoint inhibitors may also

boost antitumor immunity and achieve significant clinical re-

sponse in T cell-inflamed PDAC which has been implicated to
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have a better prognosis perhaps due to cancer specific T-cell orch-

estrated antitumor response [9].

Genomic instability caused by mutations in DNA repair ma-

chinery genes such as BRCA and PALB2 [81] in a small subset of

PDAC patients creates defective homologous repair (HR) which

may lead to a significant mutation load and thus create varied

antigens that are potentially immunogenic. This subgroup of

PDAC along with a broader group of patients with defects in

other genes involved in HR may also be vulnerable to immune

check point inhibitors, a concept that is beginning to be explored.

Moreover, PARP inhibitors which are promising agents in this

subpopulation of PDAC, may further induce genomic instability

in HR defective PDAC and create further antigens to facilitate re-

sponse to immune checkpoint inhibitors. The combination of

immune-modulating agents with PARP inhibitors and perhaps

also platinum based chemotherapeutics, may uncover a potential

synergy in PDAC with unstable genomes.

As aforementioned, most PDAC patients carry relatively less

somatic mutations compared with other solid tumors [82] lead-

ing to observed limited immune response. Cancer vaccines, thus

offer a strategy to circumvent this challenge. However, a phase

IIB trial of GVAX and phase III trial algenpantucel-L have not

shown any significant improvement in outcomes pointing to the

fact that there are additional barriers for achievement of an effect-

ive antitumor immune response in PDAC. PDAC stroma bears

one of most complicated tumor microenvironments that is in-

herently involved in downregulation of the immune reaction.

Thus, cancer vaccines could be further investigated in combin-

ation with agents targeting stroma-facilitated inhibitory signals.

Currently clinical trials are underway to investigate stroma mod-

ifying agents such as FAK inhibitors and recombinant hyaluroni-

dase (PEGPH20) in combination with immune checkpoint

inhibitors. Another important finding to be noted is that tumor-

derived GM-CSF recruits myeloid-derived inflammatory cells

and suppresses cytotoxic T-cell activity [8] although GM-CSF se-

creted by genetically engineered cancer cells in GVAX model is

supposedly provoking an immune response [28]. However, the

absence of durable immunity to GVAX and observed better re-

sponses to CRS-207 alone compared with combination of CRS-

207 and GVAX in ECLIPSE trial [31] suggests that GM-CSF

incorporated in GVAX may indeed recruit myeloid derived sup-

pressor cells which could negatively impact GVAX vaccine and

suppress cytotoxic T-cell infiltration. It is also important to note

that evolving evidence suggests that myeloid cell-inflamed PDAC

has a poorly immunogenic microenvironment in part due to con-

tinuous suppression of T cells by immature myeloid cells [8].

Although cytotoxic T cells are key components of cancer im-

munity, NK cells are also specially armed members of the im-

mune system with unique features. NK cells eliminate targets

including cancer cells without requiring MHC-restricted antigen

recognition [83] a tool that may potentially overcome aforemen-

tioned obstacles. Loss of MHC class I expression, which is a

strong signal for activation of NK cells, enables their cytotoxic ef-

fect on target cells. Progressive loss of MHC class I expression in

PDAC [84] may also explain the absence of sustained immune re-

sponse to MHC-restricted antigen presentation in vaccine treat-

ment. Therefore, antitumor activity of NK cells should be further

examined in poorly immunogenic tumors including PDAC.

Tumor heterogeneity remains another critical challenge in can-

cer treatment. Cancer stem cells are pluripotent cells that may

form new clones with different properties and genetic signatures

leading to tumor heterogeneity [85]. Cancer vaccines targeting

certain antigens in cancer cells may induce destruction of clones

expressing presumed target antigens however other clones lack-

ing the target peptide may evade antitumor immunity. Thus, can-

cer vaccines targeting antigens universally present on pluripotent

cancer stem cells may achieve sustained therapeutic efficacy.

Knowledge regarding the role of cancer stem cells on immune

suppression and their interaction with effector T cells may

also broaden our horizons on immune evasion of cancer cells

and may open new therapeutic paths for future cancer

immunotherapy.

Overall, current evidence strongly suggests critical limiting

challenges ahead for evolvement of immunotherapy in PDAC

treatment, in particular, due to the poorly immunogenic

nature of PDAC. It is important to note that, the innate aggres-

sive behavior of PDAC may directly relate to its poor immuno-

genicity and lack of immune activation throughout malignant

transformation and progression. However, the repertoire of the

immune system is well-equipped with varied immune cells with

different effector pathways including NK cells, cytotoxic T cells

and T helper cells that lends a great potential for surmounting

poor immunity in PDAC. Another important factor that

immunotherapy based treatment trials should consider is iden-

tification of the right patient population that may show

increased susceptibility to immune targeted strategies.

Therefore, while progress to date has been limited in PDAC,

there is optimism that based on emerging science and an abun-

dance of targets and strategies, meaningful progress will be real-

ized in PDAC.
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