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Background: Mutations in the androgen receptor (AR) ligand-binding domain (LBD), such as F877L and T878A, have been
associated with resistance to next-generation AR-directed therapies. ARN-509-001 was a phase I/II study that evaluated
apalutamide activity in castration-resistant prostate cancer (CRPC). Here, we evaluated the type and frequency of 11 relevant
AR-LBD mutations in apalutamide-treated CRPC patients.

Patients and methods: Blood samples from men with nonmetastatic CRPC (nmCRPC) and metastatic CRPC (mCRPC)
pre- or post-abiraterone acetate and prednisone (AAP) treatment (�6 months’ exposure) were evaluated at baseline and
disease progression in trial ARN-509-001. Mutations were detected in circulating tumor DNA using a digital polymerase chain
reaction-based method known as BEAMing (beads, emulsification, amplification and magnetics) (Sysmex Inostics’ GmbH).

Results: Of the 97 total patients, 51 had nmCRPC, 25 had AAP-naı̈ve mCRPC, and 21 had post-AAP mCRPC. Ninety-three were
assessable for the mutation analysis at baseline and 82 of the 93 at progression. The overall frequency of detected AR mutations
at baseline was 7/93 (7.5%) and at progression was 6/82 (7.3%). Three of the 82 (3.7%) mCRPC patients (2 AAP-naı̈ve and 1
post-AAP) acquired AR F877L during apalutamide treatment. At baseline, 3 of the 93 (3.2%) post-AAP patients had detectable
AR T878A, which was lost after apalutamide treatment in 1 patient who continued apalutamide treatment for 12 months.

Conclusions: The overall frequency of detected mutations at baseline (7.5%) and progression (7.3%) using the sensitive
BEAMing assay was low, suggesting that, based on this assay, AR-LBD mutations such as F877L and T878A are not common
contributors to de novo or acquired resistance to apalutamide.

ClinicalTrials.gov identifier: NCT01171898.
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Introduction

Castration-resistant prostate cancer (CRPC) is the lethal form of

the disease that carries a poor prognosis [1, 2]. Molecular profiling

studies have shown that androgen receptor (AR) overexpression is

associated with resistance to conventional antiandrogens, and pre-

clinical experiments confirm that AR overexpression contributes
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to CRPC progression [3]. This insight and the demonstration that

androgen ligands persist in CRPC patient tumors despite medical

castration led to the eventual clinical development of novel

androgen-AR axis–signaling inhibitors, including most recently,

apalutamide [4, 5].

Although the majority of patients respond to these next-

generation AR-targeted agents, the durability of response is lim-

ited [6], and only a subset benefit from sequential AR-directed

therapies [7–10]. Several potential mechanisms have been pro-

posed to explain resistance to these agents, including DNA alter-

ations in the AR gene, the production of AR mRNA splice

variants such as AR-V7 [11, 12], increased mitogen-activated

protein kinase signaling and alternative signaling pathways [3].

Point mutations in the AR ligand-binding domain (AR-LBD)

have also been associated with resistance to AR-targeted therapy

[13–20], including AR F877L and AR T878A (formerly AR F876L

and AR T877A) [21], which have been associated with resistance

to apalutamide, enzalutamide or the androgen biosynthesis in-

hibitor abiraterone acetate (hereafter abiraterone), respectively.

Additionally, although all AR mutations alter the specificity of

ligand binding, there are 2 types of AR mutations, those that con-

vert AR antagonists to agonists (e.g. F877L, W742L/C) and those

that result in broadened ligand specificity and a ‘promiscuous

AR’ that can bind to other endogenous steroids [17].

To evaluate the relationship of AR-LBD mutations and resist-

ance to next-generation antiandrogens, Balbas et al. [14]

screened for human prostate cancer cell populations with per-

sistent AR transcriptional activity, proliferative ability and

tumorigenic potential in the presence of enzalutamide using an

AR-regulated enhanced green fluorescent protein reporter and a

randomly mutagenized AR library. These investigators identified

a novel mutation, AR F877L, that spontaneously arose in cells

with prolonged treatment with enzalutamide and apalutamide

[14]. Joseph et al. [18] and Korpal et al. [19] confirmed these

findings with AR F877L-expressing prostate cancer cell lines in

castrated mice. Neither enzalutamide nor apalutamide inhibited

tumor growth in the AR F877L-expressing tumors, but both

drugs exhibited robust antitumor activity in wild-type AR-

expressing tumors [18, 19]. Based on these preclinical data,

Joseph et al. [18] used the BEAMing (beads, emulsification,

amplification and magnetics) technique to evaluate serial circu-

lating tumor DNA (ctDNA) samples from 29 patients with meta-

static CRPC (mCRPC) treated on a phase I study of apalutamide.

As expected, AR F877L was not found in pretreatment samples

but the mutation was detected in 3 (10%) post-apalutamide pa-

tients with a rising prostate-specific antigen (PSA), suggesting a

possible mechanism for acquired treatment resistance [18].

There is biochemical evidence based on engineered cell line

models that enzalutamide is only a weak partial agonist of

AR F877L, but a strong partial agonist of the double mutant

AR F877L/T878A [22, 23].

The AR T878A mutation has been associated with resistance to

abiraterone in a xenograft model [15], which was subsequently

detected in metastatic tumor biopsies from CRPC patients

relapsing on the CYP17A1 inhibitors abiraterone or ketoconazole

[16]. In a recent study, men harboring the AR T878A mutation in

ctDNA showed inferior PSA response rates and shorter overall

survival with abiraterone compared with men with a wild-type

AR gene [24]. These studies and others underscore the need to

further investigate predictive biomarkers for resistance to AR-

targeted therapies.

The aim of the present study was to evaluate the frequency of

F877L, T878A and other AR-LBD mutations at baseline and dis-

ease progression in nonmetastatic (nm) and mCRPC patients

who were abiraterone plus prednisone naı̈ve (AAP-naı̈ve) or who

had previously received abiraterone plus prednisone (post-AAP)

[25, 26]. Eleven somatic AR-LBD mutations were evaluated at

baseline and disease progression in ctDNA using BEAMing, a dig-

ital polymerase chain reaction (PCR)-based method (supplemen-

tary Table S1, available at Annals of Oncology online).

Methods

Patients with nmCRPC and mCRPC were enrolled in a phase II trial of
apalutamide (ARN-509-001) [25, 26]. All patients had pathologically
confirmed prostate cancer, had been medically or surgically castrated
(serum testosterone of�50 ng/dl) and had an Eastern Cooperative
Oncology Group performance status of 0–1. Patients were excluded if
they had received prior enzalutamide, ketoconazole or chemotherapy for
mCRPC or had distant metastases with nmCRPC. Patients in the
mCRPC cohort had disease progression based on either PSA progression
(�2 ng/ml within 2 weeks of study enrollment) or radiographic progres-
sion (�2 new bone lesions, Prostate Cancer Working Group 2 criteria)
[27] and had no prior exposure to abiraterone plus prednisone (i.e. AAP-
naı̈ve cohort) or received�6 months of abiraterone plus prednisone
treatment before disease progression (i.e. post-AAP cohort).

Plasma samples were sent to Sysmex Inostics’ GmbH (Hamburg,
Germany) analytical facility on dry ice; samples were stored at –70 �C
until they were analyzed. Samples were thawed at room temperature for
15–30 min before DNA preparation. BEAMing (Sysmex Inostics’
GmbH), which combines emulsion PCR using magnetic beads coated
with gene-specific primers to detect and quantify known mutations in
ctDNA [28], was used to detect 11 possible somatic AR-LBD mutations
in the patient samples (i.e. 11 of>30 known AR-LBD mutations available
to assay via BEAMing at the time of the analysis) (supplementary Table
S1, available at Annals of Oncology online). These 11 mutations affect
6 key amino acid residues (V716, W742, H875, F877, T878 and M896).
Detection, quantification and validation are discussed in the supplemen-
tary methods, available at Annals of Oncology online).

Results

Baseline data (N¼ 97) were similar among cohorts, with the ex-

ception of percentage of black and Asian patients, baseline PSA

and Gleason score (supplementary Table S2, available at Annals

of Oncology online). Ninety-three of 97 (96%) patients in the

phase II study were assessable for the AR mutation analysis at

baseline (nmCRPC, n¼ 50; AAP-naı̈ve mCRPC, n¼ 24; post-

AAP mCRPC, n¼ 19); 82 of the 93 (88%) patients assessable at

baseline were assessable for the mutation analysis at progression

(nmCRPC, n¼ 47; AAP-naı̈ve mCRPC, n¼ 20; post-AAP

mCRPC, n¼ 15). The median (range) treatment duration was

26.9 (0.03–37.84) months for the nmCRPC cohort, 20.97 (2.63–

37.54) months for the cohort with AAP-naı̈ve mCRPC and 4.87

(1.28–23.2) months for those with post-AAP mCRPC. A low

frequency of AR mutations was detected in the overall patient

population (Table 1). AR F877L and AR T878A mutations were

found in more than one patient, and these are the focus of this

report.
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AR F877L

Two of the 93 (2.2%) patients harbored the AR F877L mutation

at baseline at a mutation frequency of<0.05%, and both were

subsequently found to have a PSA decline in response to

apalutamide (Table 2; Figure 1A and B). One of these patients

was in the nmCRPC cohort (12-week PSA change, –92.2%; treat-

ment duration, 6.9 months) and the other was in the AAP-naı̈ve

cohort (12-week PSA change, –66.9%; treatment duration,

Table 1. Summary of overall androgen receptor mutation status

AR point
mutationb

Associated drug
resistance

Baselinea N 5 93 Progression ‘acquired’ N 5 82 Total baseline and progression
‘acquired’ N 5 93

n (%) n (%) n (%)

F877Lc Enzalutamide [14, 18, 19] 2 (2.2) 3 (3.7) 5 (5.4)
Apalutamide [14, 18]

T878Ad Abiraterone [15, 16] 3 (3.2) 1 (1.2) 4 (4.3)
W742Ce Bicalutamide [17] 1 (1.1) 0 1 (1.1)
V716T Flutamide [17] 0 1 (1.2) 1 (1.1)
H875Y Flutamide [20] 1 (1.1) 1 (1.2) 2 (2.2)

Abiraterone [13]

aFour nmCRPC patients were excluded from the efficacy analysis as they were later determined to have metastases on their screening scans.
bAR M896T and AR M896V were not detected.
cThree possible nucleotide changes (T! C, C! A and C! G).
dTwo possible amino acid changes (T! A and T! S).
eTwo possible amino acid changes (W! C and W! L).
AR, androgen receptor.

Table 2. Androgen receptor F877L and T878A mutation statusa in individual patients treated with apalutamide in the nmCRPC, AAP-naı̈ve and post-AAP
cohorts

Cohort Patient
ID#

AR
mutationb

Mutation fraction
at baselinec

Cycle at which
mutation fraction at
progression detected

Mutation fraction
at progressiond,e

12-Week
PSA changef

Treatment
duration
(months)g

nmCRPC 1 F877L (0.02%) 8 (0.3%) –92.2% 6.9
AAP-naı̈ve 2 F877L – 22 (0.721%) –77.7% 24.9

3 F877L (0.032%) 11 (0.41%) –66.9% 11.0
4 F877L – 9 (0.18%) –97.3% 8.0

Post-AAP 5 F877L – 4 (0.04%) þ55.9% 3.4
6 T878A (0.84%) 4 (5.46%) þ112.7% 2.8
7 T878A (0.07%) 14 – –62.7% 12
8 T878A (1.96%) 6 (0.4%) –90.1% 4.8
9 T878A – 10 (0.02%) –80.8% 23.2

aA plasma sample was deemed positive for a given mutation if the percentage of mutant beads was above the cutoff (0.02%).
bNo F877L/T878A double mutants were detected.
cNumber of mutation positive patients at baseline (F877L, n¼ 2/93; T878A, n¼ 3/93).
dNumber of mutation positive patients at progression (F877L, n¼ 5/82; T878A, n¼ 3/82).
eDisease progression on apalutamide was defined as evidence of both PSA progression (�25% and>2 ng/ml above PSA nadir confirmed�3 weeks later
or>2 ng/ml above baseline PSA after 12 weeks) and radiographic progression (soft tissue metastases by modified Response Evaluation Criteria In Solid
Tumors 1.0) seen on computed tomography/magnetic resonance imaging scans and/or bone metastases by 99mTc-methylene diphosphate bone scans by
Prostate Cancer Working Group 2 criteria, and clinically by the occurrence of a skeletal-related event, pain progression, or worsening of disease-related
symptoms requiring new systemic anti-prostate cancer therapy.
fMedian 12-week PSA change in F877L mutation negative patients (n¼ 86) was –79.8% (range, –99.9 toþ175). Median 12-week PSA change in T878A
mutation negative patients (n¼ 87) was –81.2% (range, –99.9 toþ175).
gMedian treatment duration in F877L mutation-negative patients (n¼ 92) was 19.6 months (range, 0.03–37.8). Median treatment duration in T878A
mutation-negative patients (n¼ 93) was 18.4 months (range, 0.03–37.8).
–, undetected. AAP, abiraterone acetate plus prednisone; AR, androgen receptor; mCRPC, metastatic castration-resistant prostate cancer; PSA, prostate-spe-
cific antigen.
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11.0 months). Both patients had detectable AR F877L and an in-

crease in the mutation frequency at the time of progression.

Three additional patients [3/82 (3.7%)] were found to have the

mutation at progression that had not been detected at baseline

(Table 2); the PSA trajectory is shown in Figure 1C–E. The single

patient in the post-AAP cohort who acquired AR F877L demon-

strated no PSA decline (12-week PSA change,þ55.9%; treatment

duration, 3.4 months) and had a relatively low mutation fre-

quency of 0.04% (Table 2; Figure 1C). The other 2 patients with

acquired AR F877L were both in the AAP-naı̈ve cohort with 12-

week PSA changes of –97.3% and –77.7%, treatment durations of

8.0 and 24.9 months, respectively, and mutation frequencies of

0.18% and 0.72%, respectively (Table 2; Figure 1D and E,

respectively).

AR T878A

Three of 93 (3.2%) patients had the AR T878A mutation at base-

line (Table 2); all had previously received at least 6 months of

abiraterone and demonstrated similar baseline characteristics.
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Figure 1. PSA changes in patients with androgen receptor F877L mutations detected at baseline [(A) Pt ID#1, (B) Pt ID#3] and at progression
on apalutamide [(C) Pt ID#5, (D) Pt ID#4, (E) Pt ID#2]. AA, abiraterone acetate; PSA, prostate-specific antigen.
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Two had a PSA decline while on treatment with apalutamide,

including 1 who had lost the mutation by the time of progression

on apalutamide (Figure 2A; Table 3) (12-week PSA change,

�62.7%; treatment duration, 12.0 months), and a second who

had a decreased mutation fraction from 1.96% at baseline

to 0.4% at progression (Figure 2B; Table 3) (12-week PSA change,

�90.1%; treatment duration, 4.8 months). The third patient

had an increased mutation fraction from 0.84% at baseline to

5.46% at progression and had no PSA decline (12-week PSA

change, þ112.7%; treatment duration, 2.8 months) (Figure 2C;

Table 3). The PSA kinetics increased for these patients after

AR T878A detection at progression (Figure 2A–D). One post-

AAP patient acquired the AR T878 mutation at progression at a

relatively low frequency of 0.02%. This patient had a PSA decline

in response to apalutamide (12-week PSA change, –80.8%; treat-

ment duration, 23.2 months) (Figure 2D; Table 3).

Discussion

The survival benefits seen with agents that target the AR-

signaling pathway have transformed the management of

mCRPC. Nevertheless, one-third of patients do not respond to

second-generation AR-targeted therapies, and the majority of

those who initially respond, will acquire resistance to these

agents. The optimal treatment of these patients, and how best to

sequence available life-prolonging therapies, have not been estab-

lished due to the inability to identify patients most likely to re-

spond (or not respond) to specific AR-targeted drugs. This

demonstrates the need for predictive molecular biomarkers to

better inform treatment selection [11, 12, 24, 29]. Here, we report

results of ctDNA sequencing using the BEAMing assay on sam-

ples from a phase II study of apalutamide in 3 distinct cohorts
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Figure 2. PSA changes in patients with androgen receptor T878A mutations detected at baseline [(A) Pt ID#7, (B) Pt ID#8, (C) Pt ID#6] and at
progression on apalutamide [(D) Pt ID#9]. AA, abiraterone acetate; PSA, prostate-specific antigen. Baseline characteristics for these patients
are shown in Table 3.

Table 3. Baseline demographics and disease characteristics of post-AAP
patients with T878A mutations at baseline corresponding to patients
shown in Figure 2 (per Figure 2A–C) and progression on apalutamide
(per Figure 2D)

Patient A (Pt ID#7) B (Pt ID#8) C (Pt ID#6) D (Pt ID#9)

Age 83 64 74 58
Race White White White White
Baseline PSA (ng/ml) 58.4 1315.2 64.1 12.0
ECOG PS 1 1 1 0
Gleason score 4þ5 4þ3 4þ3 N/A

AAP, abiraterone acetate plus prednisone; ECOG PS, Eastern Cooperative
Oncology Group performance status; PSA, prostate-specific antigen.
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(nm, metastatic AAP-naı̈ve, and metastatic post-AAP). The assay

was selected because of its increased sensitivity versus an AR exon

8 sequencing approach used by others [13].

Overall, we tested 5 mutations derived from 11 possible amino

acid alterations in 5 codons (supplementary Table S1, available at

Annals of Oncology online) for which the assay was designed,

including: F877L (n¼ 5), T878A (n¼ 4), W742C (n¼ 1), V716M

(n¼ 1) and H875Y (n¼ 2). The most common (occurring in

more than one subject) were AR F877L and AR T878A, LBD mu-

tations associated in laboratory models and in the clinic with re-

sistance to enzalutamide and apalutamide (AR F877L) [14, 18,

19] and abiraterone (AR T878A) [15, 16].

The frequency of AR F877L mutations (i.e. copies of mutant

AR per genomic equivalent) increased in the mCRPC cohort after

exposure to apalutamide, suggesting the possibility of preexisting

clones that underwent positive selection with treatment. The 2

patients with the AR F877L mutations at baseline had a 12-week

PSA decline of>50% after treatment with apalutamide. Notably,

both had a relatively low frequency of the mutation at baseline

(<0.05%) that increased at the time of progression. Another

AAP-naı̈ve mCRPC patient remained on study for 24.9 months

and acquired the AR F877L mutation at progression (mutation

frequency, 0.72%), suggesting a possible mechanism for second-

ary resistance. AR F877L was not detected in any post-AAP

mCRPC patients at baseline. One post-AAP patient acquired the

AR F877L mutation at progression on apalutamide; however, this

patient had a low frequency of the mutation (0.04%) and was

only on study for 3.4 months with a rising PSA, potentially sug-

gesting a method of resistance other than development of AR

F877L in the setting of prior AAP exposure.

All patients in our study who harbored the AR T878A mutation

were in the mCRPC post-AAP cohort, consistent with the results of

a recent analysis showing that AR T878A was associated with resist-

ance to abiraterone [13] and consistent with prevalence reported in

prior studies [13, 16], whereas AR T878A was never detected in pa-

tients with nmCRPC or in those in the AAP-naı̈ve mCRPC cohort.

One of the patients who lost the AR T878A mutation at progression

initially had a PSA elevation but subsequently experienced a robust

PSA decline and was on treatment for 12 months until treatment

discontinuation due to PSA, radiographic and clinical progression.

The decrease or loss of the AR T878A mutation observed in 2 of the

3 post-AAP patients who received treatment with apalutamide sug-

gests 3 possibilities: apalutamide may have selectively inhibited the

clone with this mutation and restored sensitivity to AR-directed

treatment; discontinuation of abiraterone may have removed the

evolutionary selection pressure that encouraged this AR mutation

to emerge during abiraterone treatment; or discontinuation may

have removed selective advantage of progesterones with the avail-

ability of endogenous steroids.

Blood samples were collected from 93 patients at baseline and

from 82 patients at progression using a BEAMing assay designed to

detect 11 selected AR-LBD mutations. These mutations were found

at a relatively low incidence and frequency. Potential limitations of

the analysis include the use of only one assay (limited to one assay

per study sample availability) predesigned to detect 11 AR-LBD

mutations already known to be associated with resistance to AR

signaling-directed therapies. There may be other as of yet not well

defined AR-LBD mutations that contribute to resistance. For exam-

ple, the clinical significance of emergence of AR L702H in patients

treated with exogenous glucocorticoids was not known when this

study was designed [30]. Larger, prospective studies using assays

that can detect mutations as well as other alterations in the receptor

such as the AR splice variants [12, 31] to more completely address

the question of the role of AR-LBD mutations in both de novo and

acquired resistance would require a different type of blood sample.

Given the high sensitivity of the BEAMing assay, it is likely that the

AR F877L and AR T878A mutations are not major contributors to

de novo or acquired resistance with apalutamide. It is also possible

that the presence of AR F877L and AR T878A mutations in

apalutamide-treated patients is an epiphenomenon associated with

clonal selection pressures rather than being a driver of apalutamide

resistance. Notably, however, preclinical data strongly suggest that

these AR mutations confer resistance to AR-targeting agents.

Ultimately, an integrated analysis of tumor-specific mRNA and

DNA would be required to study the full complement of AR aberra-

tions in men receiving novel hormonal therapies.

Conclusions

Although AR F877L has previously been associated with resist-

ance to apalutamide and enzalutamide, patients with CRPC who

were treated with apalutamide in our study had a low rate of de

novo acquisition of the AR F877L mutation [3 of 82 patients

(4%)] even using the sensitive BEAMing method. Not surpris-

ingly, in patients without prior exposure to second-generation

AR antagonists, AR F877L was detected at a low frequency at

baseline [2 of 93 (2%)], and the presence of these mutations did

not preclude PSA declines with apalutamide. The increased fre-

quency of the mutation at the time of progression does suggest

that AR F877L mutation may contribute to apalutamide resist-

ance, although the frequency of these mutations in patients pro-

gressing on apalutamide in this study was low.

Second-line therapy with apalutamide in 2 post-AAP patients

resulted in either a decrease or a loss of the preexisting AR T878A

mutation while on therapy. Given the low frequency of the AR

F877L and AR T878A mutations, they are unlikely to play a dom-

inant role in the mechanism of primary or acquired resistance to

apalutamide in CRPC patients.
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