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In the 1990s, the application of immunotherapy approaches to target cancer cells resulted in significant clinical responses in
patients with advanced malignancies who were refractory to conventional therapies. While early immunotherapeutics were
focused on T cell-mediated cytotoxic activity, subsequent efforts were centered on targeted antibody-mediated anticancer ther-
apy. The initial success with antibody therapy encouraged further studies and, consequently, there are now more than 25 FDA-
approved antibodies directed against a range of targets. Although both T cell and antibody therapies continue to result in sig-
nificant clinical responses with minimal toxicity, a significant subset of patients does not respond to immunotherapy and an-
other subset develops resistance following an initial response. This review is focused on describing examples showing that can-
cer resistance to immunotherapies indeed occurs. In addition, it reviews the mechanisms being used to overcome the
resistance to immunotherapies by targeting the tumor cell directly and/or the tumor microenvironment.
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Introduction

While conventional cancer treatments, such as surgery, chemo-

therapy, and radiation have extended survival for many patients,

they have had limited success in certain tumor types and in pa-

tients with late stage diseases. Consequently, the search for more

effective and less toxic cancer therapeutics continues. For many

years, researchers have explored the idea that the immune system

could be harnessed with the aim of inducing an anti-tumor im-

mune response. It has been recognized that tumors are often

poorly immunogenic for both humoral antibody and T cell-

mediated responses. Several mechanisms have been characterized

that alter the immune responses to tumors [1], including im-

mune editing [2], tumor-derived suppressor factors [3], suppres-

sor factors derived from the tumor microenvironment (TME)

[4,5], the induction of suppressor T-cells [3] and the develop-

ment of myeloid-derived suppressor cells (MDSCs) [6].

The innate immune system plays a role in the initial anti-

tumor response and, as such, it has been considered as a thera-

peutic target. However, in the majority of cases, when the tumor

develops mechanisms of resistance to cell death, both the innate

and adaptive immune responses become ineffective and are un-

able to eradicate the tumor. Interestingly, a deeper understanding

of these mechanisms is providing new means to circumvent or

alter the resistance of the immune response to tumors.

Consequently, immunotherapy has emerged as a significant

therapeutic strategy in the eradication of many tumor types.

The role of the immune system in the regression of tumors was

first highlighted by the FDA-approved administration of IL-2 in

renal cancer in 1992 and in metastatic melanoma in 1998 [7].

This was followed by the use of ex vivo IL-2 to generate and ex-

pand autologous T-cells and tumor infiltrating lymphocytes

(TILs) for adoptive T-cell (ATC) transfer and treatment of cancer

patients. ATC has shown promising results in the treatment of

advanced cancer and, in particular, for a subset of patients refrac-

tory to standard therapy [8–12]. These findings, while not applic-

able to all tumors, led to the development of novel methods to

introduce anti-tumor TCRs into autologous lymphocytes and

the engineering of tumor-specific chimeric antigen receptors

(CARs) into normal lymphocytes for therapeutic use [8, 13–15].

During the last two decades, in addition to cell-mediated im-

munotherapy, we have also seen the emergence of antibody-
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mediated targeted therapies directed against tumor cells or their

microenvironment. The first chimeric monoclonal antibody

(mAb), rituximab (anti-CD20 mAb), was FDA-approved in 1997

for the treatment of low grade and follicular NHL [16, 17].

Subsequently, over 25 mAbs have been approved for the treat-

ment of a variety of cancers [18–20].

Although the advent of new immunotherapy approaches has

improved the survival of many patients with advanced malignan-

cies, the prevalence of non-responders, especially in common

malignancies such as breast, colon and prostate cancers, also pro-

vides a strong reminder that we possess only a partial understand-

ing of the events underlying the immune resistance of tumors. It

should be noted that the success of preclinical studies in mice con-

trasts with the current situation in the clinic [21–24]. The ultimate

goal of most T cell-mediated anti-cancer immunotherapy strat-

egies is to induce a strong cytotoxic T lymphocyte (CTL) response,

with the prevailing view being that induced CTLs will eradicate

tumor cells. However, this view has been challenged by clinical ob-

servations showing that even a strong and sustained cytotoxic re-

sponse may only translate to a partial response in patients. This is

due to a number of complex issues, such as an unfavorable TME

(resulting in impaired lymphocyte migration and recruitment),

tumor evasion, immune editing, and selection of immuno-

resistant tumor cell variants [25]. In addition, regulatory T cells

(Tregs), macrophages, MSDCs, and neutrophils constitute major

components of the immune infiltrate within the tumor tissue that

curtails anti-tumor immunity [26]. A better understanding of the

underlying molecular mechanisms of tumor escape remains a vital

step in the development of strategies to overcome this process.

Several novel strategies have been successfully used in the re-

versal of resistance including checkpoint inhibitors, new mono-

clonal antibody-drug conjugates (ADCs), engineered T cells,

agents targeting the TME, combination therapies and immuno-

sensitizing agents, among others. Accumulating evidence indi-

cates that immunosurveillance represents only one dimension of

the complex relationship between the immune system and cancer

[27]. It has become clear that the host immune system is involved

in both eliminating tumors and sculpting the immunogenic

phenotypes of tumors that eventually form in immunocompetent

hosts, indicating that immunity plays a dual role in the complex

interactions between tumors and the host. In fact, the immune

system can suppress tumor growth by destroying cancer cells but

can also promote tumor progression by establishing conditions

within the TME that facilitate tumor outgrowth.

Resistance to immunotherapy strategies in various cancers has

been the subject of numerous recent reviews with little discussion

concerning whether this resistance is a dogma or a proven phe-

nomenon [28, 29]. This review focuses on the recent approaches

that have been used to overcome resistance by manipulating the

effector cells and antibodies that are directed to the tumor cells or

to the TME.

Innate, adaptive and tumor

microenvironment influences on tumor

immunity

Both the innate and adaptive immune responses have been impli-

cated in the antitumor activities.

Innate immunity

Arguably the most important cytotoxic effector cells in the innate

immune response to tumors are the natural killer (NK) cells.

These cells are directly cytotoxic, IFN-c-producing cells and me-

diate cytotoxic activity against antibody-coated tumor cells.

Mature NK cells exhibit a broad spectrum of phenotypic and

functional diversity. Human NK cells can be divided into two

subsets: CD56bright CD16� (high cytokine producers predomin-

antly found in lymph nodes and tonsils) and the CD56dim and

CD16þNK cells (highly cytotoxic, found in peripheral blood and

spleen) [30]. The responsiveness of tumor cells to NK cells is

modulated by a complex spectrum of inhibitory and activating

receptor-mediated signals for target and accessory cells and their

pro- and anti-inflammatory microenvironment. NK cells medi-

ate their cytotoxic activity by the granzyme pathway as well as by

the TNF-a, Fas-L and TRAIL ligands expressed on their cell sur-

face [31]. The antitumoral role of NK cells is supported by obser-

vations in cancer patients in the clinic. A study looking at the

association between cytotoxic activity of peripheral-blood

lymphocytes and cancer incidence in Japan showed that individ-

uals with low NK cytotoxic activity had a higher incidence of can-

cer [32]. Coca et al. [33] reported that in patients with colorectal

carcinoma, the analysis of the intratumoral infiltrates of NK cells

showed that the extent of NK infiltration correlated with a favor-

able outcome and was of prognostic significance. Ishigami et al.

[34] analysed NK infiltrates in gastric carcinoma and found that

high NK infiltrates correlated with fewer metastasis and less

lymphatic invasion when compared to patients with low levels of

NK infiltrates. They concluded that patients with high NK infil-

trates have a better prognosis than patients with low NK infil-

trates. Villegas et al. [35] reported on the significance of NK

infiltration in patients with squamous cell lung cancer. They

examined a subset of tumor infiltrates by looking at NK cells ex-

pressing CD57 in surgical specimens. Their findings supported

the conclusion that the level of tumor infiltrated by NK cells is of

prognostic significance in the survival of patients with squamous

cell lung carcinoma. In haploidentical hematopoietic cell trans-

plants, alloreactive NK cells support graft versus tumor effects

and reduced leukemia occurrences in patients with AML [36].

In addition to the direct response of NK cells against tumor

cells, a robust NK-mediated antibody-dependent cellular cyto-

toxicity (ADCC) is elicited against autologous tumor cells [118].

The clinical response to antibody-based immunotherapies has

been reported to positively correlate with NK cell activation,

cytotoxicity, and tumor infiltration in certain cancers [30].

NK cells are ex vivo activated for ACT [37]. Adoptive transfer

of haploidentical NK cells has resulted in favorable responses in

patients with hematological malignances [38]. At present, genet-

ically engineered CAR NK cells are being explored as a way to

more specifically direct NK cell cytotoxicity towards cancer

cells [39].

Adaptive immunity

There are many facets with which the immune system interacts

with cancer cells [40, 41]. These interactions can protect the body

from the development of tumors and can also shape the charac-

teristics of emerging lesions and are composed of three phases,

namely, elimination, equilibrium, and escape [27]. In cancer
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immune editing both innate and adaptive immune responses de-

tect and destroy early tumors before they can become clinically

visible. Elimination is defined by the immune rejection of tumors

by the host innate and adaptive immune responses [42]. The

equilibrium phase is not very well characterized molecularly but

it relates to immune-mediated tumor dormancy [27]. The escape

phase is a process by which the tumor escapes from immune

elimination and several mechanisms have been reported to be

involved in this phase [43]. During escape, the immune system

fails to restrict tumor growth and the emergence of tumor cells

and thus results in clinical disease.

Many immunotherapy approaches have centered around

manipulating the T lymphocyte system because of the diversity

and high specificity of CTLs and the potential for a long-term ef-

fect due to the formation of memory T cells. Two signals are

required to generate anti-tumor CTLs: (signal 1) activation of

naı̈ve T-cells by antigen presenting cells (APCs) in combination

with MHC bound to tumor peptides resulting in HLA complexes

which are recognized by the TCR and (signal 2) binding to co-

stimulatory molecules (B7 on APC, and CD8 on T cells). In add-

ition to the activation signals, there are also inhibitory molecules,

such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)

and Programmed cell death protein 1 (PD1) on T cells, which in-

duce negative signaling when bound to their ligands. Depending

on the balance of the activating and inhibitory signaling, there

may be killing or no killing, respectively [44].

The cancer immunoediting model incorporates both immune

surveillance and the dynamic interactions of the tumor with the

adaptive and the innate branches of the immune system that edit

and sculpt the intra-tumoral landscape [45]. In addition, a num-

ber of studies in murine models have suggested that the immune

system may edit different tumors by altering their expression pro-

files to allow them to evade immune reactions [46, 47]. Following

therapy, resistant tumor clones, that may have already been pre-

sent at low numbers prior to the therapy, are selected in addition

to newly mutated clones induced by the therapy.

Several mechanisms of immune-suppression have been re-

ported, including expansion and accumulation of T-reg cells

[48], formation of MDSCs [49] and secretion of various inhibi-

tors (e.g. IDO, VEGF and PD-L1) by tumor cells and the TME

[49, 50]. T cells also express receptors that negatively regulate the

induction of an anti-tumor response, such as CTLA-4 [51], and

receptors that regulate cytotoxic activity like PD1, LAG-3, FIM-3

and BTLA [52]. The polarization of macrophages to type II (M2),

which secrete chemokines to recruit T-regs, also contributes to

immune-suppression [53].

Cancer stem cells (CSCs) are thought to be responsible for re-

sistance and tumor relapses in some situations [54, 55]. The acti-

vation of different signaling pathways (such as NOTCH and

WNT/Beta Catenin, TGF-b, Hedgehog, PI-3K/AKT/mTOR and

JAK/Stat) are involved in the resistance of CSCs to immune re-

activity [56–59].

Antitumor CTLs may undergo a massive expansion upon anti-

genic stimulation. However, homeostasis is maintained by a sub-

sequent contraction of the cells via activation-induced cell

death (AICD) and programmed cell death. Premature death of

antitumor CTLs by AICD is a major drawback in CTL

anticancer-mediated immunotherapy [60, 61]. AICD is induced

by caspase-dependent and independent pathways [61]. The per-

sistence of viable antitumor CTLs is a hallmark of successful T

cell-mediated immunotherapy and the prevention of AICD is

critical to achieve significant clinical results. Schulte et al. [62]

have reported that FasL is involved in AICD of CTLs overexpress-

ing FasL, and FasL has also been detected in the sera of cancer pa-

tients and has been shown to interact with Fas-expressing CTLs

for AICD. Schultz et. al demonstrated that ADAM10 is involved

in shedding of FasL and its inhibition can reduce AICD. Recently,

Cao et al. [63] reported that histone deacetyaseinhibitors

(HDACs) specifically inhibit apoptosis in CD4þT-cells within

tumors and enhance the antitumor response, thus suppressing

melanoma growth.

Tumor microenvironment

Tregs and MDSCs are normally present in the TME and inhibit

cancer specific T-cell functions and induce immune suppression

[64]. The TME changes as a function of tumor progression. A

dysregulated TME impacts tumorigenesis as tissues subjected to

chronic inflammation exhibit a higher cancer incidence [65].

Factors that contribute to tumor growth in the TME include

tumor-associated macrophages (TAMs), Tregs, MDSCs, cancer-

associated fibroblasts (CAFs), ECM (extracellular microenviron-

ment) and tumor vasculature. Activated CTLs must enter the

TME where they encounter a large number of negative signals

that affect their functions. These regulatory signals are derived

from both the tumor [66] and the stromal cells (immune cells,

fibroblast, endothelial cells, and inflammatory cells) [67, 68].

The immunosuppressive Tregs and MDSCs are the major im-

munosuppressive factors in the TME and inhibit CTL function

[69, 70]. It has been well documented that TILs are unable to at-

tack tumor cells and that this is thought to be due to the immuno-

suppressive TME [71]. CD4þCD25hi, T-reg cells [72],

CD28þCD25þT-reg cells [72], CD19þCD25hi regulating B

cells [72] and IL-13-producing NK-T cells [73] have been re-

ported to be present in the TME in cancer patients. In addition,

the TME conditions injected T cells to become immunosuppres-

sive [26]. Recruitment of immature MDSCs in the TME converts

these cells to mature immunosuppressive MDSCs [74]. Notably,

there is crosstalk among MDSCs, Tregs and NK-T cells.

There are factors in the TME that affect T-effector cell func-

tions and downregulate their activation and subsequent anti-

tumor response. Hypoxia has been shown to inhibit T-cell recep-

tors and CD28 activation of T-cells and suppress their response

[75]. The low extracellular pH, low glucose concentration, and

defective vascularization affect T-cell trafficking, infiltration, and

function [76]. Even when a successful anti-tumor T-cell response

is generated, tumor cells have ways of evading the response. For

example, activation of anti-apoptotic pathways and inhibition of

pro-apoptotic pathways in tumor cells result in the resistance of

tumor cells to killing by CD8 T-cells. There are also other inhibi-

tors that are directed at and inhibit the function of CTLs. Park

et al. [77] have reported that TGF-b inhibited T-cell-mediated

antitumor immunity. TFG-b inhibits cytotoxic activities via the

inhibition of gene products involved in cytotoxicity. Huang et al.

[78] reported that TLRs are expressed on tumor cells and their ac-

tivation releases several factors, such as IL-6, NOS, IL-12, B7-H1,
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B7-H2, which regulate CTL functions. Harimoto et al. [79] re-

ported that tolerogenic dendritic cells inhibit the induction of

CD8þ tumor-specific CTLs and inhibit their function. Tumor-

derived soluble gangliosides have been shown to inhibit T-cell

proliferation [80] and also induce T-cell apoptosis [81].

The cytokine IL-10 can downregulate MHC class I on tumor cells

and inhibit CD8 T-cell recognition and lysis [82, 83]. PDL1, ex-

pressed either on tumor cells or in the TME, interacts with PD1

on the surface of T-cells and can result in the inhibition of T-cell

effector cytotoxic functions and T-cell death. Wang et al. [4] have

reported that B7-H4, the stimulatory molecule and member of

the B7 family, is overexpressed in many tumors. The interaction

of tumor cells with CTLs results in the inhibition of T-cell re-

sponse via inhibition of expansion and cell growth and decreased

cytokine secretion and induction of AICD. In addition, B7-H4

promotes the development of Treg cells. Expression of BH7 has

been shown to be upregulated on tumor cells and inhibits T-cell

effector functions [84]. An in vitro study has also shown that ex-

pression of FasL by tumor cells protects them from Fas-mediated

killing by CTLs [85].

Although promising results have been observed in clinical trials

of CAR-modified T cells for some hematological cancers and

neuroblastoma [86], poor or moderate results were observed in

solid cancers and some patients show no response to CAR T cells

[87]. These limitations may be due to several factors such as fail-

ure of CTL activation by tumor cells or the inherent resistance of

tumor cells to CAR-T killing.

While the advent of anti-CD19 CART therapy has shown

promise [88], its limitations are that it requires CART expansion

and engraftment [89]. Fourcade et al. [90] have reported that

therapy with five cycles or more of ibritumib improved anti-

CD19 T-cell expansion with decreased expression of the im-

munosuppressive PD-1 on T-cells of CLL patients [91]. Thus,

poorly responding patients may benefit from this combination

treatment. Another recent report by Newick et al. [92] reported

that CART cells are not effective against solid tumors because

tumor derived immunosuppressive factors (PGE2 and PKA) in-

hibit T-cell receptor activation. These investigators have gener-

ated a small peptide that inhibits PKA activity and thus restores

the cytotoxicity of CART cells.

Mechanisms to reverse resistance to

immune destruction

As described earlier, many tumor cells are clearly resistant to de-

struction by the immune system. Herein we describe some of the

immunotherapeutic approaches used to target this resistance.

While cell-mediated immunotherapy has resulted in signifi-

cant objective clinical responses, (particularly with the use of

ACT, checkpoint inhibitors and engineered T cells bearing anti-

tumor TCRs), many patients do not respond initially and/or de-

velop resistance to further treatments. Mechanisms involved in

tumor resistance to CTLs include resistance to perforin/gran-

zyme [93–95], altered expression of death receptors, alteration of

the apoptotic regulator p53 [96], and lower expression of MHC-1

[97–99].

Several strategies have been considered to reverse resistance of

cancer cells to CTL-mediated recognition and cytotoxicity. These

include: (i) checkpoint inhibitors, (ii) engineered cells expressing

anti-tumor T-cell receptors and CART cells, (iii) anti-apoptotic in-

hibitors, (iv) targeting the TME, (v) antibodies as sensitizing agents,

(vi) ADCs, (vii) inhibitors of AICD, and (viii) others.

Checkpoint inhibitors

It is becoming clear that the immune system can recognize

tumors and, in some cases, can control tumor progression and

even eliminate them. Thus, many strategies have been developed

to increase the immune system’s efficacy by addressing mechan-

isms responsible for its failure. One such strategy has been to

block molecules involved in the regulation of immune

checkpoints.

This has been shown to restore T-cell activation leading to

amplification of the anti-tumor response [21–23, 100]. A number

of mAbs targeting proteins involved in immune checkpoints have

now entered the clinic and have shown significant objective re-

sponses in patients. For example, Ipilimumab is an anti-CTLA4

antibody which can block the co-inhibitory receptor on CTLs

and enhances the induction of the CTL response. Peggs and

Quezada [101] and Hodi et al. [102] have reported that patients

with melanoma who failed on other treatments improved their

survival when treated with ipilimumab. The study evaluated the

use of ipilimumab alone and in combination with a gp100 pep-

tide vaccine. In comparison with those receiving vaccine alone,

overall survival was prolonged significantly by the combination

treatment. Recently, ipilimumab has also been used in combin-

ation with conventional therapies such as etoposide and plat-

inum [103] and in combination with different checkpoint

blocking antibodies, resulting in the potentiation of anti-tumor

immune responses [21–23, 104].

In the TME, the failure of anti-tumor CTLs to kill tumor cells

is due to the inhibitory effect of the PD1-PD-L1 pathway, which

consists of PD1, a cell surface receptor expressed on T cells and

pro-B cells, and its ligands PDL1 (B7-H1) and PDL2 (B7-DC).

This pathway functions as an immune checkpoint and can medi-

ate immunosuppression in the TME [105–108]. Blocking this

checkpoint with mAbs, either against PD1 or PDL1, has been

shown to restore anti-tumor activity of T cells and the use of these

checkpoint inhibitors in the clinic has resulted in significant ob-

jective responses in many advanced cancers. Two such mAbs

have been approved by the FDA for melanoma and lung cancer

[106, 107] and the approval for their use in other cancers [109–

111]. Checkpoint inhibitors have also been clinically investigated

in renal carcinoma (the US Food and Drug Administration

approved of Opdivo (nivolumab) to treat patients with advanced

(metastatic) renal cell carcinoma, a form of kidney cancer, who

have received a certain type of prior therapy) [112, 113], urothe-

lial cancer (the US Food and Drug Administration approved

Tecentriq (atezolizumab), a programed death-ligand 1 (PD-L1)

blocking antibody, to treat the most common type of bladder

cancer, called urothelial carcinoma) [114] and non-Hodgkin

lymphoma [the US Food and Drug Administration granted

accelerated approval to nivolumab (Opdivo, marketed by

Bristol–Myers Squibb) for the treatment of patients with classical

Hodgkin’s Lymphoma (cHL) that have relapsed or progressed

after autologous hematopoietic stem cell transplantation (HSCT)

and post-transplantation brentuximab vedotin (Adcetris)] [115,
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116]. These mAbs show good tolerability in patients, are suitable

for outpatient administration and can be used alone or in com-

bination with other therapies.

Many additional inhibitory receptors that regulate T-cell re-

sponses have been identified (e.g. LAG3, 2B4, BTLA, IL-10R,

TIM3 [T-cell immunoglobin mucine 3], and NKG2A). Studies

targeting some of these inhibitory pathways in combination with

CTLA4 and PD1/PDL1 blockades are in progress and have shown

promising results [90, 108, 117]. Combinations of immunother-

apy approaches are considered to be required for long-term re-

missions in most cancer patients and the combination of

checkpoint blocking mAbs with radiotherapy [118, 119], chemo-

therapy, cancer vaccines [120, 121], and sensitizing agents are

being evaluated clinically [122].

Antibody-mediated checkpoint blockade of killer cell

immunoglobulin-like receptor (KIR) is mediated by an anti-KIR

blocking antibody (Lirilumab), which is in clinical trials [123]. It

has also been shown that ADCC induced by both rituximab and

trastuzumab is augmented in vivo by cross linking the activated

CD-137 receptor which is induced on NK cells upon ADCC [124,

125]. In response to antibody therapy, NK cells contribute to the

generation of an anticancer adaptive immune response through

IFN-gamma release and triggering DC activation for antigen

presentation. Strategies to disrupt NK cell immunosuppression

include the development of means to facilitate their infiltration

along with the disruption of resistant factors. A recent review by

Wang et al. [4] discusses the role of NK-induced ADCC and

approaches to augment it in cancer immunotherapy.

Engineered T cells and CAR T cells

In hematological malignancies, cancer-associated antigens

(CAA) are non-mutated with germ line sequence. Such CAAs can

serve as therapeutic targets; examples include CD20 on most B

cell lymphomas [16] and CD52 in CLL and some lymphomas

[126]. An additional therapeutic approach has been the use of

CD19-targeted CAR-T cells for treatment of lymphoma and leu-

kemia [127, 128].

On 1 July 2014, the US FDA granted a ‘breakthrough therapy’

designation for CTL019, an anti-CD19 CART therapy, in patients

with B-cell malignancies [129–131] and complete molecular re-

missions in patients with leukemia have been reported with this

agent. In addition, Dolnikov et al. [132] have reported efficacy of

this therapy in chemoresistant pediatric patients with ALL.

Anti-apoptotic inhibitors (sensitizing agents)

NF-jB is hyperactivated in the majority of cancers and partici-

pates in the regulation of cell survival, cell proliferation, invasion,

and resistance [133]. Inhibition of NF-jB may reverse tumor im-

mune resistance [134]. Tumor cells develop cross-resistance to

various cytotoxic stimuli (e.g. chemotherapy, immunotherapy,

radiation and hormonal therapy) by developing mechanisms to

resist drug-induced apoptosis [135]. NF-jB transcriptionally

regulates several genes that regulate and suppress cell death by ne-

crosis or apoptosis [136, 137] and, therefore, the inhibition of

NF-jB may reverse this antitumor resistance mechanism.

The role of the dysregulated NF-jB/SNAIL/YY1/RKIP loop in

the regulation of resistance to immunotherapy in cancer cells has

been reported [138]. The presence of this dysregulated loop in

various cancer cell models has also been shown to regulate the

epithelial–mesenchymal transition and metastasis [139]. Each

gene product in the loop has been shown to be directly involved

in the regulation of tumor cell resistance to immunotherapy

mediated by cytotoxic ligands (Fas-L, TRAIL) expressed on cyto-

toxic T-cells and NK cells. Interventions to disrupt this loop-

mediated resistance has been successful in reversing resistance.

For example, treatment of cancer cells with Nitric Oxide donors,

proteasome inhibitors and/or inhibiting each gene product of the

loop individually have all resulted in reversal of resistance and

sensitization to immunotherapy-mediated stimuli [140].

The intrinsic anti-apoptotic regulation of the Bcl-2 family of

proteins maintains the integrity of the mitochondrial membrane.

Alterations in the expression of Bcl-2 family members contribute

to neoplastic transformation and cancer cell resistance to both

chemotherapy and immunotherapy [141]. The inhibitors of

apoptosis proteins (IAP) are a family of proteins that bind dir-

ectly to active caspases, inhibiting their activation. They can be

negatively regulated by RAF-1, HTRA2, and JMAC to release the

apoptotic breaks. Many inhibitors of Bcl-2 family proteins have

reached the clinic [142–144].

Targeting the TME

The TME changes as a function of tumor progression [145]. A

deregulated TME impacts tumorigenesis as tissues subjected to

chronic inflammation exhibit a higher cancer incidence [65]. A

variety of factors contribute to tumor growth in the TME, includ-

ing tumor-associated macrophages (TAMs), Tregs, MDSCs,

cancer-associated fibroblasts (CAFs), ECM and tumor

vasculature.

Some TME-targeted therapies, such as Ipilimumab (anti-

CTLA-4 mAb), have been shown to work in some patients [146].

IDO derived from tumor cells, macrophages and DCs is a major

contributor to immunosuppression and dual targeting of CTLA-

4 and IDO is effective in reversing resistance to immunotherapy

[147]. Spranger et al. [148] examined the effects of combining

antibodies against CTLA4, PDL1, and the IDO inhibitor

INCB23843 on tumor rejection using a murine B16 melanoma

model. The three combinations (anti-CTLA-4 mAbþ anti-PD-

L1 mAb, anti-CTLA-4 mAbþ INCB23843 and anti-PD-L1

mAbþ INCB23843) showed a significant anti-tumor effects

in vivo [59] and activated the T-cell response. Furthermore, An

et al. [149] reported that the combination of an anti-PDL1 anti-

body and the IDO inhibitor partly overcame lysis of CTLs in mul-

tiple myeloma. Spranger et al. [59] reported that the combination

of either two agents such as CTLA-4, anti PD-1, anti PD-L1, or

IDO inhibitor resulted in the proliferation of CD8 T-cells at the

tumor microenvironment and resulted in tumor rejection.

During the last decade, we have witnessed the development of

novel targeted therapies and a new era of precision medicine.

Zitvogel et al. [150] have recently reviewed the off-target effects

of targeted therapies on the immune system. For example, signifi-

cant clinical responses observed with imatinib mesylate

(Gleevec), which is approved by the FDA for the treatment of pa-

tients with Philadelphia chromosome CML and gastrointestinal

stromal tumors, were found to be primarily due to the targeted

effects but also involved the immune system. The tyrosine kinase
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inhibitor Sunitinib, a first line treatment for renal carcinoma, has

been reported to decrease Treg cell number [151]. The combin-

ation of bevacizumab (VEGF inhibitor) and imatinib was shown

to be effective in metastatic melanoma [116, 152].

Other interventions to inhibit suppressive cells and/or to dif-

ferentiate them have been reported [26, 153]. An extensive review

has recently been published on the inhibition of suppressor cells

[154]. The strategies described included the elimination of sup-

pressor cells or the inhibition of their accumulation in the TME.

The elimination can be achieved by low doses of chemother-

apy or by peptibodies. MDSCs can be functionally deactivated

by targeting their suppressive machinery. All-trans retinoic

acid has also been shown to deplete MDSCs and DCs [153]. Low

doses of cyclophosphamide selectively reduce Tregs and a cyto-

toxic protein consisting of parts of the diphtheria toxin and the

binding domain of IL-2 (Denileukin Difitox/Ontak) has been

used to eliminate suppressor cells. Blocking of Treg recruitment

was achieved by antagonizing the chemokine (C-C) ligand 22 and

the ligation of TLR8 on Tregs has also been effective in the deple-

tion of Tregs and restoring CTL antitumor activity [155]. Success

has also been observed by blocking CTLA-4 [89] or TGFb [156,

157].

Changes in tumor antigenicity as a function of their growth

and the consequent regulation of suppressor cells have been re-

ported [158]. The suppression in the TME of MDSCs, Tregs and

production of IDO and secretion of suppressive factors (IL-10,

TGFb, VEGF) derived from the TME and tumor have been re-

ported to be effective strategies for immunotherapy [41].

Antibody-mediated sensitization to
immunotherapy

We have reported that tumor cells resistant to TRAIL-induced

apoptosis can be sensitized to NK-mediated apoptosis through

TRAIL expression on the NK cell membranes following exposure

to monoclonal antibodies [159]. We speculated that this mechan-

ism of sensitization, namely the ability of the sensitizer antibody

to inhibit the constitutively anti-apoptotic pathways and render

the resistant cells sensitive to the cytotoxic cells/factors, may take

place in vivo in cancer patients treated with monoclonal antibod-

ies in addition to the mechanisms of complement-dependent

cytotoxicity (CDC) [159]. The Fc fragment of the antibody inter-

acts with Fc receptors on cytotoxic cells (NK, monocytes) and

triggers the cytolytic mechanism to kill the tumor cells via ADCC.

Vega et al. [159] reported that treatment with rituximab sensi-

tized B-NHL tumor cells to TRAIL-mediated tumor rejection by

NK cells in vivo. These findings were corroborated by Daniel et al.

[160], who reported that the combination of rituximab and

TRAIL resulted in the potentiation of apoptosis in vivo in mice

bearing tumor xenografts.

Treatment failures in cancer may be due to the development of

both intrinsic and acquired resistance [24]. We have reported

that rituximab sensitizes B-NHL cells to Fas-L induced apoptosis

and the mechanism of sensitization was due to the activation of

the Type II mitochondrial pathway [70]. We have also reported

that rituximab-mediated sensitization to TRAIL apoptosis of B-

NHL cell lines was mediated by rituximab-induced inhibition of

the anti-apoptotic NF-jB pathway and the downstream DR5

transcription repressor YY1 [38].

The inhibition of NF-jB by DHMEQ (dehydroxymethylepox-

yquinomicin; a small molecule inhibitor of NF-jB) and prote-

asome inhibitors sensitized rituximab-resistant (RR) B-NHL

clones to chemotherapy-induced apoptosis [159]. In addition,

HDAC inhibitors sensitized multiple myeloma cells to drug-

induced apoptosis [161].

Likewise, treatment with the HDAC inhibitors valproic acid

and romideisin increased CD20 expression and enhanced

rituximab-induced CDC activity [162]. The combination of the

Bcl2 inhibitor oblimersen with rituximab was effective in patients

refractory to rituximab [163]. The fusion protein anti-CD20-

hIFN-a sensitized RR B-NHL clones to drug-induced apoptosis

[164].

Antibody-drug conjugates

Antibody-drug conjugates are therapeutics that selectively direct

a cytotoxic drug to cells expressing a cell surface antigen recog-

nized by the antibody. Over 40 distinct ADCs are currently in

clinical trials [165–167]. Two ADCs (Trastuzumab emtansine

[168, 169] and brentuximab vedotin [170–173] have been

approved by the FDA. These can also be used as sensitizing agents

for CTL-induced apoptosis in CTL-resistant tumor cells under

appropriate conditions [174]. Brentuximab vedotin was investi-

gated in patients with CD30 positive hematological malignancies

in a phase I clinical trial [170]. The ADC was also examined in pa-

tients with relapsed refractory Hodgkin lymphoma and results

showed efficacy and tolerance [171, 172]. Clinical activity and

immune modulation was observed in highly pretreated patients

with testicular germ cell tumor. Gandolfi et al. [173] reported

that in patients with refractory/relapsed Hodgkins lymphoma

treated with Brentuximab vedotin, a long-term response was seen

in over half of the patients. In a phase III study, Baselga et al.

[168] reported longer progression free survival and overall sur-

vival in breast cancer patients and, in contrast to HER2 directed

therapies in tumors with PI3KCA, treatment with Brentuximab

vedotin was more effective in PI3KCA mutated and wild type

tumors. This finding was corroborated by Kim et al. [169].

Inhibitors of activation-induced cell death

The induction of apoptosis in mature T cells after antigenic

stimulation, referred to as AICD, is a controlled mechanism for

terminating and controlling the expansion of activated T cells

[60]. Studies of tumor-induced AICD showed that anti-tumor

CTLs expressing KIR did not experience AICD [175]. It is well

understood that apoptotic death of lymphocytes is an important

homeostatic mechanism of peripheral tolerance to self-antigen.

The induction of apoptosis in mature T cells after antigenic

stimulation is an important process for terminating and control-

ling the expansion of activated T cells. A number of inhibitory re-

ceptors that recognize HLA-I molecules are found on NK cells.

These include the KIR family of potent inhibitory receptors that

recognize specific polymorphisms on the classical HLA-A, -B,

and C-molecules. These receptors, expressed by a small subset of

peripheral T cells in healthy individuals, appear to counterbal-

ance TCR-mediated activation. Studies in mice indicated that

transgenic expression of an inhibitory NK receptor induced the

accumulation of memory T cells by inhibiting AICD [175]. More
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importantly, the expression of an inhibitory KIR was found to be

confined to CD8þ effector T cells, limiting their proliferative

capacity. In this regard, expression of inhibitory NK receptors on

effector CD8(þ) T cells may explain, in part, the poor replicative

capacity of T cells at that stage of differentiation. In humans, we

have shown that inhibitory NK receptors belonging to the KIR

family, expressed by 5–40% of CD8þTILs, contribute to the

altered cytotoxic activity of tumor-reactive CTLs [60]. We have

also demonstrated that KIR engagement on tumor-specific CTLs

favors their survival as a consequence of inhibition of AICD, sug-

gesting that KIR, in addition to its inhibition of CTL lytic func-

tion, also plays a role in the control of T-cell homeostasis. Norell

et al. [176] reported that ROS inhibition protected MART-1

[27,38,39,41,44,48,177,178] reactive primary CTLs from AICD

impairing their functions. Cao et al. [63] reported that HDAC in-

hibitors inhibit CD4 T cell apoptosis within the tumor, thus

potentiating the antitumor response and suppressing tumor

growth in vivo.

Others

In addition to checkpoint blocking antibodies, agonistic CD40

antibodies (a member of the TNF-receptor superfamily expressed

on certain immune and non-immune cells) reverse immunosup-

pression by activating APCs, induction of T-cell response and

reducing MDSCs [179]. Another approach being investigated is

the targeting of immune cells that play a role in cancer-associated

inflammation [180], aiming to reduce cancer-promoting chronic

inflammation and, as a consequence, promote tumor rejection.

Conclusions and future directions

We have briefly discussed the principle that anti-cancer immun-

ity is currently the main realm of treatment in a variety of tumors,

whether by therapies mediated by targeted antibodies or by tar-

geted cell-mediated lymphocytes. Clearly, the clinical responses

achieved so far have been significant, especially in cancers that

have not responded to conventional therapies. The current chal-

lenge is to unravel the underlying mechanisms explaining why

not all patients with the same cancer respond to immunotherapy

and why certain cancer types respond better than others. Several

strategic approaches have been considered to overcome immune

resistance, including combination therapies, engineered high-

affinity anti-cancer antibodies (used alone or conjugated with

cytotoxic agents), engineered anti-tumor CTLs with TCRs tar-

geted to the tumor, agents targeting the TME, engineered CAR T

cells, checkpoint inhibitors (alone or in combination), develop-

ment of other checkpoint inhibitors and various immunosensi-

tizing agents. In addition, a variety of agents have been developed

and approved to resensitize tumor cells to the cytotoxic activities

of immunotherapies if they become resistant to these novel

immunotherapeutic approaches. Targeting the TME, which har-

bors many immune-suppressive factors and cells, has also been

shown to be crucial in restoring the cytotoxic activity of immuno-

therapies. Several successes, both in targeting the immune resist-

ance of tumors and reversing resistance that develops in response

to treatment with immunotherapies, have been observed.

However, many challenges remain in understanding how to fully

harness the potential of the immune system to treat cancer.
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