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Background: Third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib are
the last line of targeted treatment of metastatic non-small-cell lung cancer (NSCLC) EGFR-mutant harboring T790M. Different
mechanisms of acquired resistance to third-generation EGFR-TKIs have been proposed. It is therefore crucial to identify new and
effective strategies to overcome successive acquired mechanisms of resistance.

Methods: For Amplicon-seq analysis, samples from the index patient (primary and metastasis lesions at different timepoints) as
well as the patient-derived orthotopic xenograft tumors corresponding to the different treatment arms were used. All samples
were formalin-fixed paraffin-embedded, selected and evaluated by a pathologist. For droplet digital PCR, 20 patients diagnosed
with NSCLC at baseline or progression to different lines of TKI therapies were selected. Formalin-fixed paraffin-embedded blocks
corresponding to either primary tumor or metastasis specimens were used for analysis. For single-cell analysis, orthotopically
grown metastases were dissected from the brain of an athymic nu/nu mouse and cryopreserved at�80�C.

Results: In a brain metastasis lesion from a NSCLC patient presenting an EGFR T790M mutation, we detected MET gene
amplification after prolonged treatment with osimertinib. Importantly, the combination of capmatinib (c-MET inhibitor) and
afatinib (ErbB-1/2/4 inhibitor) completely suppressed tumor growth in mice orthotopically injected with cells derived from this
brain metastasis. In those mice treated with capmatinib or afatinib as monotherapy, we observed the emergence of KRAS G12C
clones. Single-cell gene expression analyses also revealed intratumor heterogeneity, indicating the presence of a KRAS-driven
subclone. We also detected low-frequent KRAS G12C alleles in patients treated with various EGFR-TKIs.

Conclusion: Acquired resistance to subsequent EGFR-TKI treatment lines in EGFR-mutant lung cancer patients may induce
genetic plasticity. We assess the biological insights of tumor heterogeneity in an osimertinib-resistant tumor with acquired
MET-amplification and propose new treatment strategies in this situation.
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Introduction

Compared with standard first-line platinum-based chemother-

apy, first- and second-generation tyrosine kinase inhibitors

(TKIs) blocking epidermal growth factor receptor (EGFR)

signaling have improved outcomes for lung cancer patients with

activating mutations in the EGFR gene [1–3]. However, acquired

resistance through a second-site mutation at position 790

(T790M) in the EGFR kinase domain limits the potential of these

therapies [4]. Third-generation T790M inhibitors such as osimer-

tinib [5], rociletinib [6], olmutinib [7], and nazartinib [8] are

covalent mutant-selective EGFR-TKIs targeting sensitizing muta-

tions in the presence of the T790M. Although these drugs are

showing clinical benefit for lung cancer patients [9, 10], resistance

occurs and the lack of further treatment options currently

represents a major challenge in the field.

Recent data suggest several tertiary mutations in EGFR, such as

C797S, L798I and L718Q as mechanisms of resistance to third-

generation TKIs targeting EGFR T790M [11–13]. Finally, osimer-

tinib resistance is being linked to either ERBB2 copy number

gain, MET gene amplification, NRAS E63K or KRAS G12S muta-

tions [14–16].

Methods

Here, present the case of a patient with a metastatic lung adenocarcin-
oma. For the described study, we obtained tumor sample from lung
tumor and brain metastasis. This metastasis was also used for the patient-
derived orthotopic xenograft (PDOX) development by injecting cells in
mouse brain. All samples from both patient and PDOX, preserved as
formalin-fixed paraffin-embedded (FFPE), were initially genotyped by
Amplicon-seq and the orthotopically grown metastases from the PDOX
were used for the single-cell analysis. Droplet digital PCR (ddPCR) study
was carried out using all the available samples from patient and PDOX.
In addition, for the ddPCR study, samples from 20 patients diagnosed
with non-small-cell lung cancer (NSCLC) at different stages of their
treatment were selected. Full description in supplementary Methods,
available at Annals of Oncology online.

Results

To identify new mechanisms of resistance to third-generation

EGFR-TKIs and define novel treatment strategies, we analyzed the

molecular evolution of tumor samples from an EGFR-mutant

lung cancer patient treated with consecutive lines of EGFR-TKIs

(Figure 1A–C). All available samples were analyzed using targeted

re-sequencing detecting mutations in a panel of 57 oncogenes and

tumor suppressors [11] (supplementary Table S1, available at

Annals of Oncology online) or copy number alterations using an

nCounter panel. At diagnosis, the patient presented an advanced

lung adenocarcinoma with mediastinal lymph nodes, lung and

brain metastases initially treated with whole brain radiotherapy

(Figure 1C). Since the primary lung adenocarcinoma sample har-

bored exon 19 deletion in EGFR, the patient was treated with erloti-

nib (Figure 1D). All lesions initially responded to EGFR blockade

until bone metastasis appeared after 9 months of erlotinib treatment

(Figure 1C and E). At that time, the patient was included in a phase

I clinical trial (AURA trial), receiving treatment with osimertinib.

The analysis of cfDNA detected an additional EGFR T790M

mutation (Figure 1C and D). Therapy initially reduced brain metas-

tasis and treatment with osimertinib was sustained 21 months until

the progressive metastatic brain lesion enlarged and required surgi-

cal resection (Figure 1C and E). Following brain surgery, osimerti-

nib was continued for and additional 3 months due to clinical

benefit. NGS analyses on this surgical specimen once again showed

the deletion of exon 19 in EGFR and the TP53 Q317fs mutation and

loss of EGFR T790M mutation (Figure 1D). Additionally, we identi-

fied a high-level amplification of the MET oncogene that was

confirmed by fluorescent in situ hybridization [17] (FISH)

(copy number of>40; MET/CEN7 ratio of>5) (Figure 1D and F),

and high levels of c-MET protein by immunohistochemistry (Figure

1G). HER2 amplification was excluded as a resistance mechanism

since no amplification was detected by FISH (ERBB2 gene copy

number of 6; ERBB2/CEN17 [18] ratio of 1.1), or by immunohisto-

chemistry (Figure 1F and data not shown). The emergence of this

MET amplification in the context of an exon 19 deletion of EGFR

and a regression of EGFR T790M mutation led us to combine EGFR

and c-MET inhibitors to block the growth of the progressive brain

metastasis [19]. Unfortunately, the patient suffered a rapid relapse

and died soon after brain surgery.

At the time of surgery of brain metastasis, we obtained surgical

tumor tissue to implant orthotopically in immunodeficient nude

mice, generating an orthoxenograft or PDOX model (Figure 2A)

[20, 21]. PDOXs present high concordance with the original

clinical tumors [22, 23]. In this particular case, PDOX not only

faithfully recapitulated the patient’s histology but also preserved

MET amplification (Figure 2B and C) and similar EGFR status

(total proteins by IHC and CNV using FISH) (supplementary

Figure S3 and Table S4, available at Annals of Oncology online).

This model allowed us to explore the efficacy of an EGFR inhibi-

tor and c-MET inhibitor combined.

Passable biopsies were orthotopically implanted into the brain

of 35 nude mice that were randomized and treated with vehicle,

cisplatin/pemetrexed (standard chemotherapy), osimertinib

(EGFR sensitizing and T790M resistance mutation inhibitor),

afatinib (ErbB-1/2/4 inhibitor), capmatinib (c-MET inhibitor)

and a combination of capmatinib and afatinib (Figure 2A). All

treatments were administered during 21 days. Capmatinib alone

or combined with afatinib showed superior efficacy, significantly

increasing the overall survival of mice (Figure 2D). Strikingly,

none of the capmatinib/afatinib treated mice displayed weight

loss, increased intracranial pressure, presented any tumor evi-

dence, or scaring in the brain or any other analyzed tissues after

300 days upon tumor implantation. These data demonstrate that

capmatinib/afatinib treatment cured all mice. In the case of cap-

matinib monotherapy, two mice died 2 months after tumor im-

plantation presenting brain tumors upon necropsy. Another two

mice died after 9 months with no brain tumor, but one presented

a lung metastasis and the other a mesenteric lesion. When treated

with afatinib alone, all mice progressed with growing brain

tumors and had to be killed earlier after treatment initiation.

Similarly, PDOX treated with osimertinib did not show any bene-

fit, confirming the resistance observed in the patient. In sum-

mary, c-MET, as opposed to EGFR blockade, was effective. The

combination of the two, however, was the most potent therapy

showing curative potential.

We then genotyped PDOX samples obtained from mice that

progressed to the different treatments (Figure 2G). All xenograft
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tissues showed the same exon 19 deletion in EGFR, TP53 Q317fs

mutation as well as MET amplification detected in the original pa-

tient’s brain metastasis (Figure 2C, E and F). In addition, we

observed a subclonal TP53 Q165K mutation in some xenografts.

Interestingly, we detected the emergence of a subclonal KRAS

G12C mutation exclusively in xenograft tumors from mice treated

with afatinib or capmatinib as monotherapy. This data suggested

the surfacing of minor preexisting KRAS G12C mutant clones as a

mechanism of resistance to effective EGFR or c-MET signaling

blockade. In the original patient’s metastatic brain tumor biopsy,

we actually confirmed the existence of EGFR T790M and KRAS

G12C mutations at low-allele frequencies using ddPCR [24].

To study this phenomenon further, we evaluated clonal distri-

bution within xenograft tumor samples by single-cell transcrip-

tome analysis (massive parallel single-cell RNA-sequencing,

MARS-Seq) [25, 26]. We sequenced 197 randomly selected cells

from a tumor xenograft that grew in the brain of a capmatinib

treated mouse and presented a KRAS G12C mutation and an

exon 19 deletion in EGFR (Figure 2D and E). Using hierarchical

clustering, or dimensional reduction representations (tSNE), we

grouped single cells based on their differential transcriptional

profiles and identified two main subpopulations (Figure 3A and

B). We hypothesized that these two subpopulations may repre-

sent tumor subclones driven by either KRAS or EGFR activating

mutations. To test this hypothesis, we first defined EGFR and

KRAS distinctive transcriptional signatures by comparing pri-

mary lung adenocarcinoma specimens’ mutant for EGFR or

KRAS [27] (supplementary Tables S2 and S3, available at Annals

of Oncology online). Remarkably, KRAS-activated genes were

upregulated in the less abundant subclone, while EGFR-related

genes were activated in the remaining tumor cells (Figure 3C

and D). Indeed, we observed a significantly increased expression

of the KRAS- or EGFR-signature genes in the minor and major

subpopulation, respectively, supporting their distinct activities in

the putative tumor subclones (Student’s t-test, Figure 3E and F).

The putative EGFR-driven subclone showed a significant associ-

ation to genes whose expression was altered following targeted

EGFR inhibition in vitro (supplementary Figure S1A–D, available
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Figure 1. Evolution and plasticity of acquired resistance mechanisms to osimertinib in NSCLC harboring EGFR mutation. (A) Study of the
molecular profiling of metastatic brain biopsy specimen of female patient with NSCLC exon 19 deletion and T790M mutation treated with
osimertinib. (A, C and D) ADC, adenocarcinoma. (B) Morphological appearance of primary and metastatic lung lesions (haematoxylin
and eosin, 20�). (C) Serial of target tumor lesions measures and the lower panel displays anti-EGFR treatment, imaging evaluation and geno-
typing along the evolution of the metastatic disease. (D) Molecular profiling of paired biopsies: baseline and at the time of progression to
erlotinib and osimertinib. n. d., non-determined. (E) Representative brain MRI and CT scans at the time points indicated are provided; the
largest brain target lesion is indicated with an arrow. (F) FISH analyses showing the presence of MET amplification in the brain metastasis after
relapse osimertinib (MET gene, green signals; CEN7, red signals; 100�). (G) High expression of cMET and EGFR proteins was observed in brain
lesion by immunohistochemistry. No expression for HER2 was found (2.5�).
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at Annals of Oncology online), further supporting a clonal separ-

ation of the oncogenes. Collectively, these results support the

existence of two distinct tumor subclones driven by either KRAS

or EGFR activating mutations. Surprisingly, we further noticed

the increased expression of immune system related genes in

the KRAS-driven subclone (supplementary Figure S1E and F,

available at Annals of Oncology online). We analyzed the PD-L1

expression by IHC in patient brain metastasis, PDOX KRAS WT

and PDOX KRAS Mut (supplementary Figure S2, available at

Annals of Oncology online).

The presence of minor KRAS mutant clones could be a clinically

relevant mechanism of resistance to EGFR-TKIs and/or c-MET

inhibitors and remain undetectable by standard techniques

(NGS, qPCR, Sanger sequencing). Consequently, we used the most

sensitive genetic assay, ddPCR [23] for a retrospectively genetic

profiling of EGFR-mutated lung cancer patient samples (Table 1).

In the biopsies at the time of progression to EGFR-TKIs from 13

EGFR-mutated patients, we detected five EGFR T790M and three

KRAS G12C mutant tumors. These patients were originally con-

sidered wild type for these alterations when evaluated with NGS

(Table 1). Furthermore, none of the seven tumor samples eval-

uated from surgical early-stage NSCLC patients with the presence

of mutation in EGFR and naı̈ve to EGFR-TKIs presented KRAS

G12C mutations. In one of the samples, we detected EGFR T790M.

Discussion

In summary, we observed how a lung adenocarcinoma presenting

an activating deletion of exon 19 in the EGFR gene acquired a se-

cond T790M mutation in the same gene upon treatment with

erlotinib, while MET amplification was detected after subsequent

osimertinib. In the same line, previous studies showed how MET

copy number gain causes gefitinib resistance in CNS lesions uti-

lizing mouse in vivo imaging models [28]. At this point, we also

detected KRAS G12C and EGFR T790M by ddPCR. Importantly,

in a PDOX model, we demonstrated that this MET amplification

is essential for lung cancer cell survival since capmatinib therapy

proved very effective. Intriguingly, for the very first time, we

show c-MET signaling inhibition with capmatinib to be more po-

tent when combined with afatinib than as a single agent in our

mouse model. This afatinib effect contrasted with its complete

lack of activity as monotherapy. This benefit of combining afati-

nib could have been mediated by its previously described capacity

to block ERBB3 or ERBB4 activations by heregulin ligand in

EGFR mutant lung tumors [29]. This inhibition of ERBB3/4 or

the inhibition of EGFR itself, are both possible mechanism that

require further investigation. Our data suggest that this onco-

genic ERBB activation would only be relevant for the survival of

cancer cells addicted to hyperactive c-MET signaling. In this

sense, c-MET and EGFR (ERBB1) form membrane heterodimers

in normal and cancer cells leading to their trans-phosphorylation

and activation of downstream MAPK pathway. Additionally,

c-MET/KRAS/ERK signaling induces the transcription of EGF

ligand and EGFR activation as a positive feedback loop. Further

analyses will be required to confirm the relevance of such

crosstalk between EGFR or ERBB3/4 with c-MET as a molecular

determinant of response to combined c-MET and EGFR block-

ade in advanced lung cancer.

Our results also evidence the extreme plasticity of lung adeno-

carcinoma genomes that evolve to adapt to as well as survive the

pharmacological pressure of third-generation EGFR-TKIs. Could
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this be a consequence of selecting de novo mutations in lung can-

cer genomes or is it reflective of the early coexistence of multiple

genetic clones with distinctive capacities to resist target-directed

therapies? Our findings support the hypothesis of lung adenocar-

cinomas consisting of a complex map of genetic clones ready for

selection under effective pharmacological pressure. We clearly

observed the emergence of KRAS G12C mutant clones upon

blocking two upstream activating components of the MAPK

pathway such as EGFR or c-MET. Similarly, oncogenic KRAS

mutations were described as resistance mechanisms to anti-

EGFR antibodies in colorectal cancer [30, 31], a phenomenon

that can also involve clonal enrichment upon treatment.

Indeed, we observed that drugs blocking EGFR or c-MET

signaling preferentially promoted the emergence of genetic alter-

ations in EGFR, MET and KRAS genes; all essential components

of the oncogenic TKR/KRAS/MAPK pathway. This particular

genetic evolution confirms the strict addiction of lung tumors to

TKR/KRAS/MAPK pathway as a driving force of drug-resistance

and disease progression. Consistent with our aforementioned ob-

servations, subsequent therapy should be assessed as a combin-

ation of the EGFR inhibitor with c-MET inhibitors.

In these highly heterogeneous lung tumor samples, we also

noted a subpopulation of cells presenting a distinctive KRAS gene

expression signature enriched in immune-related components.

Indeed, initial clinical data indicate that KRAS mutant lung adeno-

carcinomas could be more sensitive to immune checkpoint inhibi-

tors. Thus, we also suggest immunotherapy as a later line of

treatment of those patients with EGFR mutant lung tumors that

progress to consecutive lines of EGFR-TKIs and present emergence

of KRAS mutant as well as potentially immunosensitive clones.
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Finally, our data indicated that lung adenocarcinomas might

evolve rapidly due to the surfacing of minor pre-existing genetic

clones resistant to specific targeted therapies. Therefore, more

complex therapies combining EGFR-TKIs with MET inhibitors

and/or immunotherapy could be considered for lung cancer pa-

tients at earlier stages. This novel approach could prevent drug

resistance and disease progression later on. For this reason,

the clinical implementation of genetic technologies with higher

sensitivity will be crucial in defining the genetic landscape of

polyclonal tumors in patients’ candidate to target-directed

therapies.
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