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Glioblastoma (WHO grade IV astrocytoma) is the most frequent primary brain tumor in adults, representing a highly
heterogeneous group of neoplasms that are among the most aggressive and challenging cancers to treat. An improved
understanding of the molecular pathways that drive malignancy in glioblastoma has led to the development of various
biomarkers and the evaluation of several agents specifically targeting tumor cells and the tumor microenvironment. A
number of rational approaches are being investigated, including therapies targeting tumor growth factor receptors and
downstream pathways, cell cycle and epigenetic regulation, angiogenesis and antitumor immune response. Moreover,
recent identification and validation of prognostic and predictive biomarkers have allowed implementation of modern trial
designs based on matching molecular features of tumors to targeted therapeutics. However, while occasional targeted
therapy responses have been documented in patients, to date no targeted therapy has been formally validated as effective in
clinical trials. The lack of knowledge about relevant molecular drivers in vivo combined with a lack of highly bioactive and
brain penetrant-targeted therapies remain significant challenges. In this article, we review the most promising biological in-
sights that have opened the way for the development of targeted therapies in glioblastoma, and examine recent data from
clinical trials evaluating targeted therapies and immunotherapies. We discuss challenges and opportunities for the develop-
ment of these agents in glioblastoma.
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Introduction

Glioblastoma is the most frequent and aggressive primary malignant

brain tumor in adults [1], with a median overall survival (OS) be-

tween 10 and 20 months [2–4]. Standard of care is maximal safe sur-

gery followed by concomitant radio-chemotherapy and adjuvant

chemotherapy with temozolomide, which can be combined with

intermediate-frequency alternating electric fields [2, 4, 5]. Once re-

currence occurs, therapeutic options are limited, including bevaci-

zumab and nitrosoureas, although bevacizumab is not approved in

Europe. Unlike in most other cancers, this lack of progress has

been sustained despite growing insight into the biology of the

disease [6–11]. Fortunately, these significant advances have contin-

ued to stimulate the development and re-purposing of numerous

targeted therapies in clinical trials.

Genomic landscape of glioblastoma

Glioblastomas constitute a highly heterogeneous group of invasive

malignant brain tumors [12]. It was the first tumor to undergo com-

prehensive molecular characterization [6–10, 13–15]. Briefly, these

studies showed that most tumors harbor recurrent molecular alter-

ations disrupting core pathways involved in regulation of growth

(receptor tyrosine kinase [RTK], mitogen-activated protein kinase

[MAPK] and phosphoinositide 3-kinase [PI3K] signaling path-

ways), cell cycle, DNA repair and apoptosis (Retinoblastoma/E2F

and p53 tumor suppressor pathways) as well as control of chromatin

state and telomere length (Table 1). Frequently, these alterations de-

rive from copy number aberrations (CNAs). The most common

amplification events involve chromosomes 7 (EGFR/MET/CDK6),

12 (CDK4 and MDM2) and 4 (PDGFRA), while recurrent
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homozygous deletions are found in chromosomes 9 (CDKN2A/B)

and 10 (PTEN). In addition, genome-wide sequencing highlighted

single nucleotide variants (SNVs) and short insertions and deletions,

resulting in recurrent mutations in the TERT promoter, PTEN,

TP53, EGFR, PIK3CA, PIK3R1, NF1 and RB1 [10].

Most of these recurrent and biologically relevant genomic vari-

ants continue to be attractive targets for drug development [16–

23] (Table 1). However, none of the recurrent genomic variants in

glioblastoma has been strongly associated with clear prognostic

and predictive value so far. This challenges the assumption that

these variants are necessarily obligate cancer drivers in glioblast-

oma and suggests that strong cancer cell plasticity and redundancy

among alterations that drive tumor growth may contribute to

therapy failure more than previously assumed (Figure 1).

Increasingly, it is being recognized that glioblastomas are charac-

terized by significant inter- and intra-tumor genomic heterogen-

eity, which can exist as temporal or spatial [10, 24–33]. This

represents challenges for appropriate driver identification due to

glioblastoma being inherently limited in the amount and locations

that one can sample, as well as the limited opportunities for reop-

eration [34–36]. The evidence that such heterogeneity might be

relevant comes from multisector genome-wide sequencing of pri-

mary and post-treatment tumors, which revealed substantial di-

vergence in the landscape of driver alterations between primary

and recurrent tumors [30, 32, 33, 37, 38]. Moreover, heterogeneity

at the single cell level can exist as multiple genomic alterations

within redundant pathways (e.g. mosaic amplifications of EGFR,

MET and PDFGRA) [10, 24, 29, 39, 40], or multiple unique vari-

ants of a single gene (e.g. multiple EGFR oncogenic variants in a

single cell) [29, 30, 40], which overall results in heterogeneity in

drug sensitivity within individual tumor cells [41] (Figure 1).

Targeting growth factor receptors and their

downstream signaling pathways

Drugs directed against alterations that lead to constitutive activa-

tion of growth factor RTKs are the most common type of targeted

therapy in all types of cancer with successful responses seen in

many cancers. These drugs have also been of great interest in glio-

blastoma because direct alterations in RTKs and/or downstream

MAPK/PI3K signaling pathways represent a hallmark of this

tumor (Table 1) [10].

EGFR-targeted therapies

EGFR amplification, rearrangement or point mutations are

found in approximately half of glioblastomas and multiple aber-

rations in EGFR often co-exist within an individual tumor [10,

30, 42–44]. Nearly 20% of glioblastomas harbor deletion of exons

2–7 of EGFR, resulting in EGFRvIII, a constitutively active onco-

genic variant frequently associated with EGFR amplification.

Preclinical studies have demonstrated that EGFRvIII-driven

tumors are only weakly sensitive to first generation EGFR tyro-

sine kinase inhibitors (TKI) erlotinib and gefitinb [45, 46].

Indeed, EGFRvIII—as most other EGFR SNVs found in glioblast-

oma—alters the extracellular domain of EGFR in glioblastoma,

while in contrast lung adenocarcinomas typically harbor direct

activating mutations in the kinase domain [45].

Rindopepimut is an EGFRvIII peptide vaccine that demon-

strated signs of activity in preclinical models of glioblastoma and

early phase trials [16, 47, 48]. The recently completed randomized

phase II study ReACT evaluated the association of rindopepimut

plus bevacizumab in EGFRvIII-positive recurrent glioblastoma.

Table 1. Genomic alterations and example targeted therapies in glioblastoma

Gene Alteration or target Target frequency
in glioblastomaa (%)

Candidate therapy (drug example)

Growth factor receptors
EGFR Deletion (EGFRvIII), mutation,

translocation and/or amplification
55 EGFR vaccine or antibody-drug conjugate

(rindopepimut, ABT-414)
KIT Amplification, mutation 10 KIT inhibitor (imatinib)
PDGFRA Amplification 15 PDGFR inhibitor (dasatinib)
FGFR1, FGFR3 Translocation (e.g. FGFR3-TACC3) 3 FGFR1/3 inhibitor (JNJ-42756493)
MET Amplification, translocation 3 MET inhibitor (cabozantinib)
MAPK and PI3K/mTOR signaling pathways
PTEN Deletion, mutation 40 AKT inhibitor, mTOR inhibitor (voxtalisib)
PIK3CA Amplification, mutation 10 mTOR inhibitor, PI3K inhibitor (buparlisib)
NF1 Deletion, mutation 14 MEK inhibitor (trametinib)
BRAF Mutation (BRAF V600E) 2 BRAF inhibitor (vemurafenib), MEK inhibitor (trametinib)
Cell cycle pathways
MDM2 Amplification 10 MDM2 inhibitor (AMG232)
TP53 Wild-type (no mutations) 60 MDM2 inhibitor (AMG232)
CDK4/6 Amplification 20 CDK4/6 inhibitor (ribociclib)
RB1 Wild-type (no mutations) 90 CDK4/6 inhibitor (ribociclib)
Others
IDH1 Mutation 6 IDH1 inhibitor (AG120)
MYC, MYCN Amplification 5 Bromodomain inhibitor (OTX-015)

aSource: cbioportal.org (glioblastoma TCGA dataset, n ¼ 281 tumor samples with sequencing and CNA data) [10].
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Advantage to rindopepimut therapy was reported across multiple

endpoints including 2-year OS rate and progression-free survival

(PFS), although the trial failed to meet its primary endpoint [49]

(Table 2). Preliminary analyses from the phase III randomized

study of rindopepimut in newly diagnosed EGFRvIII-positive glio-

blastoma indicated that its benefit on OS will not reach statistical

significance (23 months from diagnosis in both arms), resulting in

the closure of the trial [50]. Subgroup analyses suggested that rin-

dopepimut might have failed due to reduced amount of EGFRvIII

antigen burden in patients that underwent gross total resection (2-

year survival rate of 30% in patients with non-minimal residual

disease versus 19% in patients with minimal residual disease), al-

though these results will need confirmation after longer follow-up.

Further development of rindopepimut is uncertain.

Other EGFRvIII-targeted therapies are being evaluated. ABT-

414 is an antibody drug conjugate (ADC) consisting of an anti-

EGFR MAb, conjugated to the tubulin inhibitor monomethy-

lauristatin F. ABT-414 demonstrated cytotoxicity against glio-

blastoma patient-derived xenograft models expressing either

wild-type EGFR or EGFRvIII [51]. Preliminary data from a phase

I trial of ABT-414 monotherapy in EGFR-amplified recurrent

glioblastoma showed a 6 months PFS rate of 28.3% [52] (Table

2). OS from trial entry was 9 months, which was considered

encouraging, as 56% of patients had already undergone two to

three prior therapies. No dose-limiting toxicity was reported, al-

though specific ocular toxicities were frequently observed (mostly

reversible blurred vision, with some patients presenting with

keratitis or corneal epithelial microcysts). The clinical develop-

ment of ABT-414 is ongoing with randomized phase II/III trials

(Table 3).

In addition, several trials have evaluated more broadly effective

EGFR-targeted therapies (Table 2). A variety of first and second

Combinations of inhibitors
against different RTKs

Inhibitor(s) against
same RTK (targeting different

mechanisms of activation)

Multiple variants and mechanisms
of activation in a single RTK

Common progenitor cell
disruptions of RB, TP53 pathways

activation of TERT

Multiple RTK
amplification

Single RTK
amplification

EGFR
amp.

MET
amp.

MET+EGFR
amp.

PDGFRA+EGFR
amp.

EGFR
wt.

EGFR var. A
(e.g. EGFRvIII)

EGFR var. B
(e.g. EGFR p.A289V)

EGFR
amp.

PDGFRA
amp.

Multiple RTK targets Single RTK target

Models of single cell genomic heterogeneity

Figure 1. Cellular heterogeneity of RTK aberrations in glioblastoma: implications for appropriate drug targeting (adapted from Francis et al. [30]).
Dynamics of the glioblastoma genome may generate or select for subclonal populations of tumor cells that are highly resistant to treatment, over-
all suggesting that comprehensive characterization of tumor heterogeneity is a prerequisite for the success of pharmacological inhibition of RTK
alterations. Left, multiple amplifications of distinct RTK genes can be observed in non-overlapping subclonal populations from individual tumors,
or within individual tumor cells. In other cases (right), tumor heterogeneity may exist as multiple alterations within a single RTK gene.
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generation EGFR/HER2 TKI or anti-EGFR monoclonal antibod-

ies (Mab) have been evaluated as monotherapy [53–62] or in as-

sociation with various agents or radiation therapy [63–79]. The

results of these trials have been comprehensively reviewed else-

where [18, 80]. Overall, disappointing results were reported des-

pite some anectodotal response observed, suggesting the lack of

efficacy of the currently available agents. Further studies evaluat-

ing novel agents or combinations are warranted to re-evaluate

the value of EGFR inhibition in molecularly selected populations.

Targeting other receptor tyrosine kinases

Oncogenic FGFR–TACC fusions are found in nearly 3% of glio-

blastomas, with promising evidence of actionability provided by

preclinical studies [21, 81]. Encouraging evidence of activity was

recently reported in a phase I study evaluating JNJ-42756493—a

highly selective pan-FGFR TKI—in three patients harboring

FGFR3–TACC3-positive glioblastomas [21, 82]. Phase II clinical

trials evaluating other selective FGFR inhibitors (e.g. BGJ398 and

AZD4547) are currently ongoing [83].

PDGFRA amplification is found in nearly 15% of glioblastomas

[10]. This receptor is highly active in all glioma types and represents

one of the more underexplored targets for therapy. A recently re-

ported phase II trial evaluated the efficacy of dasatinib, a multikinase

inhibitor targeting PDGFR, c-KIT, SRC and EPHA2 [84] (Table 2).

Despite the fact that patients were selected on the basis of overexpres-

sion of at least 2 putative dasatinib targets, no response was reported.

Additional trials evaluated other multikinase inhibitors without

showing any consistent clinical activity in glioblastoma [85–89].

Finally, preclinical evidences indicated an oncogenic role for c-

MET signaling pathway activation in glioblastoma, notably by

promoting tumor growth and invasiveness as well as drug resist-

ance [90–94]. Rare responses have been documented in patients

receiving crizotinib, a c-MET/ALK inhibitor and represent some

of the first evidence of targeted therapy success [95, 96]. MET

amplification or mutation as well as overexpression of c-MET or

its ligand, the hepatocyte growth factor (HGF), have been pro-

posed as predictive biomarkers, although efficacy and its molecu-

lar determinants remain unclear to date. A recently reported

randomized phase II trial investigated the safety and efficacy of

bevacizumab plus onartuzumab—a MAb against MET—versus

bevacizumab plus placebo in recurrent glioblastoma (Table 2)

[97]. Overall, there was no evidence of clinical benefit with beva-

cizumab plus onartuzumab compared with bevacizumab plus

placebo, although exploratory biomarker analyses suggested

benefit in patients with umethylated O6-methylguanine–DNA

methyltransferase (MGMT) or high HGF expression in tumor

tissue. Further understanding of the role of these RTKs in the

Table 3. Ongoing randomized phase 3 trials evaluating investigational agents in glioblastoma

ClinicalTrials.gov
Identifier

Population Treatment arms Primary
endpoint

Statusa Sponsor

Newly diagnosed glioblastoma
NCT00045968 Sufficient tumor

lysate after
surgery

Experimental: RT/TMZ followed by TMZ þ DCVax-L
(dendritic cells vaccine)

PFS Accrual
suspended

Northwest
Biotherapeutics

Comparator: RT/TMZ followed by TMZ þ placebo
NCT02617589 Unmethylated

MGMT
promoter

Experimental: RTþ nivolumab (anti-PD1 MAb) OS Recruiting Bristol-Myers
SquibbComparator: RT/TMZ followed by TMZ

NCT02546102 HLA-A2 positive
patients

Experimental: RT/TMZ followed by TMZ þ ICT-107
(dendritic cells vaccine)

OS Recruiting ImmunoCellular
Therapeutics

Comparator: RT/TMZ followed by TMZ þ placebo
NCT02573324 EGFR-amplified Experimental: RT/TMZ/ABT-414 followed by TMZ þ

ABT-414 (anti-EGFR ADC)
OS Recruiting AbbVie

Comparator: RT/TMZ/placebo followed by TMZ þ
placebo

NCT02152982 Unmethylated
MGMT
promoter

Experimental: RT/TMZ þ followed by TMZ þ veli-
parib (PARP inhibitor)

OS Not yet
recruiting

National Cancer
Institute

Comparator: RT/TMZ followed by TMZ þ placebo
Recurrent glioblastoma
NCT0201771 First progression Experimental: nivolumab (anti-PD1 MAb) OS Accrual

completed
Bristol-Myers

SquibbComparator: bevacizumab
NCT02511405 First or second

progression
Experimental: bevacizumab þ VB-111 (viral toxin) OS Recruiting Vascular

BiogenicsComparator:
bevacizumab

NCT02414165 First or second
progression,
candidate for
resection

Experimental: TOCA-511 (viral gene therapy injected
in tumor resection cavity) þ TOCA-FC (5-
fluorocytosine)

OS Recruiting Tocagen

Comparator: Investigator’s choice (single agent
lomustine or temozolomide or bevacizumab)

aSource: clinicaltrials.gov (November 2016).
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progression of glioblastoma, as well as evaluation of highly brain

penetrant and potent inhibitors is warranted.

Targeting PI3K/AKT/mTOR and MAPK signaling
pathways

In light of the disappointing activity observed with existing RTK

inhibitors, agents designed to interfere with downstream mol-

ecules remain attractive. The PI3K/AKT/mTOR signaling path-

way is dysregulated in the vast majority of glioblastomas through

various molecular alterations (Table 1). mTOR inhibitors such as

temsirolimus and everolimus have been FDA-approved to treat

various solid cancers including subependymal giant cell astrocy-

toma, a low grade brain tumor arising in patients with tuberous

sclerosis complex, with good response in this special type of

astrocytoma. However, when evaluated in glioblastoma as mono-

therapy, or in combination with either EGFR TKIs, bevacizumab

or temozolomide and radiation therapy, these agents have not

demonstrated significant clinical activity [66–70, 98–100].

Nonetheless, it has been hypothesized that a subset of patients

may benefit from PI3K/AKT/mTOR signaling inhibition, and novel

agents with a broader range of activity are currently being evaluated.

PX-866 is an oral PI3K inhibitor recently tested in a phase II trial

[101]. While the study was negative, durable stabilization was

observed in 21% of patients. No association between outcome and

PTEN, PIK3CA or PIK3R1 status was observed. The dual PI3K/

mTOR inhibitor voxtalisib and the pan-class I PI3K inhibitor bupar-

lisib have been evaluated in other trials. Preliminary results from

phase II trials evaluating buparlisib indicated activity in association

with bevacizumab [102], while limited efficacy was observed in pa-

tients receiving buparlisib as monotherapy, even in the presence of

PIK3CA, PIK3R1 or PTEN molecular alterations (Table 2).

Targeting of MAPK pathway signaling, activated in all glio-

blastoma, is also a rational approach. A small subset of patients

(3%), especially those with giant cell or epithelioid morphology

(11%), harbors the BRAF V600E mutation [103], a well-known

targetable oncogene. The BRAF inhibitor vemurafenib has shown

promising efficacy in individual patients with BRAF-mutant

(V600E) high-grade gliomas of non-glioblastoma types [104,

105]. The RAF multikinase inhibitor sorafenib has been evaluated

in several small phase I/II studies as monotherapy or in combin-

ation with bevacizumab, temozolomide, temsirolimus [106–110]

or radiation therapy and temozolomide [111]. Unfortunately,

limited efficacy was observed and has not supported further de-

velopment of sorafenib in glioblastoma (Table 2). Future preclin-

ical studies and trials should focus on combined inhibition of

MAPK and other pathways, as well as identifying predictive bio-

markers. The presence of responses in other glioma types with

BRAF alterations suggests these agents may be some of the most

promising for future success in targeted therapies.

Targeting DNA repair and cell cycle control

pathways

Disruption of p53 and Retinoblastoma/E2F tumor suppressor

pathways is found in more than 80% of glioblastomas [10]. TP53

encodes the tumor suppressor protein p53 that causes cell-cycle

arrest and promotes apoptosis upon DNA damage [112]. TP53

mutation/deletion results in growth advantage and clonal expan-

sion of glioma cells, as well as impairment of DNA repair, pro-

moting overall genetic instability and transformation [113, 114].

Besides direct gene mutation or deletion, p53 inactivation may be

caused by MDM2 or MDM4 amplification (20% of patient over-

all) [10, 115]. The first therapeutic strategies targeting p53 were

centered on attempting reactivation of the pathway using gene

therapy or pharmacological approaches, although these have

failed to demonstrate clinical efficacy [116]. A key disadvantage

of the original nutlin-based drugs was the low potency and poor

blood–brain barrier (BBB) penetration. However, MDM2 inhib-

ition has recently re-emerged as an attractive strategy to restore

p53 function with advances in the chemical properties of nutlin-

based agents (RG7112, RG7388), as well as other classes of agents

recently developed (HDM201, AMG232). Preclinical studies

have demonstrated striking antitumor efficacy in MDM2-ampli-

fied glioblastoma models [117, 118]. Most importantly, TP53-

wild-type models also showed marked response to these agents

and blood–tumor and blood–brain penetration of the more novel

agents has been in a range as feasible for clinical trials. Given that

about 50% of glioblastoma patients have TP53-wild-type tumors

this represents an attractive strategy for the majority of patients.

Cell cycle progression is frequently deregulated through vari-

ous recurrent molecular alterations including inactivation of

CDKN2A/CDKN2B and RB1 as well as amplification of CDK4

and CDK6 (Table 1) [10, 119]. Novel agents designed to inhibit

CDK4 and CDK6 have demonstrated strong antitumor efficacy

in RB1-wild-type glioblastoma models [120–123], and have been

subsequently evaluated in phase II. Results from this study as well

as other trials evaluating newer compounds (NCT02345824)

should shed light on the value of CDK inhibitors in glioblastoma,

and the biomarker profile of the patients that may respond.

Finally, synthetic lethal approaches have been developed as

novel strategies to target tumors harboring alterations disrupting

DNA repair and tumor suppressor pathways. WEE1—a nuclear

serine/threonine kinase—acts as a gatekeeper against mitotic ca-

tastrophe in glioblastoma. Recent preclinical works demon-

strated that small-molecule inhibition of WEE1 sensitized

glioblastoma to DNA damaging agents including radiation ther-

apy [124–126]. Combination of the WEE1 inhibitor AZD1775

with radiation therapy and temozolomide is currently being eval-

uated (NCT01849146). Other promising strategies exploiting

synthetic lethal interactions include association of DNA repair

inhibitors (e.g. the PARP inhibitors veliparib and olaparib) with

radiation therapy and/or temozolomide, which have demon-

strated antitumor efficacy in animal models [127–128], and are

currently evaluated in randomized trials (Table 3) [129].

Targeting epigenetic deregulation and

tumor metabolism

Targeting isocitrate dehydrogenase

IDH1 mutations are found in 6% of primary glioblastomas [7,

130–132]. These mutations confer a gain-of-function, resulting

in the production of D-2-hydroxyglutarate (D2HG), which inter-

feres with cellular metabolism and epigenetic regulation [132,
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133]. Small-molecule inhibitors of mutant IDH enzymes have

demonstrated activity in preclinical models [17], and are being

evaluated in phase I/II trials (NCT02073994, NCT02481154).

Preliminary reports indicated favorable safety profile and signs of

activity, mainly in patients with lower grade tumors [134]. IDH1

peptide vaccines represent an alternative approach that has dem-

onstrated activity in preclinical models [135, 136], and are being

evaluated in clinical trials (NCT02454634, NCT02193347).

Targeting histone deacetylase and other
epigenetic modifiers

Histone deacetylase (HDAC) inhibitors represent an emerging

class of therapeutics that has shown activity in hematologic

malignancies. Despite encouraging efficacy in preclinical models

including histone H3-mutant pediatric glioblastoma [137–139],

only modest activity has been observed in clinical trials evaluating

HDAC inhibitors as a single agent, or in combination with temo-

zolomide, bortezomib or bevacizumab [140–143] (Table 2).

Beyond HDAC inhibitors, other epigenetic modifiers have re-

cently gained interest for the treatment of glial tumors. These in-

clude BET bromodomain proteins inhibitors and EZH2

inhibitors, which have recently entered in clinical trials

(NCT01897571, NCT02711137), and have both demonstrated

antitumor activity in preclinical models [144–147].

Targeting tumor angiogenesis

A multitude of anti-angiogenic targeted therapies have been eval-

uated in clinical trials of glioblastoma as monotherapy or in com-

binations with various agents, all with no significant survival

benefit to patients [63, 84, 106, 148–168] (Table 2). In 2009, beva-

cizumab received provisional FDA-approval for the treatment of

recurrent glioblastoma on the basis of radiographic response

rates ranging from 28% to 59% reported in two single-arm trials

[148, 149]. However, subsequent trials failed to demonstrate su-

periority of bevacizumab alone or combined with lomustine in

terms of OS [161, 169]. In newly diagnosed glioblastoma, two re-

cently reported placebo-controlled randomized trials evaluating

the benefit from the addition of bevacizumab to standard of care

showed no difference in OS, while significant improvement in

PFS was demonstrated in both trials (extension of median PFS of

3.4 and 4.6 months) [162, 163].

Given the encouraging preclinical data, what went wrong?

The lack of the target being expressed in tumor cells is some-

thing that became clearer with time. The level of dependency of

the tumor ecosystem on the vasculature now appears to be low.

Despite the lack of clear survival benefit of antiangiogenic agents

in glioblastoma, prolonged PFS with long-lasting tumor re-

sponse or stabilization has been proposed to be present in a sub-

set of patients receiving bevacizumab. The identification of

biomarkers to predict response of antiangiogenics agents may

therefore be warranted. One possibility for this comes from

post-hoc analysis from the AVAglio randomized phase III trial

[170], which reported significant OS advantage of adding beva-

cizumab to standard of care in patients with proneural IDH1

wild-type tumors, albeit this needs to be validated further in an

independent trial.

Immunotherapies

Immunotherapy for glioblastoma has gained considerable interest

over the past years. The concept of the central nervous system

(CNS) as an ‘immune privileged site’ has been recently challenged

by the discovery of the CNS lymphatic system, which is connected

to the deep cervical lymph nodes [171–174]. Therapeutic targeting

of immune checkpoint programmed cell death 1 (PD1)/pro-

grammed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-

associated molecule-4 (CTLA-4) using MAbs has been associated

with significant clinical benefit in several human malignancies

[175, 176]. These treatments aim at enhancing antitumor immune

responses, by blocking negative regulatory pathways in T-cell acti-

vation. In glioblastoma, PD-L1 is expressed in some patients [177,

178], and preclinical studies have provided rationale for the evalu-

ation of immune checkpoint blockers (ICBs) [179–182].

Several clinical trials evaluating ICBs are ongoing (Tables 2 and

3), including randomized phase III trials of the anti-PD1 nivolumab.

Preliminary data on efficacy and safety of ICBs as monotherapy or

in combination were recently reported [183–186] (Table 2). Overall,

the response rates observed with these agents in recurrent disease

were low; however, the observation of a relative increase in 6-month

PFS and OS suggested a possible benefit in a subset of patients.

Recent studies in non-CNS cancers have indicated that patients

whose tumors bear high neoantigen and/or mutation load may de-

rive enhanced clinical benefit from immune checkpoint inhibitors

[187–190]. Partial responses to nivolumab were recently reported in

two pediatric patients that developed hypermutant glioblastoma in

the context of biallelic mismatch repair deficiency [191], suggesting

that this subset of patients may be responsive to this strategy.

Beyond targeting of immune checkpoints, other approaches

taking advantage of the immune system and the tumor micro-

environment are being explored. Dendritic cell and peptide vac-

cines have entered clinical trials, with promising signs of activity

reported in preclinical studies and early phase trials [16, 47, 48,

135, 136, 192–197]. These encouraging results need further con-

firmation in the ongoing larger randomized trials. Other

immune-cells based approaches include engineered chimeric

antigen receptor (CAR T)/NK cells re-directed to specific tumor

antigens (e.g. EGFRvIII), which have demonstrated promising

antitumor efficacy in animal models [198, 199], and are cur-

rently evaluated in several phase I/II trials (NCT01109095,

NCT02442297, NCT02664363, NCT01454596). However, these

novel approached will require further standardization and opti-

mization efforts, and costs and technical issues associated with

cell-based therapy will likely limit its widespread application.

Development of targeted therapies in

glioblastoma: current state of the art and

future directions

Lessons learned from the clinical development of
targeted therapies

Unlike the experience in some other human malignancies harboring

activating oncogenic alterations (e.g. EGFR or ALK in lung adeno-

carcinoma), efforts in the field of precision medicine have not yet
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demonstrated consistent clinical activity in glioblastoma. Several

factors may explain such disappointing results. A central element of

precision medicine is the matching of a selective drug and its mech-

anism of action using a robust biomarker (e.g. a molecular assay

defining a specific biologic subgroup) to select patients that are ex-

pected to benefit from the drug (‘selecting the right drug for the

right patient’). Before evaluation in large trials, scientists and investi-

gators should provide: (i) strong evidence of antitumor activity in

disease-relevant models [200] and (ii) proof-of-concept (i.e. dem-

onstration of the feasibility) as well as evidence of effective target

modulation in early phase trials. In glioblastoma, few if any trials

that evaluated targeted therapies have met these preliminary

requirements.

As far as target relevance and selection are concerned, most of

the trials had not implemented molecular enrichment for patient

selection. It is likely that most patients have received investiga-

tional agents in the absence of the relevant target in their tumor.

Defining relevant targets is often challenging. Although early

studies suggested that EGFR and PTEN status could predict re-

sponse to EGFR-targeted therapies [201, 202], outcome was not

correlated with the presence of EGFR amplification, EGFRvIII,

PTEN loss or other molecular alterations in subsequent studies,

and molecular predictors for the efficacy of EGFR targeted thera-

pies remain undetermined. Future precision medicine studies

should more largely implement systematic molecular character-

ization, including assessment of non-invasive biomarkers [203,

204], which will theoretically enable physicians to identify the

most relevant targets for each patient, and allow further correl-

ation of molecular profile with outcome (Figure 2).

In trials that have failed despite molecular enrichment [50],

other potential sources of failures have to be considered. As previ-

ously mentioned, the marked heterogeneity and plasticity of glio-

blastoma cells are likely major factors mediating the currently

observed resistance to targeted therapies [31, 40, 205]. As an illus-

tration, in a phase II trial, analyses of tissues from glioblastoma

patients treated with gefitinib before debulking surgery revealed

significant intratumoral accumulation of gefitinib associated with

dephosphorylation of EGFR, while downstream canonical path-

ways were not significantly dephosphorylated when compared

with untreated controls [31, 40, 206]. This indicated concomitant

activation of redundant cell signaling pathways, a resistance mech-

anism observed in EGFR-driven glioma models [205]. This clearly

implies that exploring combinations of targeted therapies to avoid

emergence of resistant subclones is needed (Figure 1). Moreover,

future studies should explore approaches that have the potential to

more broadly inhibit tumor cell growth and survival [207, 208].

Agents that more broadly target pathways rather than single muta-

tion variants have the potential to improve outcome in a much

wider population of patients, even in the absence of actionable mu-

tation targets identified by genomic profiling. As an illustration,

novel MDM2 inhibitors have been reported to inhibit the growth

of TP53-wild-type glioblastoma PDCLs, regardless of the tumor

MDM2 amplification status [117, 118]. However, such approaches

are expected to go along with more side effects. Other examples in-

clude synthetic lethal approaches and immunotherapy, which are

investigated in large trials (Table 3).

Regarding drug relevance, most of the tested agents were nei-

ther primarily designed to inhibit alterations that are specific to

glioblastoma, nor developed for targeting tumors located in the

brain. Most currently available agents display inadequate phar-

macokinetic properties due to poor crossing of the BBB [209–

211]. The BBB is universally disrupted in glioblastomas but not

necessarily within more infiltrative non-enhancing areas of the

tumor. Given this mixed BBB setting, novel agents should be

optimized for brain penetration. Other approaches include the

use of tailored regimens (e.g. higher doses in pulsed schedules)

and other strategies to actively break down the BBB (e.g. transi-

ent opening of the BBB by pulsed ultrasound) [212, 213], which

may improve drug delivery and target inhibition using agents

that are unlikely to adequately penetrate the tumor. In this

Patient with glioblastoma Therapy assignment

Experimental validation

•  Patient recruitment

•  Actionable target: clinical trial
•  No actionable target: pathway
 inhibitor trials or standard of care
•  Efficacy assessment correlated
 with molecular biomarker analysis
 during or after the trial

•  Establish stable patient-derived models
•  Validate potential drivers (cell viability
 assays, in vivo screens), characterize
 novel variants
•  Predict patient’s response to therapy

•  Favour multiplex genotyping assays to
 single target analyses
• Integrate analyses from multi-omics
 data to reveal potential ‘compound’
 driver aberration profiles of relevance

Tumor tissue Liquid biopsies

•  Recurrent glioblastoma: MOSCATO 02 (NCT01566019),
 MATCH-R (NCT02517892), NCI-MPACT (NCT01827384),
 NCI-MATCH (NCT02465060), IMPACT (NCT00851032),
 MOST (NCT02029001), SHIVA (NCT01771458)

•  Identification of druggable drivers
 requires analyses of primary and
 relapsed tumors

•  Liquid biopsies represent
 alternative approaches for patients
 not amenable to surgery

•  Newly diagnosed glioblastoma: INSIGhT (NCT02977780)

•  Assess clinical
 suitability and obtain
 informed consent

Molecular characterization

Examples of ongoing precision medicine trials

Collection of tissue samples

Drug A Drug B

Figure 2. Current implementation of precision medicine in glioblastoma. Practical implications of implementing precision medicine
approaches in glioblastoma are depicted in this figure. Appropriate molecular profiling requires analysis of tumor tissue from the relapsed
tumor. Further steps include target identification and selection, and treatment selection. Main limitations include difficulties in obtaining
tumor tissue from relapse, target prioritization, and availability of optimal drugs in the context of CNS disease and related molecular alter-
ations. This figure features pictures from ‘Servier medical art’ by Servier, used under Creative Commons Attribution 3.0 France.
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context, having a molecular assay that confirms effective modu-

lation of the target in the tumor is essential; otherwise conclu-

sions on relevance of the target will remain elusive. Novel trial

designs should more often incorporate tissue biomarkers collec-

tion during treatment, enabling evaluation of pharmacodynam-

ics markers.

Novel biomarker-driven trial designs

Overall, considering the lack of clear demonstration of the benefit

of targeted therapies in glioblastoma, proof-of concept in well

molecularly characterized populations should be established in

early phase and small-randomized phase II trials before further

evaluation in registration trials. Academic groups and industry

should collaborate in order to identify: (i) the best targets, drugs/

combinations to be tested in clinical trials; (ii) the best popula-

tion and (iii) the best biomarkers. Within the context of more

precise and systematic molecular characterization of glioblas-

toma and increasing availability of novel targeted therapies, novel

trial designs will be essential to more rapidly test agents. Practical

implications for such precision medicine studies are represented

in Figure 2.

A popular design is the ‘basket trial’ that involves screening of

patients with cancer independent of tumor histology, for recruit-

ment of a specific and often rare molecularly-defined population.

A recently reported basket phase II trial evaluating vemurafenib

in several BRAFV600-mutant non-melanoma tumors reported re-

sponses in high-grade glioma patients [105]. Similarly, crizotinib

is currently investigated in MET-amplified glioblastomas

(NCT02034981) as part of a larger trial with 23 molecularly

defined cohorts. However, basket trials require robust preclinical

studies to identify relevant biomarkers that will predict treatment

response with high confidence, and well-established diagnostic

assays available in real-time for patient selection [32, 214–220]

(listed in supplementary Table S1, available at Annals of Oncology

online). Moreover, such trial designs can present a major chal-

lenge when the molecular alterations in question are rare, requir-

ing such trials to screen and reject a high number of patients who

are then disappointed.

Other new approaches are multi-arm ‘master protocol’ and

‘umbrella’ trials, which most commonly involve screening for

multiple targets [221], arms and agents, and yield added benefit

that a higher proportion of patients may enter into the trial

once screened. Such trials may include randomization between

‘standard’ and ‘molecularly tailored’ treatment arms, allowing

assessing the utility of precision medicine approaches. These

designs have been aided by translation of modern methods of

high-throughput multiplex diagnostic assays, allowing to sim-

ultaneously measuring a host of targets using platforms such as

targeted exomes or CGH/SNP arrays [208, 222]. These are now

commonplace in an increasing number of centers and aid de-

signing novel trials based on systematic molecular screening

programs for treatment stratification (Figure 2). As an illustra-

tion, personalized medicine trials such as MOSCATO 02

(NCT01566019) and INSIGhT (NCT02977780) studies are cur-

rently evaluating the feasibility and the utility of genomic

profiling to inform treatment decisions in patients with

glioblastoma.

Conclusion

An improved understanding of the molecular pathways that drive

malignancy in glioblastoma has led to the development of various

biomarkers and several agents targeting specific molecular path-

ways in malignant cells. The concept of precision medicine driven

by molecular stratification for the treatment of glioblastoma is ap-

pealing and scientifically sound; however, no evidence has yet dem-

onstrated an improved patient outcome within the context of this

disease, likely as a result of both scientific and logistical challenges

that have hampered the success of clinical trials. The identification

of relevant driver molecular events and highly bioactive and specific

drugs remain the biggest challenges. With the recent incorporation

in clinical practice of modern methods allowing molecular charac-

terization and appropriate stratification of patients, there is hope

that novel trials evaluating targeted therapies may be more effective.

Identification of relevant targets, compounds and biomarkers for

appropriate patient selection during early phase trials are essential

for successful development of novel therapies.
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