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Background: In recent years, investigators have asserted that the 3þ 3 design lacks flexibility, making its use in modern
early-phase trial settings, such as combinations and/or biological agents, inefficient. More innovative approaches are required
to address contemporary research questions, such as those posed in trials involving immunotherapies.

Design: We describe the implementation of an adaptive design for identifying an optimal treatment regimen, defined by low
toxicity and high immune response, in an early-phase trial of a melanoma helper peptide vaccine plus novel adjuvant
combinations.

Results: Operating characteristics demonstrate the ability of the method to effectively recommend optimal regimens in a
high percentage of trials with reasonable sample sizes.

Conclusions: The proposed design is a practical, early-phase, adaptive method for use with combined immunotherapy
regimens. This design can be applied more broadly to early-phase combination studies, as it was used in an ongoing study of
two small molecule inhibitors in relapsed/refractory mantle cell lymphoma.
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Introduction

The current landscape of oncology drug development poses a

challenge to widely accepted methods used in early-phase clin-

ical trials. In recent years, novel statistical methods have been

developed in order to address more complex research questions

in early-phase studies. However, broad implementation of

novel methods has been limited, with traditional or modified

3þ 3 designs remaining in frequent use [1]. A recent paper by

Paoletti et al. [1] described the rigidity of the 3þ 3 design in

meeting the challenges of studies involving combinations and/

or biological agents, and called for wider use of more innovative

methods to achieve the goals of contemporary research object-

ives. This call is present throughout the statistical and medical

literature, with reviews, justification, and recommendations on

the use of innovative designs [2–4]. More complex problems

have created the need to adapt early-phase trial design to the

specific agents being investigated, and the corresponding

endpoints.

The Food and Drug Administration (FDA) published a report

acknowledging the need for alternative dose-escalation strategies

in cancer vaccines [5]. This report states that many cancer vaccine

trials that employ the 3þ 3 design fail to identify a maximum tol-

erated dose, mainly due to the lack of dose-limiting toxicities

(DLTs), and that model-based designs may be more appropriate.

It continues by saying that when few DLTs are expected, designs

guided by alternative outcomes, such as immune response, may

be more valuable [5]. In this article, we present a model-based,

early-phase design for combination immunotherapies that ac-

counts for both safety and immunologic response in order to

identify an optimal treatment strategy. The statistical modeling

framework is outlined in Wages and Conaway [6]. We describe

the implementation of the method in an ongoing trial (Mel63)

investigating a helper peptide vaccine plus local and systemic
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adjuvant combinations for the treatment of melanoma

(NCT02425306) designed at the University of Virginia (UVA)

Cancer Center. This design extends the one outlined in Wages

et al. [7]. Recently published guidelines [8, 9] for implementing

novel early-phase methods were followed in executing the

described design.

Design

Mel63 is an early-phase evaluation of the safety and immunogen-

icity of a vaccine comprised of a mixture of 6 synthetic melanoma

helper peptides (6MHP) [10] administered with one of the two

local adjuvant combinations, Incomplete Freund’s Adjuvant

(IFA) or IFAþ the toll-like receptor 3 agonist polyICLC, alone or

with systematic low-dose cyclophosphamide (mCy), as shown in

Table 1. Treatment combinations are grouped into ‘zones’ based

on the number of adjuvants in a regimen (1, 2, or 3). The trial was

designed to find the range of optimal treatment combinations

(OTC), defined as a combination with early and durable im-

munologic response and an acceptable level of toxicity. An adap-

tive design is being used to guide accrual decisions with toxicity

assessments and the potential for a durable immune response

characterizing the main decision measures. The decision end-

points are DLTs and durable immune response (dRsp) as meas-

ured by CD4þT cell responses to 6MHP during the time period

of vaccination administration.

In monitoring safety, adverse events (AEs) are being assessed

and acute toxicity graded using the National Cancer Institute

(NCI) Common Terminology Criteria (CTCAE) Version 4.03. A

participant is classified as experiencing a DLT (yes/no) based on

protocol-specified criteria. In this study, a DLT is defined as any

unexpected AE that is possibly, probably, or definitely related to

treatment and meets the following criteria; (i) grade� 3, (ii)

grade 1 ocular AEs, and (iii) grade 2 allergic/autoimmune reac-

tions. An early dRsp is defined as at least a 5-fold increase in im-

mune response to the 6MHP peptide as measured by CD4þT

cells over two consecutive time periods during vaccination (days

0–85). As data accumulate, each participant is classified as experi-

encing a DLT (yes/no) and experiencing a dRsp (yes/no).

Treatment-related grade 3 or higher AE data from our prior stud-

ies [11, 12, NCT01585350] are being used to gauge DLT rates.

Using these data, the DLT tolerance level was chosen to be 25%

(i.e. any optimal combination that we are satisfied has an esti-

mated DLT probability�25% to be considered ‘acceptable’ in

terms of safety).

Allocation decisions presented in this manuscript depend on

the definition (and measure) of an immune response as a yes/no

(binary) endpoint. In particular, the endpoint must be defined

prospectively and ideally is one that has biologic relevance and/or

is associated with clinical response. Many immunologic end-

points depend on continuous variables, and, in this design strat-

egy, it is important to define prospectively a criterion for defining

a ‘positive’ or ‘negative’ result along a continuum of data values.

In the present study, we have defined criteria based on prior re-

ports [13]. Another important consideration is that the result of

the immune response measure must be available in a reasonable

timeframe if it is to be useful in guiding trial enrollment. Thus, it

is important to select an immunologic endpoint that occurs early

enough to be meaningful and to design processes for collecting

samples and assaying them rapidly so that the data may guide

participant enrollment in accord with the study design.

Estimation

Model-based allocation is being based upon a continual reassess-

ment method (CRM) [14] that accounts for two binary end-

points (DLT, dRsp) in combinations of agents [6]. Safety

assessments are based on the assumption that, as the number of

adjuvants increases, the probability of DLT is non-decreasing. It

is reasonable to assume that regimens in higher zones do not have

lower probabilities of DLT than regimens in lower zones. This as-

sumption is based on data from previous melanoma studies in

which these adjuvant preparations were combined with other

peptide vaccines. It is unknown whether regimens have higher or

lower DLT probabilities than other regimens within the same

zone. It could be that B<C or C<B in terms of their respective

DLT probabilities. We express this uncertainty through specifica-

tion of multiple one-parameter models in Table 2 that reflect dif-

ferent orderings of the DLT probabilities. We then rely on model

selection techniques to choose the model most consistent with

the data. A common model choice [15] in the CRM is to raise a

set of initial DLT probability estimates, also referred to as the

‘skeleton’ of the model, to a power hm to be estimated by the data,

where m indexes the skeleton. Figure 1 illustrates how the model

works, and that hm is a parameter to be estimated. The skeleton

values displayed in Table 2 for each model were generated using

the algorithm of Lee and Cheung [16]. Using the accumulated

toxicity data, the CRM is fit for each DLT probability working

model, and the parameter hm is estimated for each model by max-

imum likelihood estimation. The working model with the largest

likelihood is chosen and, using the selected model, DLT probabil-

ity estimates are updated for each combination. If there is a tie be-

tween the likelihood values of two or more models, then the

selected model is randomly chosen from among those with tied

likelihood values.

The working models for dRsp probabilities are formulated

under two different assumptions: (1) the probabilities are

Table 1. Treatment regimen/combination/zone definitions

Zone Regimen/Combination 6MHP1

1 A IFA

2 B IFA þmCy

2 C IFA þ PolyICLC

3 D IFA þ PolyICLC þ mCy

Table 2. Working models/skeletons of DLT probabilities

Zone 1 2 3

Working model A B C D

1 0:04h1 0:07h1 0:11h1 0:17h1

2 0:04h2 0:11h2 0:07h2 0:17h2
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increasing with increasing zone, or (2) the probabilities increase

initially and then plateau after a certain zone, as displayed in

Table 3. Like toxicity, these possible shapes for the regimen–

immune response curve are expressed through multiple skeletons

of CRM models. We again rely on a class of one-parameter power

models, indexed by k, and the algorithm of Lee and Cheung [16]

to formulate working models for the dRsp probabilities. Using

the accumulated immune response data, the CRM is fit for each

dRsp probability working model, and the parameter bk is esti-

mated for each model by maximum likelihood estimation. Again,

the working model with the largest likelihood is chosen and,

using the selected model, dRsp probability estimates are updated

for each regimen. We make allocation decisions based on the

probability estimates for both DLT and dRsp.

For regimens B–D, a two-sided 80% confidence interval is cal-

culated using the estimated DLT probability for that regimen,

based on confidence interval estimation for CRM models [17]. If

the lower bound of this confidence interval exceeds the max-

imum toxicity tolerance of 25%, then this regimen is deemed too

toxic and excluded from the acceptable set of combinations. If

regimen A is excluded from the acceptable set, then no regimen is

considered acceptable and the trial is stopped for safety.

Therefore, for regimen A the level of confidence is set at 90% in-

stead of 80%.

Once the set of acceptable combinations is determined, the rec-

ommended combination will be based upon how many partici-

pants have been entered into the study to that point. For the first

third of the trial (i.e. one-third the maximum sample size), the

combination recommendation is based on randomization using

a weighted allocation scheme. Randomization prevents the de-

sign from getting ‘stuck’ at a sub-optimal regimen based on lim-

ited data [18]. The recommended combination for the next

entered participant is chosen at random from the ‘acceptable’

combinations, with each acceptable combination weighted by its

estimated dRsp probability. That is, acceptable combinations

with higher estimated dRsp probabilities have a higher chance of

being randomly chosen as the next recommended combination.

For the latter third of the trial (i.e. final two-third of maximum

sample size), the recommended combination for the next entered

participant is defined as the ‘acceptable’ combination with the

highest estimated dRsp probability.

Stopping the trial

Accrual to the study will be halted and trigger a safety review by

the study investigators and the Data and Safety Monitoring

Committee to determine whether the study should be modified,

or permanently closed to further accrual according to the follow-

ing: (i) accrual would have been halted for safety if the first two

entered participants in Zone 1 experience a DLT, (ii) if at any

point in the study, no regimens are considered acceptable in

terms of safety, the trial will stop, (iii) otherwise, accrual to the

study will end if the recommendation is to assign the next partici-

pant to a combination that already has 30 participants treated at

that combination.

Sample size and accrual

Target sample size for the optimal combination is based upon

acquiring sufficient information to assess the objective of esti-

mating dRsp rates, assuming at least one optimal combination

has been found. Based upon results from the Mel 44 clinical trial

[11], 30 eligible participants treated at the optimal combination

will provide adequate data to assess dRsp. The target of 30 partici-

pants was chosen based on having sufficient information to
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Figure 1. Illustration of the working models for toxicity under various values of the parameter to be estimated.

Table 3. Working models/skeletons of dRsp probabilities

Regimens

Working model A B C D

Under the assumption of increasing dRsp probability across zones

1 0:30b1 0:45b1 0:59b1 0:70b1

2 0:30b2 0:59b2 0:45b2 0:70b2

3 0:30b3 0:45b3 0:70b3 0:59b3

4 0:30b4 0:70b4 0:45b4 0:59b4

5 0:30b5 0:59b5 0:70b5 0:45b5

6 0:30b6 0:70b6 0:59b6 0:45b6

Under the assumption of plateau dRsp probability across zones

7 0:45b7 0:59b7 0:70b7 0:70b7

8 0:59b8 0:70b8 0:70b8 0:70b8

9 0:70b9 0:70b9 0:70b9 0:70b9

10 0:45b10 0:70b10 0:59b10 0:70b10

11 0:45b11 0:70b11 0:70b11 0:59b11
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determine whether the optimal regimen shows an increase dRsp

rate compared with the baseline rate observed in the 6MHP regi-

mens of Mel 44 of 18% (90% CI [11, 26%]). If at least 13/30

(43%; 90% C.I. (28, 60%)] participants on the optimal regimen

experience a dRsp the results will be considered promising since

the lower limit of the confidence interval exceeds the upper limit

from the Mel 44 estimated rate. Total study sample size is esti-

mated from the simulations (Appendix), and is determined by

the stopping rules in the section above. We set the maximum

total sample size to 70 eligible participants; however, as indicated

in the simulation results the maximum average trial size over all

scenarios is 52 participants.

Results

Accrual to regimens occurs in two stages, as illustrated in the

schema of Figure 2. The initial stage accrued eligible participants

in cohorts of two on each regimen, until a participant experi-

enced a DLT. The second stage is allocating eligible participants

in cohorts of one according to the above estimation procedure.

Allocation in completed stage 1

The escalation plan for the first stage was based on the zones.

With this design participants could be accrued and assigned to

other open regimens within a zone but escalation would not

occur outside the zone until the minimum follow-up period was

observed for the first participant accrued to a regimen. The min-

imum follow-up period for escalation between Zones was 3 weeks

after the initial vaccine. Initial allocation within a zone was based

upon random allocation (1:1) between the possible regimens.

Escalation to a higher zone occurred only when all regimens in

the lower zone had been tried, and no DLT had been observed.

Participant allocation to subsequent regimens within the new

zone followed the same accrual strategy. This allocation strategy

was followed for accrual to increasing zones until a participant

experienced a DLT or a stopping rule was triggered. The seventh

participant accrued to the study experienced the first DLT on

regimen D, at which time the second stage using

multidimensional CRM modeling began. The 8th participant had

already been accrued to regimen D in stage 1 when the DLT

occurred.

Allocation in ongoing stage 2

Stage 2 is allocating eligible participants based upon the multidi-

mensional CRM modeling approach described above. Model-

based estimation of DLT probabilities began for the accrual of the

ninth participant to the study. After each new accrual in stage 2,

the estimated DLT probabilities are being updated and used to

define a set of ‘acceptable’ combinations in terms of safety. If the

minimum follow-up period is not satisfied at the time a new par-

ticipant is ready to be put on-study, then the participant may be

accrued to any regimen, by random allocation, which has accrued

at least one participant and is in the acceptable set.

Model-based estimation of dRsp probabilities began at the

beginning of stage 2, since a dRsp was observed in stage 1 (partici-

pant 5). After each participant, a new recommended combin-

ation is obtained, and the next entered participant is allocated to

the recommended combination. The trial will stop once sufficient

information about the optimal regimen range has been obtained,

according to the stopping rules. Currently, the trial has accrued

30 participants, with model-based allocation (stage 2) having

been utilized after the first 8 participants, as illustrated in Table 4.

Allocation based on weighted randomization occurred for the

first 15 participants in stage 2, which is approximately one-third

the maximum sample size, minus the stage 1 participants [i.e.

(70/3) – 8].

Conclusions

The development of novel methods in early-phase dose-finding

has been rapid in the last decade, yet, the use of innovative designs

remains infrequent. In this article, we have outlined a novel early-

phase adaptive design, implemented in an ongoing trial of four

treatment combinations for participants with high-risk melan-

oma. In this study, all doses of each adjuvant are fixed, and it is

the regimens that vary by number of adjuvants. The design could

be used in trials where dose is varied, however, that was not done
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Figure 2. Schema illustrating the two stages of the design.
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in this trial because we wanted to focus on the high-priority chal-

lenge in combination immunotherapy where there are a growing

number of active agents with defined doses that may be useful in

combination. Arguably, for cancer vaccines in particular, the

choice of adjuvant is a way to modify the effective ‘dose’ of the

vaccine by increasing the immune response. The method pre-

sented serves as an alternative to the 3þ 3 design for cancer vac-

cine trials, which are being called for by the FDA and by others [3,

5]. Simulation studies were carried out to evaluate the perform-

ance of the design characteristics and are reported in the

Appendix. The simulation results in supplementary Table S1,

available at Annals of Oncology online demonstrate the method’s

ability to effectively recommend the OTC, defined by acceptable

toxicity and high immune response rates, in a high percentage of

trials with manageable sample sizes. Software in the form of R

[19] code for both simulation and implementation of the method

is available upon request of the first author. The method we out-

line in this work can be viewed as an extension of the CRM, utiliz-

ing multiple skeletons for DLT and dRsp probabilities, increasing

the ability of CRM designs to handle more complex dose-finding

problems. The numerical results presented in the Appendix in-

clude the type of simulation information that aid review entities

in understanding design performance, such as average sample

size, frequency of early trial termination, etc., which we hope will

augment early-phase trial design in cancer immunotherapy. This

design can be applied more broadly in early-phase combination

studies [20], as it was used in an ongoing study of two small mol-

ecule inhibitors in relapsed/refractory mantle cell lymphoma

(NCT02419560).
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