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Background: Regulatory agencies and others have expressed concern about the uncritical use of dose expansion cohorts
(DECs) in phase I oncology trials. Nonetheless, by several metrics—prevalence, size, and number—their popularity is increasing.
Although early efficacy estimation in defined populations is a common primary endpoint of DECs, the types of designs best
equipped to identify efficacy signals have not been established.

Methods: We conducted a simulation study of six phase I design templates with multiple DECs: three dose-assignment/
adjustment mechanisms multiplied by two analytic approaches for estimating efficacy after the trial is complete. We also investi-
gated the effect of sample size and interim futility analysis on trial performance. Identifying populations in which the treatment
is efficacious (true positives) and weeding out inefficacious treatment/populations (true negatives) are competing goals in these
trials. Thus, we estimated true and false positive rates for each design.

Results: Adaptively updating the MTD during the DEC improved true positive rates by 8–43% compared with fixing the dose
during the DEC phase while maintaining false positive rates. Inclusion of an interim futility analysis decreased the number of pa-
tients treated under inefficacious DECs without hurting performance.

Conclusion: A substantial gain in efficiency is obtainable using a design template that statistically models toxicity and efficacy
against dose level during expansion. Design choices for dose expansion should be motivated by and based upon expected
performance. Similar to the common practice in single-arm phase II trials, cohort sample sizes should be justified with respect to
their primary aim and include interim analyses to allow for early stopping.
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Introduction

In phase I oncology trials, a dose expansion cohort (DEC) enrolls

additional patients after the maximum tolerated dose (MTD) is

estimated [1–4]. These cohorts may be stratified by genetic aberra-

tion or disease site, providing additional information on the effect-

iveness and safety of a targeted therapy in specific subpopulations

and thus answering questions traditionally left to single-arm phase

II trials. For this reason, dose expansion has increasingly become

the norm [1, 2], outpacing the development of foundational design

principles for such trials [4, 5] and prompting concern from the

FDA about a lack of rigor in the design of such studies [6, 7]. The

present article seeks to bridge this disconnect.

Expansion cohorts are often large, with sample sizes exceeding

those of phase II trials [2, 3, 8]. Mullard writes of ‘investigational

new drug applications. . .designed to enroll up to 1000 patients’

[8], including several anti-PD-1 agents [9, 10]. The FDA granted

accelerated approval to ceritinib for the treatment of ALK-

rearranged non-small-cell lung cancer on the basis of promising

efficacy data from a 163-patient cohort [11, 12]. Although large

sample sizes in DEC trials are motivated by efficacy as a primary

study endpoint, they are seldom formally justified [13]. Dose
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expansion trials are also complicated [14], sometimes ‘encom-

pass[ing] an entire drug development program in a single trial’

[7]. The clinical trial of the anti-PD-1 agent nivolumab ultimately

enrolled cohorts at multiple dose levels, based upon multiple

protocol amendments [9, 14].

Subsequent to efficacy, trials with expansion should consider

patient safety [6]. Because the selected MTD from dose escalation

is based on a small number of patients, it may turn out not to

have been a good choice for use in the much larger dose expan-

sion. Paoletti et al. [15] note that a ‘seamless transition [from es-

calation to expansion] with continuous monitoring of the risk of

DLT’ is the more natural application of dose expansion. Iasonos

and O’Quigley [3] report several trials in which the recom-

mended phase II dose differed from the MTD. Therefore, it is im-

portant to monitor toxicity during expansion and adjust the dose

accordingly [4]. In our experience, most protocols describe how

an individual patient’s dosing will be held or reduced in the pres-

ence of toxicity, but few include plans for monitoring the overall

toxicity rate during expansion or adjusting the MTD. Several in-

novative designs base dose-finding on both toxicity and efficacy

[16–21]. While promising, these require an efficacy outcome that

can be observed quickly enough to inform dosing for future pa-

tients and are not designed for trials with multiple patient co-

horts. Seamless phase I/II designs define expansion cohorts based

on multiple dose levels rather than patient subpopulations [22].

There is a critical need for efficient designs and metrics upon

which to base expansion cohort sample sizes that protect patients

and are equipped to identify efficacious anti-cancer therapies

[6, 7]. These goals overlap significantly with phase II objectives.

The goal of this article is to (i) assess common designs for dose ex-

pansion and (ii) recommend sensible design templates and prin-

ciples for trials with dose expansion.

Methods

The typical conduct of a phase I trial with dose expansion is to en-

roll a group(s) of patients at the estimated MTD from ‘3þ 3’

dose escalation. In the context of a single DEC looking exclusively

at toxicity, we have previously argued for keeping open the dose-

escalation mechanism during dose expansion [4]. The point of

departure from that work is a specific focus on trials having mul-

tiple and/or large cohorts in which efficacy is of primary interest,

two examples being the ceritinib and nivolumab studies previ-

ously mentioned [9, 11, 12]. The prevalence of such trials is

increasing and likely to continue to do so [7, 8]. We address the

following critical questions recently posed by regulatory agencies

and others [6–8], namely (i) How should unexpectedly high (or

low) toxicity in one cohort impact the dose assignment in an-

other?; (ii) What is the appropriate number of patients to enroll

in each cohort?; (iii) At what point should a cohort be closed for

apparent futility? To do so, we emulate design templates, which

we define as a toxicity-based dose-assignment mechanism plus

an analytic approach for estimating efficacy, that we see or would

like to see in practice, testing them against a variety of dose-

toxicity-efficacy scenarios. Our aim was to determine what de-

signs increase the likelihood of making the best decision in each

cohort.

We simulated the kinds of trials we most often see in practice:

dose escalation is based upon toxicity, but the recommendation

for pursuing further study of the treatment in a particular cohort

is based on efficacy. We first describe three mechanisms for

toxicity-based dose assignments during dose escalation and dur-

ing expansion. We then describe two analyses for using the effi-

cacy data in each cohort to inform a futility analysis and make

separate recommendations as to whether to pursue study of the

treatment in a future trial of that subpopulation. One analysis

uses more information within the DEC than the other by model-

ing the underlying dose-efficacy curve. Each of the six combin-

ations of dose-assignment mechanism and analysis represents a

‘design template’, a description of the trial’s general conduct

without any specific contextual details (e.g. number of doses,

number of cohorts, sample size). We tested these templates

against a total of 10 such dose-toxicity-efficacy scenarios. One

simulated trial consisted of dose escalation followed by expansion

to K� 1 cohorts, opened simultaneously, each starting at the esti-

mated MTD as determined by dose-escalation. A flowchart of an

exemplar trial with K¼ 5, 30-patient cohorts, with futility ana-

lyses, is given in Figure 1. For illustration, we limited each cohort

to just two possible sample sizes The estimated MTD may be

revised up or down during expansion, as more data are collected,

resulting in fewer than 30 patients at the final estimate, but we

did not extend enrollment in any cohort beyond 30 patients. In

actual trials, specific choices of samples size should be justified

using, for example, the metrics for evaluating performance that

are discussed in this article. We averaged these metrics across

2500 simulated trials, so as to precisely estimate these metrics.

Complete details of our full approach are in supplementary data

S1, available at Annals of Oncology online. The study was done in

the R statistical environment [23–25], and code is available at

http://www.umich.edu/�philb.

Dose-assignment mechanisms

We evaluated three mechanisms for making dose assignments in

response to toxicity during escalation and/or expansion.

Supplementary data S2, available at Annals of Oncology online,

provides comprehensive details.

Local. Dose-escalation is according to the 3þ 3 [26], at which

point K cohorts open at the estimated MTD. An extension of the

3þ 3 philosophy monitors for toxicity in each cohort: beginning

with the 4th patient receiving the current assigned dose level, if

the proportion of patients in that cohort at that dose level with

toxicity exceeds 1/3, the dose level is reduced by one. If already at

the lowest dose level, patient enrollment is stopped within that

cohort only. Multiple dose de-escalations during the cohort are

possible but escalation is not.

Global. This also begins with the 3þ 3 and de-escalates during

dose-expansion if a toxicity threshold is crossed. In contrast to

Local, this monitoring is conducted and acted upon globally over

all cohorts. The Global threshold is constructed such that, when

the true rate of toxicity is 0.25 (which lies between the 3þ 3 crit-

ical thresholds of 1/6 and 2/6), the cumulative probability of one

incorrect de-escalation over all 75 or 150 patients is �0.05 [27].
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Any de-escalation applies to all cohorts. As with Local, Global

allows for multiple dose de-escalations but no dose escalation.

Continual reassessment method. This is a modification of the con-

tinual reassessment method (CRM) [28], a statistical model

wherein each subject is assigned the dose level that is estimated to

have a rate of toxicity closest to 0.25. Thus, the dose assignment

changes up or down over time as more subjects enroll and toxicity

data are collected. As in Global, all patients at a given dose level are

assumed to have the same probability of toxicity. From a toxicity

perspective, therefore, there is little distinction between escalation

and expansion: the same mechanism assigns dose levels for the en-

tire trial and across all DECs. The model runs until a planned sam-

ple size is enrolled, in our case the average sample size that a 3þ 3

trial would enroll plus 75 or 150, so as to match the Local and

Global sample sizes [29]. To monitor toxicity, if the estimated rate

of toxicity at the lowest dose level ever exceeds 0.30, the target rate

of 0.25 plus a margin of 0.05, enrollment in all cohorts stops. All

other settings are as in Boonstra et al. [4], including over-riding

modifications to preserve patient safety [30, 31].

In all cases, the final estimated MTD is the dose level that

would be assigned to the next patient following completion of

that cohort. If a cohort is stopped early due to excessive toxicity,

there is no MTD. For Local, the estimated MTD may differ be-

tween cohorts, but for Global and CRM, it is the same across

cohorts.

Efficacy analysis

At an interim futility analysis and the end of the trial, the response

rate at the estimated MTD is estimated separately for each DEC.

These estimates are the basis for deciding whether the treatment

merits further study in each subpopulation. We considered two

options. Supplementary data S3, available at Annals of Oncology

online, provides details.

Empiric. When an estimated response rate is required, it is calcu-

lated based upon those patients at the current estimated MTD.

Two-stage phase II designs compare the observed, or empiric,

number of responses to a required minimum number of responses

[32, 33]. This approach may not be applicable in our context: the

overall DEC sample size is fixed in advance and toxicity-based dose

modifications may occur, meaning that the number of patients

treated at the estimated MTD is unknown in advance and may be

less than nominal. For all possible sample sizes, we calculate the

corresponding smallest number of responders that would yield suf-

ficient evidence, via a confidence interval compared with the null

efficacy rate, to warrant further study. These are in supplementary

Table S1 (supplementary data S3, available at Annals of Oncology

online). At the interim analysis, enrollment is stopped for futility

in any DEC in which this minimum number of responses is

observed. Similarly, no further study is recommended following

completion of DECs with fewer than the specified number of

responses.

Estimate MTD from
initial dose escalation

DEC 1 (1st 15
patients).
Toxicity-based
adjustments
to MTD

DEC 1 (2nd 15
patients).
Toxicity-based
adjustments
to MTD

Recommend
MTD in DEC 1
if efficacious

Recommend
MTD in DEC 2
if efficacious

Recommend
MTD in DEC 3
if efficacious

DEC 2 (2nd 15
patients).
Toxicity-based
adjustments
to MTD

DEC 3 (2nd 15
patients).
Toxicity-based
adjustments
to MTD

Stop enrolling
patients to
DEC 1 if not
efficacious,
otherwise
continue

Stop enrolling
patients to
DEC 2 if not
efficacious,
otherwise
continue

Stop enrolling
patients to
DEC 3 if not
efficacious,
otherwise
continue

etc

Legend

Dose-Assignment
mechanism (Section
2.; Three choices)

Efficacy analysis
(Section 2.2;
Two choices)

etc

DEC 2 (1st 15
patients).
Toxicity-based
adjustments
to MTD

DEC 3 (1st 15
patients).
Toxicity-based
adjustments
to MTD

DEC 4 (1st 15
patients).
Toxicity-based
adjustments
to MTD

DEC 5 (1st 15
patients).
Toxicity-based
adjustments
to MTD

Figure 1. Flowchart for the 30-patient, five-DEC design with futility analysis used in the simulation study. There are three choices of dose-
assignment mechanism (the light box, green online) and two choices of efficacy analysis (the dark box, blue online). Every box represents a
decision to continue enrolling patients or stop enrolling patients due to toxicity (the light boxes) or futility (the dark boxes), and so, after ini-
tial dose escalation is complete, recommendations can be made separately for each DEC.
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Model. This approach uses data from all patients in the DEC, ra-

ther than only those treated at the current estimated MTD,

increasing the precision of estimated response rates. It does so

using a Bayesian logistic regression, with dose level coded as an

integer (1, . . ., 5). From this fitted model, we estimated the re-

sponse rate at the final estimated MTD and constructed confi-

dence intervals for this response rate. As with the Empiric

analysis, the recommendation is based on these intervals.

Alternatively, to ensure a minimum number of patients at the final

estimated MTD, one could amend the protocol after dose modifica-

tion in the cohort. A reviewer noted that randomization within a

DEC is ideal. We elected not to include a randomized control arm,

instead viewing these efficacy analyses as phase IIA trials: not in-

tended to be definitive but rather to triage inefficacious treatments.

Dose-toxicity-efficacy scenarios

For each of the six combinations of dose-assignment mechanism

and efficacy analysis, we examined 10 dose-toxicity-efficacy scen-

arios, as presented in Figure 2 (scenarios 1–6) and supplementary

Figure S5, available at Annals of Oncology online (scenarios 7–10).

Each scenario consisted of a toxicity curve common to all patients

and two different efficacy curves (labeled A and B). Efficacy within a

cohort was characterized by one of these two curves, reflecting that

a therapy is not expected to be equally efficacious in all subpopula-

tions. Toxicity and efficacy outcomes were recorded as ‘yes’ or ‘no’.

The true MTD is the dose level with a rate of toxicity closest to 0.25

but not exceeding 0.30, indicated by a star in Figure 2. Efficacy curve

A is flat at either a constant 0.05 response rate (i.e. for single agent

trials or when there is no effective standard therapy) or a constant

0.20 response rate (i.e. when there is a backbone treatment with

some activity). The goal was to find a tolerable dose that improves

upon this null response rate by at least 0.15: to 0.05þ 0.15¼ 0.20

or 0.20þ 0.15¼ 0.35, respectively. At least one such dose always

exists in efficacy curve B, indicated with a box in Figure 2. In each

trial, we opened K¼ 5 cohorts: three of the five followed the flat ef-

ficacy curve A, the ‘inefficacious DECs’, and two followed curve B,

the ‘efficacious DECs’. Thus, the ideal outcome for the whole trial

was to recommend no further study in the three inefficacious

DECs and recommend a good dose level for further study in the

two efficacious DECs. In a real trial, the number of cohorts will be

motivated by contextual details that are not germane to our study.
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Figure 2. Six toxicity-efficacy scenarios. The desired targeted response, or efficacy, rate is in the lower-right of each panel. After dose-
escalation, five DECs are simulated according to a common toxicity curve (short dashed). The MTD is indicated with a star. For three DECs,
the targeted response rate is not achievable (long dashed; efficacy curve A); for two, it is achievable (solid; efficacy curve B). Acceptable dose
levels in efficacy curve B, i.e. those with efficacy greater than the stated target and DLT rate no greater than 0.30, are boxed.
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Two sample sizes per cohorts, 15 or 30, yield 75 or 150 patients

across all five cohorts in one trial. In 30-patient cohorts, we im-

plemented an interim futility analysis after patient 15, described

below. For comparison, we also simulated 30-patient cohorts

without an interim analysis. Interim analyses are not feasible in a

15-patient cohort due to variability in response rates.

Evaluation

In typical clinical practice, a treatment at a particular dose level is

recommended if it is found to be safe and efficacious. For each

cohort in each simulated trial, we recorded the recommended

dose level, or that no dose was recommended and why, and the

estimated response rate at the final estimated MTD. We also re-

corded the average number of patients enrolled in a cohort,

which may be less than 15 or 30 due to stopping for toxicity or fu-

tility. We calculated the following two performance metrics.

True positive rate. For a given dose-assignment/analysis/sample

size, the true positive rate (TPR) is the proportion of 5000 simu-

lated efficacious cohorts (2500 trials� two efficacious cohorts

per trial) in which any dose level is recommended for further

study. TPR is similar to statistical power, although TPR includes

recommending a dose level that is lower or higher than the true

MTD, on the assumption that later-phase study will hone this

finding.

False positive rate. The false positive rate (FPR) is the proportion

of 7500 inefficacious cohorts (2500 trials� three inefficacious co-

horts per trial) in which any dose level is recommended for fur-

ther study. FPR is similar to type I error. The ideal design has

TPR¼ 1 and FPR¼ 0.

TPR only captures whether any dose level is recommended.

However, it is most preferable to recommend one of the ‘boxed’

dose levels in Figure 2. For this reason, we report more granular re-

sults for the efficacious DECs. The possible outcomes are the fol-

lowing: (i) no recommendation due to excess toxicity; (ii) no

recommendation due to futility; (iii) recommending a sub-

therapeutic dose; (iv) recommending a ‘boxed’ or acceptable dose;

or (v) recommending a toxic dose. In the scenarios, we considered,

there is a partial ordering of preference for these outcomes. Least

preferred is (i), because there is always a tolerable dose level(s), fol-

lowed by (ii). Next are (iii) and (v), since a dose was recommended

but not the correct one. Finally, (iv) is ideal, corresponding to

identifying an acceptable dose level. The sum of (iii), (iv) and (v) is

equal to TPR, being the probability of recommending any dose

level, and the sum of (i) and (ii) is equal to 1�TPR.

Results

Comparison between dose-assignment
mechanisms

Table 1 presents TPR and FPR under each scenario. In all cases,

CRM has a greater TPR than either Global or Local. In terms of

TPR, CRM exceeds Local by 1–27% under 15-patient cohorts

and 8–45% under 30-patient cohorts with an interim analysis.

FPR is comparable between mechanisms, with most differences

<10%. While none of the mechanisms is uniformly preferred in

terms of FPR, Local usually has the lowest FPR by a small margin.

Figure 3 breaks down the frequency of outcomes for the effica-

cious cohorts of size 15 (top) and 30 (bottom) for the Model-

based analyses; the Empiric analyses are in supplementary Figure

S1 (supplementary data S4, available at Annals of Oncology on-

line). Because Figure 3 only considers efficacious cohorts, there is

always a dose level(s) with an acceptable toxicity/efficacy profile.

Recommending an acceptable dose level is ideal, and the propor-

tion of simulations in which this occurs is annotated. This pro-

portion is lowest for Local and highest for CRM. By monitoring

for toxicity both within and across cohorts, Global and CRM cor-

rectly leverage the common toxicity curve.

Another factor in CRM’s performance advantage is that, in

addition to de-escalating dose levels, it can escalate the dose at

any point in the trial, including during dose expansion.

Comparison between efficacy analyses

By definition, each dose-assignment mechanism makes toxicity-

based adjustments during expansion, so that multiple dose levels

may be assigned. Thus, Model-based estimation of the response

rate, which ‘shares’ information across dose levels within a co-

hort, allows for more precise estimates of response rates. For pa-

tient cohorts, the Empiric analysis is more conservative, having

smaller TPR/FPRs. With 30 patients, the Model-based analysis

tends to have a larger TPR with a proportionally smaller increase

in FPR, at least in the case of the CRM. The true efficacy curves

are described in Figure 2; none of these follows a logistic curve,

which the Model-based analysis assumes. Thus, this performance

gain is not based upon an unrealistic modeling assumption.

Interim futility analysis

An interim futility analysis after 15 patients decreases average enroll-

ment by�6 patients per inefficacious DEC and 2 patients per effica-

cious DEC (Table 2). The decrease in average enrollment to

efficacious DECs is smallest for CRM. The addition of an interim ana-

lysis to the 30-patient cohort reduces the TPR and FPR by�2% each.

Size of expansion cohort

At this early stage of research, sensible designs must ensure a large

TPR, necessarily resulting in a large FPR for 15-patient cohorts.

Increasing to a maximum of 30 patients reduces the FPR consid-

erably, while also slightly reducing TPR. For example, in scenario

1, the CRM/Model design has TPR/FPR equal to 98/53 under

a 15-patient cohort versus 93/13 under a 30-patient cohort

(Table 1).

Additional scenarios

Supplementary Figures S2–S4 and Tables S2–S3 (supplementary

data S5, available at Annals of Oncology online) present results for

four additional scenarios, including flat toxicity and/or efficacy

curves. Scenarios 8 and 10 have low toxicity across all dose levels

and are thus less challenging. All designs do well in this case. In

scenario 7, the toxicity rate is also flat but larger and closer to the

target. In this case, CRM outperforms Global and Local, with

TPRs�20% larger.
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Discussion

We have quantified how expansion cohort design templates—

some common, some not—operate in realistic phase I/II settings,

where the term ‘design template’ refers to a choice of dose-

assignment mechanism coupled with an analytic approach to esti-

mating efficacy. Put succinctly, the use of statistical modeling tech-

niques during dose expansion to analyse the substantial amount of

patient data increases the likelihood of making the most appropri-

ate decision within each cohort. We are making a similar argument

statisticians and clinical trialists have been making for nearly

30 years (with little success) [34], since the development of the

CRM design [28]. However, the order of magnitude increase in

numbers of patients enrolled to modern dose-expansion trials in-

creases the ethical stakes by that much. Broken down into greater

detail, our findings and recommendations directly correspond to

three statistical questions that Prowell et al. [7] recently posed to

guide development of protocols employing dose expansion.

Is the sample-size range consistent with the stated
objectives and end points? [7]

A recent survey of 105 expansion-based phase I trials reported

that only four justified a sample size [13]. One explanation for

this is that sample size formulas for single-arm phase II studies

[33] do not apply to expansion cohorts allowing for dose modifi-

cation. In this context, we propose performance metrics, the true

and false positive metrics, that quantify how well a specific sample

size (in the context of the rest of the design) achieves the stated

objectives. Our use of 15 or 30 patients per cohort is not meant to

be prescriptive but illustrative. In a given cohort, a reasonable

technique for determining an appropriate per-cohort sample size

is to identify the sample size that achieves a desired TPR subject

to a specified FPR under an expected dose-efficacy relationship,

in much the same way that traditional sample size calculations

seek to achieve a desired power subject to a specified type I error

under an expected effect size. What our study highlights is the

Table 1. True and false positive rates (TPR, FPR) for the six scenarios of toxicity/efficacy curves in Figure 2 under 18 combinations of dose-assignment mech-
anism, efficacy analysis, and 15-patient DECs, 30-patient DECs with no futility analysis, or 30-patient DECs with a futility analysis

TPR FPR

CRM Global Local CRM Global Local CRM Global Local CRM Global Local

# in DEC¼15
Set 1 Set 2 Set 1 Set 2

Model 98 87 81 87 72 69 53 53 50 53 54 53
Empiric 90 86 74 77 72 61 41 52 46 43 53 49

Set 3 Set 4 Set 3 Set 4
Model 97 95 91 93 88 80 74 80 71 80 81 73
Empiric 94 96 93 90 89 84 76 83 79 77 83 79

Set 5 Set 6 Set 5 Set 6
Model 93 79 73 86 72 61 51 52 48 48 45 37
Empiric 85 78 65 78 71 51 39 51 44 39 44 34

# in DEC¼30 (no futility analysis at 15)
Set 1 Set 2 Set 1 Set 2

Model 96 76 63 78 46 34 14 17 14 20 19 15
Empiric 94 76 64 77 46 35 18 19 18 18 19 18

Set 3 Set 4 Set 3 Set 4
Model 81 75 69 75 45 31 21 19 16 25 20 17
Empiric 78 79 75 73 48 36 21 24 23 21 24 23

Set 5 Set 6 Set 5 Set 6
Model 89 62 47 76 58 35 15 17 13 12 15 9
Empiric 87 62 49 76 58 35 17 18 17 17 17 12

# in DEC¼30 (with futility analysis at 15)
Set 1 Set 2 Set 1 Set 2

Model 93 75 58 72 44 31 13 16 12 16 17 13
Empiric 85 74 53 64 44 26 12 16 13 13 17 13

Set 3 Set 4 Set 3 Set 4
Model 83 75 64 73 45 30 20 18 15 25 19 16
Empiric 76 79 68 69 49 32 19 23 20 20 23 20

Set 5 Set 6 Set 5 Set 6
Model 87 62 43 75 59 37 13 16 12 11 14 9
Empiric 79 62 39 70 58 31 12 16 13 12 14 9

TPR (left-hand columns) is the probability that a dose was recommended in an efficacious DEC, i.e. a DEC having at least one dose level with sufficiently
large response rate. FPR (right-hand columns) is the probability that a dose was recommended in an inefficacious DEC, i.e. a DEC having no dose levels
with sufficiently large response rate.
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potential efficiency gain—effectively a gain in sample size—from

using statistical models in the trial design.

Is there a defined end to the trial, in terms of both
efficacy and futility? [7]

We outline an approach for implementing futility analyses in the

interim of large expansion cohorts and efficacy analyses at each

cohort’s end. Importantly, both account for dose modifications

during expansion. If both dose-toxicity and dose-efficacy rela-

tionships are expected to differ between cohorts, such as those

DECs distinguished by unique dosing schedules in Topalian et al.

[9], the cohorts could be considered parallel phase I/II trials fall-

ing under a single protocol, in which case neither toxicity nor

efficacy information would be ‘shared’ between cohorts. One re-

viewer suggested that this could be an additional design template,

which might be called a ‘local CRM’. Alternatively, recent work

by Neuenschwander et al. [35] outlines how the extent of sharing

may be data-adaptive using hierarchical regression with random

effects. In any case, the guidelines exposited in this article, namely

stating how toxicity will be monitored, justifying sample sizes,

and implementing futility analyses, still apply.

Is there an appropriate statistical analysis plan for
all stated end points? [7]

The designs and analyses that performed the best in our study are

arguably complicated. They require additional work by clinicians
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Figure 3. Breakdown of simulation-based frequencies of five possible outcomes in an efficacious DEC for the six scenarios of toxicity/efficacy
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and statisticians in advance of and during the trial. However, our

results suggest that this additional effort is more than compen-

sated by a substantially increased likelihood of discriminating

among efficacious and inefficacious treatments/patient popula-

tions. What might be called a standard dose-assignment mechan-

ism, namely de-escalating during a cohort whenever a simple

cumulative (over all patients) toxicity threshold is exceeded,

i.e. Local monitoring, often incorrectly de-escalates the dose level

and thus results in poor efficacy estimation. In both Local and

Global monitoring, dose assignments are not escalated during ex-

pansion if the observed rate of toxicity is unexpectedly low. A low

toxicity rate is problematic because the 3þ 3 tends to conserva-

tively estimate the MTD [3], and this tendency is exacerbated as

the size of the cohort increases. As a result, efficacy is often esti-

mated at too low a dose in Local and Global. A dose-assignment

mechanism that can escalate the dose during expansion is pre-

ferred. Of the three mechanisms we examined, only the Model-

based CRM incorporates dose-escalation, although the Global

mechanism could be extended to do so. Thus, the CRM estimates

the MTD most accurately, and efficacy is likely to be estimated

well at a desired dose level.

As with all simulations of clinical trials, the present study has

limitations. The role of a data safety monitoring committee varies

between trials, and protocols seldom describe whether the com-

mittee monitors cumulative toxicity at a particular dose level.

Therefore, it is possible that many dose-expansion trials fail to

monitor cumulative toxicity. Although we did not simulate a de-

sign that does not monitor toxicity during expansion, the ex-

pected impact would be to increase the number of patients

treated at a toxic dose (a bad feature), while preventing dose de-

escalation due to variability in observed toxicity outcomes in a

small group of patients (a good feature). Also, we reiterate that

our use of five DECs here is neither optimal nor necessary; the

number of cohorts should be determined by the context of the

therapy and its targets. Although we only report results for trials

having three inefficacious and two efficacious DECs, our qualita-

tive conclusions are not sensitive to these numbers or propor-

tions, because all efficacy analyses are performed separately for

each cohorts, i.e. we do not share efficacy information between

cohorts within a trial.

The conceptual goal of using DECs to increase sample size

makes sense in the framework of the 3þ 3, because few patients

are treated at each dose. However, some phase I trials now enroll

several hundreds of patients across multiple cohorts, a trend

described as ‘getting out of hand’ [8]. Combined with a growing

interest in early efficacy estimation, this has led to a radical

change in the philosophy and complexity of phase I oncology tri-

als. Putting these in the phase II framework helps create efficient

and ethical designs for such trials.
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