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Tissue biopsy is the standard diagnostic procedure for cancer. Biopsy may also provide material for genotyping, which can
assist in the diagnosis and selection of targeted therapies but may fall short in cases of inadequate sampling, particularly from
highly heterogeneous tumors. Traditional tissue biopsy suffers greater limitations in its prognostic capability over the course
of disease, most obviously as an invasive procedure with potential complications, but also with respect to probable tumor
clonal evolution and metastasis over time from initial biopsy evaluation. Recent work highlights circulating tumor DNA
(ctDNA) present in the blood as a supplemental, or perhaps an alternative, source of DNA to identify the clinically relevant
cancer mutational landscape. Indeed, this noninvasive approach may facilitate repeated monitoring of disease progression
and treatment response, serving as a means to guide targeted therapies based on detected actionable mutations in
patients with advanced or metastatic solid tumors. Notably, ctDNA is heralding a revolution in the range of genomic
profiling and molecular mechanisms to be utilized in the battle against cancer. This review will discuss the biology of ctDNA,
current methods of detection and potential applications of this information in tumor diagnosis, treatment, and disease
prognosis. Conventional classification of tumors to describe cancer stage follow the TNM notation system, heavily
weighting local tumor extent (T), lymph node invasion (N), and detectable metastasis (M). With recent advancements in
genomics and bioinformatics, it is conceivable that routine analysis of ctDNA from liquid biopsy (B) may make cancer
diagnosis, treatment, and prognosis more accurate for individual patients. We put forward the futuristic concept of
TNMB tumor classification, opening a new horizon for precision medicine with the hope of creating better outcomes
for cancer patients.
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Introduction

Malignant tumors are highly heterogeneous at multiple levels

[1, 2]. Histologically, tumor tissues may exhibit remarkable vari-

ation in morphology and cellular composition within different

regions of the same tumor, as well as among different tumors

from the same primary site [3, 4]. In the case of metastatic cancer,

metastases to regional lymph nodes and at distant sites present

further divergence [5]. These heterogeneities may not be fully
represented in morphology-based pathological classifications
from biopsy of the primary tumor site at diagnosis. More re-
cently, genomic analyses along with molecular characterization
of cancers have helped reveal the foundation for these differences
[6–8]. Complex relationships with the local tumor environment,
particularly immune cells, may alter disease progression. Indeed,
there is little doubt that cancer displays dynamic evolution
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during disease progression. Both intrinsic and extrinsic forces act

to drive cancer cells to move—to metastasize—transforming can-

cer to a systemic disease. While initial biopsy diagnosis and pri-

mary tumor site offer critical information for cancer treatment,

new methodologies offering diagnostic sensitivity and longitu-

dinal assessment are needed.

Cancer management relies on staging at initial cancer diagno-

sis. Conventional staging of malignant tumors follows the TNM

notation system, encompassing tumor extent (T), lymph node

invasion (N), and detectable metastasis (M) [9]. New under-

standing of genetic and molecular drivers for cancer has led to de-

velopment of drugs targeting these mutational events [10], and

targeted therapy has provided increasing numbers of success sto-

ries [11, 12]. Too often, however, these responses are short-lived,

and it is understood that a major limitation is the heterogeneous,

fundamentally dynamic, and inherently systemic nature of

cancer. Considering these barriers, by improving disease

characterization—both initially and over cancer progression—

the more precisely targeted therapy can be applied. Insight into

the systemic nature of cancer has emerged from the study of cir-

culating tumor cells (CTCs), recognizing that cancer cells and

their by-products can be detected circulating in blood [13].

Interest in human genomics has driven rapid advances in DNA

and RNA sequencing technologies. Streamlined and highly sensi-

tive next-generation sequencing (NGS) has facilitated analysis of

cancer mutations in blood [14, 15]. This expanding capacity to

detect cancer-specific mutations in circulation, particularly using

a noninvasive procedure that enables resampling over time, pro-

vides tremendous potential for cancer diagnosis, prognosis, and

actionable treatment [16]. Improved characterization of CTCs

[17] and cancer-derived DNA [18], RNA [19], and protein-based

[20] markers offers additional targets for development of thera-

peutics. Although not a new concept, a shift toward routine im-

plementation of liquid biopsy as a cancer diagnostic and

prognostic tool stands to benefit patients by providing a noninva-

sive means to detect clinically actionable genetic alterations, and

importantly, to monitor disease progression and treatment resist-

ance in real time (Figure 1).

The clinical applications of circulating tumor DNA (ctDNA)

as a ‘liquid biopsy’ have been actively investigated in recent years.

Advancements in NGS technologies are making DNA-based li-

quid biopsy feasible to gain understanding of cancer mechanisms

and to predict drug responses [21, 22]. Recent studies support

the role of ctDNA as a clinically valuable readout for prognostic

staging at diagnosis and monitoring over time [23]. In this new

era of precision medicine, we propose that there is diagnostic,

therapeutic, and prognostic value to implementing blood-based

ctDNA testing concurrent with updating the current TNM sys-

tem of cancer staging to include this information in a modified

system, we suggest as ‘TNMB’ staging.

The history of ctDNA and its utility in cancer

The first evidence of cell-free DNA (cfDNA) in blood dates back

to 1948 when Mandel and Métais observed circulating DNA and

RNA in human plasma [24]. The implications of this discovery

remained obscure for decades, until Leon et al. reported increased

concentrations of cfDNA in the circulation of cancer patients in

1977 [25]. After another decade Stroun et al. [26] provided con-

clusive evidence of neoplastic ctDNA in the serum of cancer pa-

tients. The definitive link came in 1994, when Sorenson et al. [27]

detected mutated KRAS oncogene sequences in plasma cfDNA by

allele-specific polymerase chain reaction (PCR) and convincingly

linked the mutant DNA fragments to the original patient tumor.

These investigations, over the course of nearly half a century,

opened a door to the potential utility of analyses of ctDNA in

blood for cancer diagnosis, prognosis, and treatment.

The process by which tumor DNA enters into circulation, con-

sequently, has been of interest, and studies [28–30] have revealed

multiple mechanisms (Figure 1A). Migrating tumor cells can

enter the bloodstream directly as CTCs (not a topic for this re-

view, see [31]) and may contribute as a source of ctDNA. Actively

growing tumors also experience periods of heightened apoptosis

or necrosis, processes demonstrated to release DNA into circula-

tion [32]. Tumor cells closely interact with vascular cells and are

shown to shed DNA into circulation. These ctDNAs maintain

tumor-specific genetic and epigenetic aberrations; including

point mutations in tumor suppressors and oncogenes [22, 33],

copy number variants [34, 35], DNA methylation patterns, and

chromosomal rearrangements [36]. The advantages of noninva-

sive blood collection over surgery, or even needle biopsy, to iden-

tify the genetic and molecular defects reflective of the tumor

mass(es) have produced tremendous interest in liquid biopsy. It

is envisioned that blood testing could be applied to cancer screen-

ing, early detection, evaluation of tumor heterogeneity, observa-

tion of dynamic changes, identification of genetic/epigenetic

alterations for targeted therapy, and assessment of drug resistance

(Figure 1B). Utilization of ctDNA, through implementation of li-

quid biopsy can provide a new era of comprehensive genomic

profiling during the full course of disease, from initial diagnosis

through treatment and progression.

Recent growth in literature attests to the value of ctDNA in

cancer diagnosis, prognosis, and monitoring of disease progres-

sion and therapy response (Figure 2 and Table 1). In 2005, methy-

lation in ctDNA was shown useful for early detection [37] and

much later as a diagnostic tool for monitoring cancer dynamics

[38]. In 2006, Kimura et al. [39] demonstrated the role of EGFR

mutations in predicting response to treatment with molecularly

targeted inhibitors; a similar line of study was reported by Kuang

et al. [40]. In 2008, ctDNA dynamics measured in patients

undergoing treatment for colorectal cancer (CRC) reflected

tumor responses and progression, and ctDNA detection after sur-

gery indicated residual disease [41]. In 2013, Murtaza et al. [42]

described utility of exome sequencing of cfDNA from serial

plasma samples to study clonal evolution and to track ctDNA dy-

namics in high-burden disease. Additional examples follow.

Detection and quantification of ctDNA:

technological development

Clinical applications for liquid biopsy are largely driven by

technology development from genomics research. Applications

include real-time PCR (qPCR) [43, 44]; the Scorpion

Amplification-Refractory Mutation System [45]; Beads,

Emulsion, Amplification and Magnetics [46]; digital PCR
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(dPCR) [47, 48]; and NGS [49, 50]. Being most broadly applic-

able, dPCR and NGS are briefly described.

dPCR to identify targetable mutations and track
targeted therapy responses

The dPCR approach expands quantification of gene expression

beyond traditional qPCR by directly quantifying the exact num-

ber of target molecules. In this manner, dPCR allows detection of

a single copy of mutated ctDNA, even in complex mixtures, ren-

dering it highly sensitive [51]. Importantly, dPCR has a relatively

simple workflow facilitating implementation in the clinical

laboratory.

NGS to screen and detect disease burden

NGS refers to high-throughput genome sequencing using one of

several available platforms. Through parallel sequencing of millions

of DNA templates, NGS reveals a large portion of the genome. The

richness of NGS is realized in the diversity of genomic input material

(whole-genome, exome, de novo, targeted, RNA, ChIP, methyla-

tion, etc.) and analysis pipelines. Currently, multiple applications

are used in oncology, such as targeted sequencing (gene panels) and

whole-exome or whole-genome sequencing [14, 21, 50, 52, 53].

Each analysis method has its own diagnostic niche. dPCR is

rapid, relatively inexpensive, and allows quantitation of mutant

alleles, particularly at very low concentrations. A significant con-

straint, however, is required a priori knowledge of specific muta-

tions for analysis, with limited detection of rearrangements, and

analysis of many mutations presenting a challenge. NGS allows

multiplex analysis of thousands of genomic positions and readily

detects rearrangements and copy number variation. There is a

growing consensus that NGS will be the test of the future but the

current downside is high cost of the deep sequencing necessary

for high sensitivity. With technological demand leading to innov-

ation, however, the detection capabilities should logically lead to-

ward cost-effective gene coverage. Of note, GRAIL—a new

company with a mission to facilitate early detection of cancer—is

pioneering in this direction by development of higher coverage

and deeper sequencing depth that is poised to significantly
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Figure 1. Biological characteristics and clinical applications of circulating tumor DNA (ctDNA). (A) Circulating tumor cells (CTCs), ctDNA, cir-
culating tumor RNA (ctRNA), and circulating tumor protein as complementary blood-based biomarkers. Tumor cells release ctDNA into the
bloodstream through apoptosis, necrosis, and secretion. A subset of aggressive ctDNA enters the bloodstream from the primary tumor or
metastatic lesions. (B) Central circle illustrates ctDNA as having multiple classes of genetic and epigenetic alterations. Outer circle presents
the potential clinical benefits of ctDNA monitoring in cancer management. CNV, Copy Number Variation.

Annals of Oncology Review

Volume 29 | Issue 2 | 2018 doi:10.1093/annonc/mdx766 | 313

Deleted Text: -
Deleted Text: -


circumvent these limitations [54, 55]. Our recent study [22]

showed that even a single mutation in blood from cancer patients

was diagnostic of decreased survival. Moreover, mutation rates in

plasma were cancer stage-independent, supporting wide-ranging

early diagnostic relevancy of a sensitive NGS-based approach.

Newman et al. introduced an economical, ultrasensitive modifi-

cation for quantifying ctDNA: Cancer Personalized Profiling by

deep Sequencing (CAPP-Seq) to expand ctDNA detection for

broad clinical applicability [56]. The use of CAPP-Seq in

non-small-cell lung cancer (NSCLC) revealed emergence of

drug-specific mutational patterns associated with resistance to

EGFR-targeted therapies [57]. In a majority of patients analyzed,

post-treatment residual disease detected at the molecular level by

CAPP-Seq preceded cancer progression detected by radiographic

measures by a median of 5.2 months [58]. MSKCC researchers

using the Grail platform for NGS, reported detection of muta-

tions in circulation in 89% of 151 metastatic cancer patients using

ultra broad coverage (508 genes) and ultra-deep sequencing

(60 000�) [59]. Accumulating evidence suggests that ctDNA de-

tection techniques are quantitative and that changes in ctDNA

levels during chemotherapy are associated with tumor response

or progression in several tumor types [41, 60–62]. These studies

1948: Mandel and

Metais  initially

identified cfDNA

in the blood.

1977: Leon et al.

reported increased

cfDNA in the circulation

of cancer patients.

1994: Sorenson et al. reported

the detection of specific sequences

of KRAS genes in plasma DNA.

1989: Stroun et al. reported the preence of

neoplastic characteristics of DNA in plasma.

1948 1958 1968 1978 1988 1998 2008 2018

1999: Sozzi et al. reported ctDNA

as a prognostic or predictive marker

for cancer detection.

2006: Kimura et al. reported EGFR mutations in serum

or plasma of patients with lung cancer; Gormally et al.

reported detection of TP53 or KRAS2 mutations in the

plasma of healthy subjects, and suggested KRAS2 mutation

was detectable ahead of bladder cancer diagnosis.

2012: Forshew et al. reported monitoring

of cancer mutations by targeted deep

sequencing of plasma DNA.

2014: Bettegowda et al. reported the concentration

of ctDNA in plasma correlated with tumour stage;

Lipson et al. reported ctDNA correlated with clinical

and radiologic outcomes.

2016: Chabon et al. reported multiple heterogeneous

resistance mechanisms using ctDNA profiling in patients

with NSCLC treated with the EGFR inhibitor rociletinib.

2002: Lecomte et al. reported KRAS

mutations in plasma as a potential

prognostic factor in CRC.

2017: Yang et al. reported ctDNAs in circulation are

the result of dissemination of aggressive tumor

clones and survival of resistant clones; Abbosh et al.

 reported the subclonal nature of lung cancer relapse

and metastases by phylogenetic ctDNA profiling.

2015: Oshiro et al. reported PIK3CA mutant ctDNA

was a significant and independent prognostic factor

for primary breast cancer patients.

2013: Dawson et al. reported monitoring of

ctDNA in patients with metastatic breast cancer.

2009: Kuang et al. reported role of EGFR

in predicting response to treatment with

molecularly targeted inhibitors.

Figure 2. ctDNA discovery and concomitant developments in cancer: a timeline of genomics advances impacting cancer research over the
past 70 years. Landmark discoveries are indicated on the timeline; the numbers of which have increased dramatically in the past 10 years
owing in large part to next-generation sequencing capabilities.
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begin to demonstrate the clinical utility of ctDNA detection at all

stages of disease.

New insight into cancer hallmarks through

ctDNA

Our current understanding of cancer is derived primarily from

investigation by cancer types and their tissues of origin. The sys-

tems for staging and for designing cancer therapeutics also rely

on this information. The unprecedented ability to interrogate

cancer as a systemic disease by examining ctDNA has led to a

number of new perspectives.

Tumor heterogeneity and clonal evolution

Cancer is a heterogeneous disease with respect to the molecular

mechanisms underlying its development. Solid tumors also ex-

hibit temporal heterogeneity, evolving spontaneously over time

and shaped by responses to selection-pressures, such as the im-

mune system and treatment. Almost all cancers treated with

anticancer agents have the capacity for resistance as a function of

tumor heterogeneity, clonal evolution, and selection [63].

Jamal-Hanjani et al. [64] prospectively investigated intratumor

heterogeneity in relation to measures of clinical outcome, clonal

nature of driver events, and evolutionary processes in early-stage

NSCLC. They reported that driver mutations of EGFR, MET,

BRAF, and TP53 were almost always clonal. In addition, hetero-

geneous driver alterations occurred later in evolution in more

than 75% of tumors, commonly in PIK3CA and NF1 and genes

involved in chromatin modification and DNA damage response

and repair. Gerlinger et al. [1] observed intratumor heterogeneity

in renal carcinoma, detecting a minority of the total genetic bur-

den in any one biopsy. Of note, among compartmentalized sites

within the same tumor, they report convergent evolution events

among several tumor suppressor genes leading to loss of func-

tion. This complex level of mutational heterogeneity highlights

consequences for patients if treatment decisions depend on re-

sults from an initial, prototypical tumor biopsy. Consequently,

relevant mutations might be overlooked.

Tumor subclones may arise during disease progression, altering

the proportion and pattern of specific aberrations between the pri-

mary tumor and metastases [65]. The analysis of ctDNA addresses

this issue, because ctDNA released from multiple tumor regions

may reflect both intratumoral heterogeneity [66] and clonal evolu-

tion [16]. Evidence demonstrates that ctDNA from plasma reveals

this clonal tumor hierarchy in cancer. Murtaza et al. [67] exten-

sively analyzed sequential tumor tissue biopsies and plasma ctDNA

samples in a ERþ/HER2þ breast cancer patient over 3 years,

including multiple metastatic deposits, and determined that

ctDNA reflected the dynamics of clonal evolution over disease pro-

gression. CAPP-seq screening of ctDNA by Chabon et al. [57] iden-

tified multiple heterogeneous resistance mechanisms after EGFR

inhibitor treatment in patients with NSCLC. They described a novel

EGFR L798I mutation and found that EGFR-C797S, which arises in

�33% of patients after osimertinib treatment, occurred in <3%

after rociletinib. Increased MET copy number was the most fre-

quent rociletinib resistance mechanism and patients with multiple

preexisting mechanisms (EGFR-T790M and MET) had inferior re-

sponses. Interestingly, Abbosh et al. [16] demonstrated the subclo-

nal nature of lung cancer relapse and metastases by a new tumor-

specific phylogenetic approach using ctDNA profiling. They

showed that mean plasma variant allele frequency of clonal SNVs

was higher than that of subclonal SNVs, supporting use of clonal al-

terations as a more sensitive method of ctDNA detection than sub-

clonal alterations. They also demonstrate the feasibility of using

ctDNA platforms to guide drug development, identify residual

Table 1. Trends in ctDNA literature by cancer type

Cancer types 1989–1999 2000–2004 2005–2009 2010–2014 2015–

NSCLC 1 [104] 6 [39, 40, 105–108] 22 [49, 50, 56, 76, 79, 82,
84, 89, 90, 109–121]

21 [10, 14, 16, 47, 52, 57, 64, 8
3, 85, 122–133]

SCLC 1 [134]
Lung cancer 1 [78] 1 [135]
CRC 1 [77] 2 [41, 136] 12 [48, 98, 137–146] 9 [15, 62, 87, 147–152]
Colon cancer 1 [73]
Breast cancer 4 [66, 69, 153, 154] 7 [8, 61, 67, 99, 155–157]
Ovarian cancer 1 [158] 1 [159] 2 [160, 161]
HCC 2 [34, 162] 2 [163, 164]
Brain tumor 1 [165]
Pancreatic adenocarcinoma 2 [27, 166] 1
Bladder cancer 1 [167]
Prostate cancer 1 [35] 2 [53, 168]
Renal cell carcinoma 1 [1]
Melanoma 1 [169] 5 [88, 170–173]
Lymphoma 1 [174]
Nasopharyngeal carcinoma 1 [175] 1 [176]
Various type 1 [26] 1 [32] 2 [177, 178] 4 [36, 42, 71, 179] 9 [21, 22, 97, 180–185]

Note: The number of publications followed by the references in the bracket are shown in the table.
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disease, and target emerging subclones before clinical recurrence in

NSCLC. Yang et al. [22] demonstrates a key goal of tumor hetero-

geneity investigations is to identify clinically aggressive or therapy-

resistant clones. Analysis of DNA mutations in lung tumor tissue

compared with liquid biopsy from the same patients revealed that

mutations in TP53, EGFR, BRAF, CTNNB1, ARID1A, ERBB2, and

PDGFRA present in minor tumor clones were detectable in plasma.

This study points to ctDNA in circulation as a meaningful indica-

tion of dissemination of aggressive tumor clones and survival of re-

sistant clones. Thus, ctDNA analyses have provided direct evidence

of spatial and temporal intratumor heterogeneity and show that the

range of subclonal heterogeneity is variable among cancers.

ctDNA improves early detection of metastasis

The metastatic process is a complex evolutionary progression of cel-

lular events whereby malignant cells from the primary tumor be-

come migratory and move into the circulation, either directly via a

blood vessel or indirectly via a lymphatic vessel, to finally inhabit dis-

tant sites as metastases [5]. Since tumor biopsy from one site may

not completely reveal the genomic landscape of a patient’s disease

burden, blood ctDNA analysis to characterize cancer subclones

would help guide treatment decisions. Deryugina et al. [68] illus-

trated that metastasis can occur throughout tumor progression, even

early stage. Dawson et al. [69] compared radiographic imaging of

tumor progression to assays detecting ctDNA, cancer antigen 15-3,

and CTCs in 30 women receiving systemic therapy for metastatic

breast cancer. Of these biomarkers, ctDNA levels showed the greatest

detection sensitivity, dynamic range and correlation to disease bur-

den, importantly providing an average 5-month advantage over CT

imaging in detecting disease progression in 53% of patients. The util-

ity of ctDNA detection in late stage monitoring extends applicability

to early detection since ctDNA alterations are identified in blood

from patients with early stage disease [70, 71]. Higher ctDNA levels

in early stage cancers may predict more rapid progression to late

stage disease. Notably, Naxerova et al. [72] recently illustrated that

lymph node metastases may not always be the source of cancer’s

spread to other organs; in 65% of cases lymphatic and distant meta-

stases in CRC arose from independent subclones from the primary

tumor. An ultrasensitive approach recently developed at Johns

Hopkins demonstrated that ctDNA detects early-stage tumors and

that ctDNA levels are associated with disease recurrence and

decreased overall survival [23]. Tie et al. also used NGS-based assays

to evaluate ctDNA in 1046 plasma samples from a prospective cohort

of 230 patients with resected stage II colon cancer; they demonstrated

ctDNA detection after resection provides direct evidence of residual

disease and identifies patients at very high risk of recurrence [73].

Early detection of ctDNA may identify driver mutations and

metastatic markers during tumor progression. Although patients

with early stage or minimal residual disease usually have lower

levels of ctDNA, deep sequencing may detect specific alterations

to allow therapeutic intervention with the goal of preventing

metastatic progression [73]. Hence, ctDNA could offer compre-

hensive insight into a patient’s disease, even at an early stage, long

before clinical manifestations of disease progression [74].

Prognostic and predictive implications

ctDNA detection may more accurately estimate patient prognosis.

Previous studies have shown that plasma-based testing and

detection of molecular heterogeneity can predict patient outcome

[75, 76]. In a retrospective study of patients with stages I–III CRC,

detection of ctDNA implied a higher risk of recurrence or shorter

overall survival in patients treated with surgery, chemotherapy,

radiotherapy, or targeted therapy [77]. High levels of KRAS mutated

plasma DNA have been reported as an indicator of poor outcome in

lung cancer patients [78, 79]. Sirera et al. [80] found that high

pretreatment levels of circulating DNA acted as an independent

prognostic marker for shorter survival. Moreover, KRAS status in

plasma ctDNA was associated with poor tumor response to EGFR

tyrosine kinase inhibitors (TKIs) in NSCLC patients and served as a

predictive marker for selecting appropriate treatments [78, 81–84].

In a retrospective analysis [85], patients with NSCLC who were

positive for EGFR-T790M in plasma showed outcomes with osimer-

tinib equivalent to patients classified as positive by a tissue-based

assay, supporting plasma analysis to avoid invasive tumor biopsies

in such patients. A systematic review including 23 studies reported

that the presence of ctDNA in blood is associated with worse sur-

vival in patients with solid tumors [86]. Taken together, these stud-

ies propose that ctDNA measures provide insight for patient

prognosis that could further inform clinical decision-making.

Monitoring of treatment responses

Detection of molecular aberrations in ctDNA provides a powerful

tool to monitor response to therapy and emergence of secondary

mutations associated with therapy resistance [22, 61, 76, 87, 88].

Given the dynamic nature of cancer, ctDNA investigation at mul-

tiple time points during cancer treatment and progression may pro-

vide crucial information for patient management. Studies have

reported that first-line treatment of patients harboring EGFR acti-

vating mutations with EGFR TKIs gefitinib, erlotinib, or afatinib re-

sults in superior overall response rates, progression-free survival

and quality of life compared with chemotherapy [40, 83, 84, 89, 90].

Detection of EGFR-T790M mutation at follow-up facilitates treat-

ment with the third generation EGFR TKI Osimertinib [59]. Thress

et al. [10] reported, however, that serial ctDNA monitoring of lung

cancer patients treated with Osimertinib revealed a diversity of ther-

apy resistance mechanisms. Cabel et al. [91] demonstrated that

quantitative ctDNA monitoring was a valuable tool to assess tumor

response in five metastatic melanoma patients treated with anti-

PD1 drugs [91]. Furthermore, longitudinal assessment of ctDNA in

metastatic melanoma patients who were treated with PD1 inhibi-

tors was an accurate predictor of tumor response and overall sur-

vival [92]. Vidal et al. determined baseline RAS at diagnosis and

monitored of the emergence of RAS mutations as a mechanism of

resistance to anti-EGFR therapy [93]. In advanced prostate cancer,

ctDNA can detect aberrations in the androgen receptor and may

help to predict for response or resistance to androgen directed

therapies [94]. Thus, in such an aggressive disease targeted therapy

success is entwined with vigilant monitoring of treatment response.

Critically, ctDNA genomic alterations over disease progression pro-

vide real-time therapeutic guidance, predict prognosis and assess

for therapy resistance ahead of imaging studies.

ctDNA early detection for staging and auxiliary
diagnostic screening

The amount of ctDNA detected in blood is correlated with cancer

stage and tumor aggressiveness [95]. Comparing late to early
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stage disease, ctDNA was detected in 100% of patients with stages

II–IV NSCLC and in 50% of patients with stage I NSCLC [96].

ctDNA detection shows some variation among tumor types. A

high proportion of patients with advanced primary pancreatic,

ovarian, colorectal, breast, bladder, esophageal, melanoma, and

hepatocellular carcinoma have measurable ctDNA while detec-

tion falls under 50% for patients with brain, renal, prostate, and

thyroid cancers [71], though this will likely vary with the technol-

ogy used for ctDNA detection. The same group reports detecting

ctDNA from about 50% or more of patients with localized disease

(colorectal, esophageal, pancreatic, and breast adenocarcinoma).

Moreover, a study with 95% of patients having advanced or

metastatic disease reported that 58% of patients had at least one

detectable alteration, which increased to 65% when glioblastoma

was excluded [97]. In their comprehensive quantitative analysis,

Bettegowda et al. [71] reported varying levels of ctDNA across pa-

tients with distinct cancer types and provided expected ranges of

ctDNA levels across the stages of disease.

Quantifying ctDNA levels enables earlier response assessment

than standard radiographic approaches. Misale et al. [98] re-

ported serial ctDNA analysis identified KRAS-mutant alleles in

the plasma of cetuximab-treated patients 10 months before dis-

ease relapse was identified by imaging. They suggest that ctDNA

could supplement standard screening or restaging approaches for

cancers—such as mammography for breast, low dose spiral CT

for lung, colonoscopy for CRC, and PSA for prostate—poten-

tially increasing diagnostic sensitivity and specificity. In a study

designed to monitor treatment response, Garcia-Murillas et al.

[99] used NGS of tumor biopsies in patients with early stage

breast cancer to identify patient-tumor-specific mutations and

developed personalized dPCR assays to detect and track ctDNA

in 55 patients receiving neoadjuvant chemotherapy followed by

surgery: detection of ctDNA after surgery or during serial sam-

pling was a significant predictor of early relapse. Furthermore,

ctDNA provided a median lead time of 7.9 months before discov-

ery of clinical relapse. Similarly, Olsson et al. [61] used ctDNA for

early detection of metastasis in women who presented with early

stage, nonmetastatic breast cancer and received no neoadjuvant

therapy; reporting 13 of 14 patients with eventual clinical recur-

rence showed positive ctDNA levels postoperatively, whereas pa-

tients with long-term disease-free survival had no detectable

ctDNA. Critically, ctDNA molecular detection of occult metasta-

sis preceded the clinical diagnosis in 12 of 14 patients with an

average lead time of 11 months.

These studies indicate that ctDNA detected in the blood of

early stage patients is a robust and independent marker of disease

progression, which may significantly enhance the current prog-

nostic assessment. Doctors have already begun to order ctDNA

and NGS tests as part of precision oncology programs. Because of

the noninvasive nature, implementation of ctDNA testing is

straightforward but utility must develop from a network encom-

passing research knowledge, product/test development and clin-

ical validation.

Proposing a modified cancer staging system for
solid tumors: TNMB

The Tumor, Node, and Metastasis staging system was devised by

Pierre Denoix during 1943–1952 [100] to classify malignant

tumors with a goal of standardizing treatment regimens and sur-

vival expectations by providing a uniform guide to describe the

anatomical extent of disease. Since introduction, the TNM sys-

tem has gained wide international acceptance for staging solid

tumors. Applying TNM taxonomy criterion, cancers are staged

into one of four groupings (I, II, III, and IV) for a diagnosis that

provides a prediction of treatment course and disease prognosis.

Stage IV, exclusively indicating distant metastases, represents late

stage disease and generally poor prognosis, thus imploring any

mechanism to better identify systemic disease as being highly

meaningful. While prognostic biomarker research in cancer has

great potential to drive personalized medicine, the complexity of

implementation is equally great. A logical first step, quantifying

ctDNA levels in blood, offers a practical solution to the quandary.

In light of new genomic technologies that improve assessment

of risk for cancer progression and/or metastatic disease, the time

has come to consider amending the TNM system [101]. We

propose a modified staging system for future development—

‘TNMB’. Figure 3 shows how TNMB (B represents blood) com-

plements TNM staging by adding a liquid biopsy ‘B’ to capture

prognostic and therapeutic implications gained from ctDNA

evaluation. Paralleling the ‘M’ category, initial categorization

may be defined as the absence (‘B0’) or presence (‘B1’) of detect-

able ctDNA. Although in need of standardized criteria, B staging

should apply to most cancers independent of site. As literature ac-

cumulates, classification could be refined to include ctDNA

quantification data with clinically meaningful cut-offs by site [71,

102]. Future incorporation of data such as mutational burden,

actionable mutations, and metastasis-related mutations will fur-

ther enhance the clinical impact of the ‘B’ designation.

Foundation Medicine has recently put forward ctDNA mutation

load as an end point for their liquid biopsy test because of dem-

onstrated clinical utility [63]. Prospective studies to compare

TNM staging to TNMB staging on their accuracy in predicting

cancer recurrence and patient survival are critically needed and it

is likely that the growing body of literature on ctDNA will help

define clinically meaningful categories within the ‘B’ designation

for each tumor type.

Discussion

Conclusions

Beyond simply reproducing information from tissue biopsies,

noninvasive ctDNA analysis offers a comprehensive and inte-

grated view of the systemic evolution of cancer. ctDNA has been

shown to be a relevant blood-based biomarker useful as a com-

plementary method for cancer screening and diagnostic tool. By

providing material for mutational analysis in the clinical setting,

ctDNA facilitates highly sensitive monitoring for the acquisition

of treatment resistance. Results of ctDNA detection have been

successfully used to guide targeted therapies aiming at key driver

events for metastasis. Consequently, we propose that develop-

ment of a TNMB staging system to include blood ctDNA infor-

mation to enhance the current TNM cancer staging system. This

new component will stimulate further development of specific

and sensitive cancer detection technologies for blood biomarkers

in the rapidly evolving field of precision oncology. We envision
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an iterative process is needed where clinical data from popula-

tion-based cohorts are compiled to evaluate survival associated

with staging groups. To initiate use within the TNMB system,

large data registries are needed to start capturing ‘B’ so that the

next iteration of staging revisions can incorporate the important

prognostic information from this variable with the hope to im-

prove outcomes for all cancer patients.
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