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Background: Genomic changes that occur in breast cancer during the course of disease have been informed by sequencing of
primary and metastatic tumor tissue. For patients with relapsed and metastatic disease, evolution of the breast cancer genome
highlights the importance of using a recent sample for genomic profiling to guide clinical decision-making. Obtaining a
metastatic tissue biopsy can be challenging, and analysis of circulating tumor DNA (ctDNA) from blood may provide a minimally
invasive alternative.

Patients and methods: Hybrid capture-based genomic profiling was carried out on ctDNA from 254 female patients with
estrogen receptor-positive breast cancer. Peripheral blood samples were submitted by clinicians in the course of routine clinical
care between May 2016 and March 2017. Sequencing of 62 genes was carried out to a median unique coverage depth of
7503�. Genomic alterations (GAs) in ctDNA were evaluated and compared with matched tissue samples and genomic datasets
of tissue from breast cancer.

Results: At least 1 GA was reported in 78% of samples. Frequently altered genes were TP53 (38%), ESR1 (31%) and PIK3CA (31%).
Temporally matched ctDNA and tissue samples were available for 14 patients; 89% of mutations detected in tissue were also
detected in ctDNA. Diverse ESR1 GAs including mutation, rearrangement and amplification, were observed. Multiple concurrent
ESR1 GAs were observed in 40% of ESR1-altered cases, suggesting polyclonal origin; ESR1 compound mutations were also
observed in two cases. ESR1-altered cases harbored co-occurring GAs in PIK3CA (35%), FGFR1 (16%), ERBB2 (8%), BRCA1/2 (5%),
and AKT1 (4%).

Conclusions: GAs relevant to relapsed/metastatic breast cancer management were identified, including diverse ESR1 GAs.
Genomic profiling of ctDNA demonstrated sensitive detection of mutations found in tissue. Detection of amplifications was
associated with ctDNA fraction. Genomic profiling of ctDNA may provide a complementary and possibly alternative approach
to tissue-based genomic testing for patients with estrogen receptor-positive metastatic breast cancer.
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Introduction

Genomic changes that characterize primary breast cancer (BC)

have been elucidated by extensive genomic profiling studies [1].

Comparative analyses of estrogen receptor-positive (ERþ) meta-

static BC (mBC) have demonstrated genomic evolution during

metastatic progression, and following treatment, such as the en-

richment of HER2 and ESR1 genomic alterations (GAs) [2, 3].

Clonal evolution can arise due to independent primary lesions,

expansion of subclonal populations, or acquisition of novel GAs.

Genomic changes following therapy are exemplified by acquired

activating ESR1 GAs that mediate aromatase inhibitor (AI) resist-

ance [2–4].

Clonal evolution processes highlight the importance of profil-

ing a contemporaneous sample that is representative of disease

progression to guide further management. However, limitations

in performing repeated prospective biopsies of metastatic lesions

over the disease course for a patient can present challenges for

clinical genomic analysis [5]. Liquid biopsy and sequencing of

circulating tumor DNA (ctDNA) from blood could provide a

complementary approach to tissue-based genomic testing for

mBC.

Research studies of BC identified genomic changes in ctDNA

following therapy, however, limited numbers of ERþBC have

been profiled [6–8]. In larger studies of ctDNA from ERþmBC,

droplet digital PCR (ddPCR) identified select mutations in ESR1

or PIK3CA [9–11]. In phase 3 trials for ERþ/HER2-negative

(HER2�) BC, prospective ctDNA assessment identified patients

with PIK3CA mutation who derived survival benefit from bupar-

lisib [4]. Retrospective analyses of ctDNA in phase 3 trials suggest

that ESR1 mutations are associated with resistance to AI but not

selective ER down-regulators (SERDs), and can guide therapy se-

lection [11].

In this study, we carried out hybrid capture-based genomic

profiling to characterize GAs in ctDNA from 254 patients with

ERþBC during the course of their clinical care.

Methods

Detailed descriptions of patient samples/methods are presented in supple
mentary methods, available at Annals of Oncology online. Briefly, periph-
eral blood samples were collected from 254 patients with ERþBC,
plasma was isolated from 20 ml whole blood,�20 ng DNA was extracted,
and hybrid capture-based genomic profiling of ctDNA was carried out in
a CLIA-certified/CAP-accredited laboratory [Foundation Medicine
(FM)] to identify substitutions, short insertions/deletions, rearrange-
ments/fusions, and amplifications [12]. Sixty-two genes (supplementary
Table S1, available at Annals of Oncology online) were sequenced
(Illumina HiSeq 2500 or 4000) to a median unique coverage depth of
7503�. Maximum somatic allele frequency (MSAF) was used to estimate
the ctDNA fraction in plasma.

Results

Patient characteristics

This study of hybrid capture-based sequencing of ctDNA in

blood included consecutive genomic profiling results from 254

female patients with an initial diagnosis of ERþBC, determined

by routine IHC. Patient characteristics are described in Table 1

and supplementary Table S2, available at Annals of Oncology on-

line. For patients with available clinical information, 94% were

stage IV, 88% had received prior chemotherapy, and 88% had

received prior AI in the adjuvant and/or metastatic setting.

GAs identified in ctDNA from ER1 BC

At least 1 GA was detected in 78% of cases with an average of

2.5 GA/sample (range 0–27). MSAF was calculated for each case

and provided a median estimated ctDNA fraction of 1.7% (inter-

quartile range 0.3%–9.2%). Eighty-four percent of cases have evi-

dence of ctDNA in the blood (MSAF> 0). There was no evidence

of ctDNA in the blood (MSAF¼ 0) in 15% (33/226) of stage IV

cases and 43% (6/14) of stage I–III cases. The most frequently

altered genes in ERþBC were TP53 (38%), ESR1 (31%), PIK3CA

(31%), CDH1 (10%), and ERBB2 (8%) (supplementary Figure

S1, available at Annals of Oncology online).

For ERþ/HER2� BC, the most frequently altered genes were

TP53 (35%), ESR1 (34%), PIK3CA (31%), and CDH1 (12%)

(Figure 1A). ERBB2 activating mutations were identified in 3% of

cases. ERBB2 amplification was identified in one patient initially

diagnosed with ERþ/HER2� BC (IHC on a breast biopsy); gain

of HER2 was subsequently confirmed by IHC (3þ) on a meta-

static biopsy. Activating kinase fusions (FGFR2-INA, FGFR3-

TACC3, NCOA4-RET) were observed in three cases (2%).

Frequently altered pathways included PI3K-AKT-mTOR (38%),

RAS-RAF-MEK (15%), FGFR (14%), cell cycle (8%), and BRCA

(6%).

For ERþ/HER2þBC, the most frequently altered genes were

TP53 (61%), ERBB2 (36%), PIK3CA (25%), and ESR1 (25%)

(Figure 1B). ERBB2 amplification was observed in 29% (8/28) of

HER2þ cases, consistent with next-generation sequencing

(NGS) studies of ctDNA in HER2þBC [7, 13]. The estimated

ctDNA fraction was significantly higher for HER2þ cases with

ERBB2 amplification compared with cases without ERBB2 ampli-

fication detected (supplementary Figure S2A, available at Annals

of Oncology online), suggesting that the ability to detect ERBB2

amplification was associated with the quantity of ctDNA in the

blood.

Comparison of GAs in ctDNA and tissue

We compared frequently altered genes in ctDNA with ERþBC

tissue samples from the FM database and published studies [1–3]

(Figure 1C). For the majority of genes, mutation frequencies in

ctDNA were similar to the range observed in tissue; ESR1 was

mutated at a higher frequency (greater than twofold) compared

with tissue, as expected from our study population comprising

mostly patients who had received or were receiving AI treatment

(supplementary Table S2, available at Annals of Oncology online)

[9]. Amplifications were observed at lower frequencies in ctDNA

compared with tissue, consistent with other studies of amplifica-

tion detection in ctDNA from BC [7, 13]. The estimated ctDNA

fraction was significantly higher for cases with an amplification

detected compared with cases without (supplementary Figure

S2B, available at Annals of Oncology online).

Genomic profiles of matched blood and tissue samples col-

lected within 60 days of each other were available for 14 cases. We
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compared GAs assessed in both ctDNA and tissue (Figure 1D; sup

plementary Table S3, available at Annals of Oncology online). For

short variant mutations, 89% (17/19) that were detected in tissue

were also detected in ctDNA. Six mutations were detected in

ctDNA only and two mutations were in tissue only. One ctDNA

only ESR1 mutation (patient-5) was found in a second tissue

sample from a distinct metastatic site, collected 408 days before

blood sampling. One case (patient-10) harbored one shared and

one tissue only ESR1 mutation; the allele frequency (AF) for the

shared mutation (AF¼ 34%) was 10-fold higher compared with

the tissue only mutation (AF¼ 3%). Two cases harbored both

shared and ctDNA only mutations for the same gene (patient-8:

ESR1; patient-12: PIK3CA): the shared mutation had a higher AF

than the ctDNA only mutations in both cases (ESR1: twofold;

PIK3CA: threefold), suggesting that ctDNA only mutations occur

in less represented clones that may not be detected in a single

tumor biopsy, consistent with clonal heterogeneity. For amplifi-

cations, 27% (3/11) that were detected in tissue were also detected

in ctDNA; no amplifications were detected in ctDNA only. The

estimated ctDNA fraction was higher for two cases where at least

one amplification was detected in both tissue and ctDNA than for

cases where amplification was detected in tissue only.

Landscape of ESR1 alterations in ctDNA

A total of 131 ESR1 GA were observed in 80 ERþ cases (supple

mentary Figure S3A, available at Annals of Oncology online),

including both ERþ/HER2� and ERþ/HER2þ cases (Figure 1A

and B); whereas, only 1 ESR1 GA (amplification) was observed in

the ctDNA of 74 ER- cases (P¼ 0.0001, Fisher’s exact test, two-

tailed, supplementary Figure S3B, available at Annals of Oncology

online). For the 130 ERþ patients with available clinical informa-

tion regarding AI treatment, 35% (40/115) of all AI-treated pa-

tients had an ESR1 GA, and consistent with previous studies [9],

ESR1 GAs were more frequent in patients treated with AI in the

metastatic setting (40%, 36/91) versus patients treated with adju-

vant AI only (11%, 2/19); all patients (40/40) with ESR1 GA had

received prior AI (supplementary Table S2, available at Annals of

Oncology online).

The most frequent ESR1 GAs were D538G, Y537S, Y537N, and

E380Q. All observed ESR1 mutations are activating or occur at

the L536 position where multiple activating mutations have been

characterized (Figure 2A). Of the 80 ESR1-altered cases, 40% had

>1 ESR1 GA (range 2–4) (Figure 2B). In comparison, 24% (19/

79) of PIK3CA-altered cases harbored>1 PIK3CA GA (range 2–

8) and 23% (22/96) of TP53-altered cases harbored>1 TP53 GA

(range 2–11). In cases with>1 ESR1 mutation, no one ESR1 mu-

tation had a consistently greater AF than co-occurring ESR1 mu-

tations, suggesting that diverse ESR1 mutations could contribute

to AI resistance (supplementary Figure S4, available at Annals of

Oncology online).

Multiple ESR1 GAs in the same sample are thought to be poly-

clonal in origin [9, 10]. We carried out a pairwise assessment of

all co-occurring ESR1 mutations to determine whether any

Table 1. Patient characteristics

All ER 1 ER1/HER22 ER1/HER21 ER1/HER2 unk

N 254 197 28 29
Median age, years (range) 58 (32–85) 58 (33–85) 57 (33–79) 62 (32–78)
Stage, N (%) I 2 (0.8%) 2 (1.1%) 0 (0%) 0 (0%)

II 5 (2.1%) 3 (1.6%) 1 (3.7%) 1 (3.8%)
III 7 (2.9%) 7 (3.7%) 0 (0%) 0 (0%)
IV 226 (94.2%) 175 (93.6%) 26 (96.3%) 25 (96.2%)
Unknown 14 10 1 3

Previous chemotherapya Yes 120 (88.2%) 94 (87.0%) 18 (90.0%) 8 (100%)
[adj/met/unk], N [24/91/5] [17/72/5] [4/14/0] [3/5/0]
No 16 (11.8%) 14 (13.0%) 2 (10.0%) 0 (0%)
Unknown 118 89 8 21

Previous aromatase inhibitora Yes 115 (88.5%) 95 (92.2%) 15 (75.0%) 5 (71.4%)
[adj/met/unk], N [19/91/5] [15/75/5] [2/13/0] [2/3/0]
No 15 (11.5%) 8 (7.8%) 5 (25.0%) 2 (28.6%)
Unknown 124 94 8 22

Previous tamoxifena Yes 56 (43.8%) 41 (40.6%) 8 (40.0%) 7 (100%)
[adj/met/unk], N [41/13/2] [28/11/2] [7/1/0] [6/1/0]
No 72 (56.2%) 60 (59.4%) 12 (60.0%) 0 (0%)
Unknown 126 96 8 22

Previous fulvestranta Yes 69 (54.3%) 57 (56.4%) 7 (36.8%) 5 (71.4%)
No 58 (45.7%) 44 (43.6%) 12 (63.2%) 2 (28.6%)
Unknown 127 96 9 22

aSee supplementary Table S2, available at Annals of Oncology online, for detailed descriptions of treatments in adjuvant/metastatic settings, and for treat-
ment/response status at the time of sample collection.
adj, adjuvant only; met, metastatic or metastatic and adjuvant; unk, unknown.
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Figure 1. Genomic alterations in ctDNA from patients with ERþbreast cancer and comparisons with tissue. (A) GAs identified in 197 cases of
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BC (eBC, TCGA [1]: N¼ 594) and mBC (Lefebvre et al. [3]: N¼ 143; Fumagalli et al. [2]: N¼ 182). Data from [1, 3] were extracted from
cBioPortal. Black dots represent genes that were not assessed in [2]. (D) Concordance between GAs found in ctDNA and matched tumor tis-
sue from 14 patients. Days between ctDNA and tissue collection are shown. The ctDNA fraction was estimated using MSAF. Concordant/
shared GAs are in blue, GAs found in tissue only are in grey, and GAs found in ctDNA only are in red. For samples with multiple unique muta-
tions in a gene (patient-5 and patient-8), the number of mutations is shown.
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mutation pairs existed as compound mutations on the same allele

(supplementary Table S4, available at Annals of Oncology online).

Out of 67 mutation pairs, 49 were close enough to be evaluated

on the same sequencing read; compound mutations were

observed in 2/49 mutation pairs (Figure 2C). In case-1, ESR1

L536F/D538G were observed as compound mutations on all

reads. In case-2, ESR1 Y537N occurred as a single mutation in

most reads, but a subset of reads harbored a compound mutation

at the Y537 codon that resulted in conversion of Y537N to Y537S;

the existence of two subsets of reads suggests sequential muta-

tional events.

In addition to the GAs described above, 21 ESR1 variant of un-

known significance (VUS) mutations were identified (Figure 2D)

in 15 ERþ cases including 5 cases with no ESR1 GAs (supplemen

tary Figure S3A, available at Annals of Oncology online); no ESR1

VUS was observed in 74 ER- cases. To evaluate compound muta-

tions, we analyzed 51 co-occurring ESR1 mutation pairs that

involved an ESR1 VUS, and 20 could be evaluated on the same

sequencing read. Compound mutations were observed in 4/20

mutation pairs and 2 mutation pairs existed as compound muta-

tions in only a subset of sequencing reads (supplementary Figure

S5, available at Annals of Oncology online).

ESR1 rearrangements were observed in three cases: two ESR1

rearrangements had potential 3’ fusion partners (AKAP12,

NKAIN2) and one ESR1 rearrangement was fused to an inter-

genic region (Figure 2E). ESR1-AKAP12 is recurrent in BC and

all three ESR1 rearrangements resulted in loss of the ligand-

binding domain (LBD), which likely results in constitutive ER

activation [14, 15]. Each ESR1-rearranged case harbored concur-

rent ESR1 mutation, suggesting prior AI exposure: we confirmed

prior adjuvant AI and fulvestrant treatment of the patient with

ESR1 fused to intergenic space.

Co-occurring GAs with ESR1

To inform therapeutic strategies for AI refractory patients, we

evaluated co-occurring alterations with ESR1 GAs and identified

concurrent GAs that have been associated with responses to tar-

geted therapy in BC [4] including PIK3CA (35%), FGFR1 (16%),

ERBB2 (8%), BRCA1/2 (5%), and AKT1 (4%) (Figure 2F).

For cases with concurrent PIK3CA/ESR1 mutation, the

PIK3CA:ESR1 AF ratio was�1 for 75% (21/28) of cases, consist-

ent with PIK3CA being a truncal driver and ESR1 arising follow-

ing AI (supplementary Figure S6, available at Annals of Oncology

online). Concurrent ESR1/ERBB2 mutation was more frequent

in ctDNA than tissue: in ctDNA, 4% (3/79) of ESR1-mutated

cases had concurrent ERBB2 mutation; whereas, in the FM data-

base, 0.6% (6/969) of ESR1-mutated BC tissue samples had con-

current ERBB2 mutation.

Discussion

Genomic profiling of ctDNA has the potential to capture GAs

that drive recurrent disease or therapeutic resistance and may

provide an alternative when tissue biopsy is challenging.

However, genomic profiles of ctDNA from ERþmBC have not

been extensively studied. We describe GAs identified in ctDNA

from the blood of 254 patients with ERþmBC.

Eighty-four percent of samples had evidence of ctDNA in the

blood, consistent with a study of ctDNA release in mBC [8]. For

cases with no evidence of ctDNA in the blood, lack of detectable

somatic alterations is, in part, likely associated with insufficient

ctDNA release into the blood at the time point of sampling that

can be affected by clinical parameters including disease stage,

tumor size, number of metastatic sites, albumin level, and num-

ber of lines of treatment [8, 16]; these parameters were variable in

this study of unselected cases (supplementary Table S2, available

at Annals of Oncology online).

Alterations were identified in genes that have been associated

with responses to targeted therapy in ERþBC (PIK3CA, ESR1,

ERBB2, FGFR1, BRCA1/2, AKT1) [4]. Compared with genomic

studies of ERþBC tissue biopsies, we identified similar mutation

frequencies in ctDNA [1–3]. Tumor burden can be monitored by

longitudinal assessment of variant AFs in ctDNA [8]. However,

genomic profiling of large numbers of genes is best-suited for

guiding therapy selection, but may be cost-prohibitive for serial

testing. Instead, genomic profiling could establish GAs present in

ctDNA at baseline for a patient, and guide design of personalized

serial monitoring assays. GAs reported here could inform priori-

tization of genes to include for limited sequencing panels for lon-

gitudinal disease monitoring of ERþmBC.

For a smaller subset of patients with temporally matched

ctDNA and tissue samples, 89% of short variant mutations that

were detected in tissue were also detected in ctDNA. Additional

ESR1, TP53, and PIK3CA mutations were identified only in

ctDNA; other studies have similarly observed additional muta-

tions for each of these genes in ctDNA compared with matched

tissue [5, 10, 17]. Additional mutations in ctDNA could reflect

the utility of liquid biopsy to capture heterogeneity of metastatic

sites in ERþmBC [6]. Consistent with this idea, for paired cases

with both shared and ctDNA only mutations in one gene, the

shared mutation AF was two to threefold higher than the ctDNA

only mutation AF. This hypothesis warrants confirmation in pro-

spective trials and may be more relevant in clinical settings where

targeted therapies are routinely employed.

In this study, genomic profiling was carried out as part of rou-

tine clinical care for unselected patients, including patients with

low tumor burden; therefore, many samples had a low estimated

ctDNA fraction (supplementary Table S2, available at Annals of

Oncology online). The sensitivity for amplification detection in

ctDNA was 27% for the 14 matched ctDNA-tissue pairs.

Amplifications (including CCND1, FGFR1, ERBB2) were detected

in ctDNA at lower frequencies than tissue; specifically ERBB2 amp-

lification was identified in 29% of HER2þ cases. Detection of amp-

lifications was associated with higher estimated ctDNA fraction.

Our findings are consistent with NGS studies [using NGS panels or

alternative approaches for amplification detection such as low

coverage whole genome sequencing (plasma-Seq)] that high-

lighted the limitations for robust detection of amplifications in the

context of low ctDNA fractions [18, 19]. Other studies identified

similarly low frequencies of ERBB2 amplification (21%–32%) in

ctDNA from HER2þBC and detected other common BC amplifi-

cations (including CCND1, FGFR1) at significantly lower frequen-

cies in ctDNA compared with matched tissue [7, 13]. Therefore,

although amplifications may be detected in a subset of cases with

sufficient ctDNA fraction, tissue-based genomic testing may be a

more reliable method of detection. In BC, ERBB2 amplification
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remains the only established clinically utilized copy number bio-

marker, but amplifications including FGFR1 and 11q13 are being

evaluated as biomarkers in trials [4]; tissue-based testing may be

the preferable method for treatment selection based on copy num-

ber biomarkers.

We observed a high frequency of ESR1 GAs that are associated

with AI resistance, as expected for this patient population of mostly

mBC with prior AI treatment [9]. The ESR1 mutation frequency

reported here is consistent with studies of AI-treated, ERþmBC

that used ddPCR to assess selected ESR1 mutations in ctDNA,

including frequencies reported in several phase 3 trials [4, 9–11].

We observed a similar distribution of ESR1 mutations compared

with a study of common ESR1 mutations in ctDNA using ddPCR

[10]. Consistent with other studies, we frequently observed cases

harboring>1 ESR1 GA [9, 10]. Multiple ESR1 mutations are

thought to reflect convergent evolution of distinct clones during AI

resistance [6, 10]; for the few cases evaluated using dual mutation-

specific ddPCR probes, different ESR1 mutations existed on separ-

ate alleles [17, 20]. We confirmed that most ESR1 mutation pairs

occur on distinct sequencing reads, likely reflecting polyclonal ori-

gin; however, we also identified cases with ESR1 compound muta-

tions on the same allele. Studies of ESR1 have focused on single

mutations; ESR1 compound mutations in cis warrant further study,

and such mutations might display differential therapeutic sensitiv-

ities compared with characterized single mutations.

Diverse ESR1 alterations were observed, including rearrange-

ments with break points resulting in loss of the LBD. Similar

ESR1 rearrangements with variable 3’ fusion partners have been

described and are activating [14, 15]. ESR1 rearrangements dem-

onstrate preclinical resistance to AI and SERDs, therefore, detec-

tion of ESR1 rearrangements may be important for therapy

selection [15]. ESR1 VUSs reported here could represent novel

functional mutations that warrant characterization.

We identify co-occurring alterations with ESR1, which could

represent alternative targets or rational targets for combination

therapy with SERDs [4]. Some of these GAs have been success-

fully targeted in the context of co-occurring ESR1 GA: responses

have been observed for patients with concurrent ESR1/AKT1 mu-

tation (to AZD5363) [21], ESR1/PIK3CA mutation (to alpelisib)

[22], and for a patient from this study with ESR1/BRCA2 muta-

tion (to olaparib; Dr S. Blau, personal communication).

Concurrent ESR1/ERBB2 activating mutations occurred in

ERþ/HER2� BC and were more frequently observed in ctDNA

compared with tissue, suggesting that ERBB2 and ESR1 muta-

tions may commonly reside on distinct clones that may not be de-

tected in a single tissue biopsy; ESR1 mutations were also

observed in 25% of ERþ/HER2þBC. Combinations of SERDs

with HER2-targeted therapy could be relevant for such cases.

Here, we demonstrate the clinical implementation of genomic

profiling of ctDNA from patients with ERþBC and identify clin-

ically relevant GAs. Blood-based testing may provide an alterna-

tive or complementary approach to tissue-based genomic testing

for patients with mBC.
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